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Abstract. This paper proposes a framework for advanced Grid resource
discovery and monitoring. In the framework, a service’s state data are
mapped into ontologies so that service owners may enrich them with se-
mantic and other useful data, while keeping the state data unchanged.
The Index Service, based on the OGSA framework, aggregates and main-
tains the ontology data, and allows users to query the data by using
ontology-based query languages. The Index Service also provides a Con-
tinual Query mechanism that enables users to submit ontology queries as
subscription messages and to be notified when the query results change.
This paper also proposes an automatic ontology update mechanism, to
keep the ontology data up-to-date.

1 Introduction

The Open Grid Services Architecture (OGSA) [1] constitutes a conceptual frame-
work for Grid computing that is based on Web services concepts and technolo-
gies. It provides standard mechanisms for discovering Grid service instances.
The mechanisms define a standard representation for information about Grid
service instances, denoted as serviceData. Globus Toolkit 3.2 (GT3.2)1 [3] offers
a Base Service, known as the Index Service, that provides the functionality within
which serviceData can be collected, aggregated, and queried. Clients access the
aggregated serviceData by using either of two mechanisms, findServiceData (a
pull operation) or subscription-notification (a push operation). Clearly, the In-
dex Service offers users considerable help with respect to resource discovery,
selection, and monitoring.

The elements of serviceData (SDEs) are defined in a service’s definition of
the service interface, by means of an XML schema. As a result, serviceData
constitutes a structured document but imposes no semantic constraints on the
meaning of the document. Because it has no semantic constraints, serviceData

1 GT3.2 implements the Open Grid Service Infrastructure (OGSI), which addresses
detailed specifications for OGSA. Recently, the OGSI has been refactored to the
WS-Resource Framework (WSRF) [2]. Since the WSRF retains, essentially, all of the
OGSI concepts, the framework proposed here can easily be adapted to the WSRF.
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cannot easily be shared across applications or domains, nor can it easily be pro-
cessed by automated agents/tools. The lack of semantic constraints also makes
it difficult to implement automated reasoning, which could improve resource
discovery and selection. For example, suppose there are Grid Data Service Fac-
tories (GDSFs)2 that provide access to relational databases that contain, in turn,
information about computer-related books. Each factory provides access to one
relational database, and each database covers one of the following topics: compil-
ers, firewalls, and biometrics. To facilitate resource discovery, the GDSFs provide
a databaseSchema SDE that contains logical schema of all tables existing in the
database. Since the SDE contains no semantic information, it would be difficult
to perform automatic resource discovery and selection. For example, it would be
difficult to automatically find factories that provide access to tables that have
a column containing a specific domain value, such as a book’s title. It would
be difficult to find factories that provide access to databases containing books
that address a specific topic such as biometrics, or a more general topic such as
computer security, a topic that is related to both biometrics and to firewalls.

In order to enrich serviceData with semantic constraints, one could directly
modify the SDE definition in the service specification. However, that would not
constitute a suitable approach because of the following. First, the modifica-
tion would affect all clients that refer to the serviceData. Second, adding ”non-
standard“ elements to the SDE definition would require communicating the new
elements to clients and, currently, there is no efficient way to publish the seman-
tics of new elements to clients. Third, the user may not have the access privileges
to update the service specification or to recompile and/or redeploy the service.

In GT3.2, the subscription-notification can be performed only for the entire
SDE. An Index Service client cannot specify a SDE’s part, or element of inter-
est, in order to receive notification only when that part changes. The client is
forced to accept notification messages pertaining to the entire SDE, regardless
of whether the monitored value, which may be a small part of the SDE, has
changed.

This paper proposes a framework for creating, maintaining, querying, and
monitoring semantic serviceData/SDEs. Some domain-specific ontologies are de-
fined, and SDE values of services are mapped onto the property values of the
ontologies. In the framework, each service has a Service Data Provider (SDP),
which stores the service’s semantic serviceData in an SDE. The Index Service
aggregates the semantic serviceData by subscribing to the SDE and storing the
serviceData in an ontology repository. To keep the semantic serviceData up-to-
date, an automatic ontology update mechanism is proposed. The mechanism
makes use of the subscription-notification mechanism and stores access paths to
the original SDE values in the semantic serviceData. Index Service clients for-
mulate queries with an ontology-based query language for information discovery
and exploration of the serviceData’s semantic parts.

2 GDSFs are the part of the OGSA-DAI software [4] that implements the Grid Data
Service Specification [5].
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The Index Service also provides a Continual Query (CQ) mechanism for ad-
vanced resource monitoring. A CQ is a standing query that monitors the update
of interest and returns results whenever the update has satisfied a specified condi-
tion. With the mechanism, a client can send ontology queries as subscription mes-
sages and receive (new) query results whenever monitored values have changed.

The rest of the paper is organized as follows. Section 2 briefly describes
some semantic web technologies. Section 3 describes related work. Our proposed
framework and its implementation are presented in Section 4. We conclude our
paper in Section 5.

2 Resource Description Framework (RDF) and Ontology

The Resource Description Framework (RDF) [6] is a W3C Recommendation that
is particularly intended for representing metadata about Web resources. RDF
statements, also called triples, consist of three parts: subject, which identifies
the item the statement is about; predicate, which identifies the property of the
item that the statement specifies; and object, which identifies the value of that
property. The RDF Schema (RDFS) extends the RDF standard by providing
the means to specify vocabularies/terms used in RDF statements. To do this,
the RDFS pre-specifies a body of terminology, such as Class, subClassOf, and
Property, which forms a basis for building a hierarchical structure.

RDF and RDFS standards are widely used to build ontologies. An ontology
(or ’shared understanding‘) consists of explicit formal specifications of terms
in the domain, and the relations between them. An ontology allows people or
software agents to share a common understanding of the structure of information.

For effective storage and query of ontologies, use of a high level query language
is essential. The numerous existing ontology repositories include Jena [7] and
Sesame [8]. For querying ontologies, the repositories support query languages
such as RDQL [9] and SeRQL [10].

3 Related Work

Ontology-based Matchmaker (OMM) [11] is an ontology-based resource selector
for solving resource matching in the Grid. It consists of three components: on-
tologies, used for expressing resource advertisements and job requests; domain
background knowledge, which captures additional knowledge about the domain;
and matchmaking rules, which define the matching constraints based on the on-
tologies and background knowledge. In OMM, resource providers periodically
advertise their resources to a matchmaker by sending advertisement messages,
based on a resource ontology. Requesters formulate a job request to the match-
maker, basing it on a request ontology. On receiving a job request, the match-
maker activates the matching rules to find a list of potential matches.

Our work differs from the OMM, in the following aspects. First, the OMM
requires resource providers to construct advertisements and to send them, peri-
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odically, to the matchmaker, whereas our system uses an automatic service state
mapping and ontology update operation. Second, OMM uses different ontologies
for resource advertisements and job requests, while ours does not. Using different
ontologies for the two kinds of processes results in the need to define rules that
match advertisements and job requests. As a result, updating ontology vocab-
ularies results in a modification of the matching rules. In addition, the OMM
does not allow easy use of other rule-based engines, because the matching rules
and background knowledge must be transformed into the engine’s rules. By con-
trast, our system can easily use the existing ontology repositories and explore
the power of given ontology-based query languages. Third, the OMM lacks a CQ
mechanism, so the requestor cannot easily and effectively monitor the resource
advertisements.

Several approaches have already been suggested for adding semantics to the
Web service standard for improved service discovery. METEOR-S [12] is a frame-
work for semi-automatically marking up Web service descriptions with ontolo-
gies. It provides algorithms to match and annotate WSDL files with relevant
ontologies. By contrast, UDDI-MT [13] deals with Web service directories. It
enables users to specify metadata for the information stored in the directories.
The metadata are stored (locally) in a Jena repository and can be queried us-
ing RDQL. UDDIe [14] also adds metadata to the directories data but with a
service leasing mechanism. These systems do not deal with the service state of
Grid services but, rather, with Web service standards.

Continual Query for Web scale applications has been studied in the lit-
erature. The goal is to transform a passive web into an active environment.
OpenCQ [15] allows users to specify the information they want to monitor
by using an SQL-like expression with a trigger condition. Whenever the in-
formation of interest becomes available, the system immediately delivers it to
the users. The rest of the time, the system continually monitors the arrival
of the desired information and pushes it to the users as it meets a threshold.
NiagaraCQ [16] goes further, by grouping CQs that have similar structures so
they can share common computation. Our CQ mechanism is different in that
it monitors ontology instances/data3. Hence, our system uses RDQL to for-
mulate CQs. Furthermore, the mechanism is adapted to the Grid environment
because it uses the OGSA subscription-notification mechanism to deliver the
CQ execution results.

4 Proposed Framework

4.1 General and Service State Ontologies

To add semantic information to serviceData, we map the SDE values into on-
tology property values. Ontologies used in this framework can be categorized

3 The term ’ontology instance‘ corresponds to the RDF (facts), while the term
’ontology‘ (without instance) corresponds to the RDF schema.
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Fig. 1. General Ontology
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Fig. 2. Database Service Ontology

into two types: General Ontology and Service State Ontology. The former is for
service-general information, and the latter is for service-specific information.

Fig. 1 shows part of the General Ontology. The part shown defines certain
classes and properties as including general service information, such as service
location (country and VO names), service types (e.g., computing and database
service), service portType, service access point(s), and service name. Note that
the oisf:hasState property refers to Service State Ontology instances. Currently,
we define two Service State Ontologies: Database Service Ontology (shown in
Fig. 2) and Computing Service Ontology. The Database Service Ontology is
based on a database logical schema defined by the CIM-based Grid Schema
Working Group of GGF [17]. The Computing Service Ontology is based on the
GLUE schema defined by the EU-DataTAG and US-iVDGL projects [18].

4.2 SDE Value Mapping and Semantic ServiceData Creation

SDE values (in serviceData) are mapped into property values of a Service State
Ontology. To this end, each SDE value is associated with a specific class in the
ontology, called the SDEInfo class. This class has the following properties.

– oisf:value, which stores the SDE value.
– oisf:valueState, which stores the characteristics of the SDE value (’static‘ or

’dynamic‘). This property is used to efficiently update the oisf:value property
value when the corresponding SDE value changes (see Section 4.3).

– oisf:definedIn, which refers to a wsdl:portType class instance.
– oisf:hasSDEMapping, which refers to an SDEMapping class instance. This

class instance stores the access path information of the SDE value, such as
the SDE name, the XPath expression to retrieve the value from the SDE,
and the XML namespace mapping used in the XPath expression.

Fig. 3 shows the instances of db:Rdb, db:Driver (i.e., SDEInfo class), and
oisf:SDEMapping classes defined in the Database Service Ontology. db:Driver



Ontology-Based Grid Index Service 149

db:Rdb_instance

db:driver_instance

oisf:SDEMapping_instance

oisf:SDEMapping_instance

wsdl:PortType_instance

oisf:value= org.gjt.mm.mysql.Driver

oisf:valueState= static

oisf:definedIn=

oisf:hasSDEMapping=

oisf:sdeName= driver

oisf:xpath=

oisf:nsMapping=

oisf:sdeNameNS=

/ns1:driver/ns2:driverImplementation
xmlns:ns1=http://ogsadai.org.uk/namespace…

http://ogsadai.org.uk/namespaces/2003/07...

db:Rdb_instance

db:driver_instance

oisf:SDEMapping_instance

oisf:SDEMapping_instance

wsdl:PortType_instance

oisf:value= org.gjt.mm.mysql.Driver

oisf:valueState= static

oisf:definedIn=

oisf:hasSDEMapping=

oisf:sdeName= driver

oisf:xpath=

oisf:nsMapping=

oisf:sdeNameNS=

/ns1:driver/ns2:driverImplementation
xmlns:ns1=http://ogsadai.org.uk/namespace…

http://ogsadai.org.uk/namespaces/2003/07...

Fig. 3. SDE mapping

Algorithm: Maintain semanticData SDE.
Input: Ontology instances (semantic serviceData), inst.
Method:
1: Put inst into semanticData SDE and publish the SDE to Index Service;
2: Extract SDE names contained in Service State Ontology instances (∈ inst);
3: Subscribe to the extracted SDEs;
4: On receiving an SDE update message, mes,
5: sName ← extract SDE name from mes;
6: Get SDEInfo instance (∈ inst) where value(SDEInfo.oisf:valueState) =’dynamic‘;
7: For each obtained SDEInfo instance, sInfo,
8: sMapping ← get its SDEMapping instance (∈ inst);
9: If value(sMapping.oisf:sdeName) = sName,
10: xpath ← get XPath expression from sMapping;
11: val ← apply xpath to mes;
12: sInfo.oisf:value ← val;

Fig. 4. semanticData SDE maintenance algorithm

instance corresponds to the driver element content in the serviceData of a
database service (i.e., GDSF). It stores a driver implementation value in the
oisf:value property. The XPath expression in oisf:SDEMapping instance spec-
ifies how to retrieve the value from the driver element.

Ontology instances (semantic serviceData) of a service are created as follows.
General Ontology instances are created manually/semi-automatically by a re-
source/service owner, using ontology editors such as Protëgë [19]. Service State
Ontology instances are created, largely automatically, by the use of a simple
parser. The parser reads a mapping file that maps each SDE value to a corre-
sponding SDEInfo class in the ontology.

4.3 Service Data Provider (SDP)

To hold ontology instances, each service instance is associated with a Service
Data Provider (SDP). An SDP is a transient service that has a special SDE,
known as semanticData, to store semantic serviceData of the represented service.
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Fig. 4 shows an algorithm used by an SDP to automatically maintain its se-
manticData SDE. Note that value(inst.oisf:prop) denotes the value of property
oisf:prop of class instance inst. On receiving ontology instances, an SDP stores
the instances into the semanticData SDE and publishes the SDE to Index Ser-
vice (line 1). Publishing the SDE to Index Service makes the SDE available to
be queried by clients. The SDP then extracts all distinct SDE names contained
in the Service State Ontology instances (line 2). This is accomplished by getting
oisf:sdeName property values from SDEMapping class instances. Next, the SDP
sends subscription messages to the (represented) service in order to subscribe to
the extracted SDEs (line 3). When the service updates an SDE value, the SDP
receives a notification message containing the updated SDE (line 4). The SDP
then extracts the SDE name from the message (line 5).

Next, the SDP updates the stored ontology instances (lines 6–12). To do
this, it first gets all SDEInfo class instances for which the oisf:valueState prop-
erty values are ’dynamic‘ (line 6). Then, for each obtained SDEInfo instance,
the SDP gets the SDEMapping instance referred by the SDEInfo class instance
(i.e., value(SDEInfo.oisf:hasSDEMapping)) (line 8). If the SDEMapping instance
corresponds to the SDE contained in the notification message, then the SDP gets
the XPath expression from the mapping instance (line 10), applies the expression
to the notification message (line 11), and finally puts the obtained result/value4

into the oisf:value property of the SDEInfo instance (line 12).
An SDP will be destroyed when the represented service stops. Before the

SDP is destroyed, an unpublish message is sent to the Index Service to remove
the service’s semantic serviceData from the Index Service’s repository.

4.4 Ontology-Based Grid Index Service (Ont-GIS)

RepositoryMaintenance. The Index Service (Ont-GIS) has an ontology repos-
itory, which it allows clients to query by using an ontology-based query language.
Queries are formulated based on the General and Service State Ontologies. We use
Jena [7] as the ontology repository and RDQL [9] as the query language.

Fig. 5 shows the Ont-GIS architecture. Ont-GIS collects semanticData SDEs
from several SDPs and stores their contents in the repository. The content of
each semanticData SDE is stored as a Jena persistent model5. On receiving a
publish request from an SDP, the Subscription Manager pulls the semanticData
SDE from the SDP and stores the content by passing it to the Update Manager.
The Subscription Manager then subscribes to the semanticData SDE and waits
for a notification change message.

On receiving a notification change message, the Subscription Manager passes
update data to the Update Manager and CQ Manager. Based on the update data,

4 Since the XPath expression always points to a specific SDE value, the result of its
application is always singular.

5 A Jena Model is a (Java) class instance that provides operations to manipulate
ontology instances stored in the model. A model backed by a database engine is
called a persistent model.
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Fig. 5. Ont-GIS Architecture

the Update Manager performs an ontology update operation with the assistance
of the Ontology Manager. The CQ Manager executes CQs that are related to the
update data. Update data consists of an (RDF) resource name, a model ID, and
the updated value. The resource name identifies a resource (i.e., SDEInfo class
instance) for which the oisf:value property value has changed, and the model ID
identifies the model in which the resource is stored.

Query Execution. An RDQL query is executed in a simple manner. On ac-
cepting a query, the Query Processing Manager executes the query by the help
of the Ontology Manager and returns the execution results to the users/clients.

On the other hand, execution of a CQ requires two steps. Fig. 6 shows the
algorithms used by the CQ Manager. The CQ Manager has a hash table to store
CQs and query execution information. Each location in the hash table is a set
so that it can store more than one value. InsertH(k, val) is a hash function that
inserts value val, based on key k. LookupH(k) retrieves an entry (a set) from
the hash table based on key k.

The query subscription process (left algorithm) constitutes the first step in
CQ execution. A client sends a query subscription request to the Query Process-
ing Manager, which, in turn, passes the request to the CQ Manager. The CQ
Manager then creates a unique SDE in Ont-GIS’s serviceData (line 1), executes
the CQ (which is included in the request) with the help of the Query Process-

Algorithm: Register a CQ.
Input: A CQ, cq.
Output: An SDE name.
Method:
1: Create a unique SDE, uSDE;
2: res ← execute cq;
3: mSet ← IDs of models that match cq;
4: For each model ID m ∈ mSet,
5: infSet ← get monitored resources

of m from res;
6: InsertH(m, 〈cq, infSet, uSDE〉);
7: Return uSDE;

Algorithm: Execute a CQ.
Input: resource rn and model ID m.
Method:
1: tSet ← LookupH(m);
2: If tSet is not empty,
3: mtSet ← all tuple from tSet s.t. the

monitored resource set contains rn;
4: For each tuple t ∈ mtSet,
5: res ← execute CQ contained in t;
6: Put res into SDE mentioned in t;

Fig. 6. CQ registration and execution algorithm
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ing Manager (line 2), and gets Jena model IDs from the execution results (line
3). Next, the CQ Manager updates its hash table. For each matched model ID,
it inserts a tuple into the hash table, with the model ID as a key (lines 4–6).
The tuple consists of the given CQ, the monitored resource name set extracted
from the CQ execution results for the model, and the created unique SDE name.
A monitored resource is a resource (i.e., SDEInfo class instance) for which the
oisf:valueState property value is ’dynamic‘6. Finally, the CQ Manager returns
the unique SDE name to the client (line 7). A client receiving the SDE name
will (immediately) subscribe to the SDE to receive the CQ execution results.

Ontology-Based Grid Index ServiceOntology-Based Grid Index Service

Fig. 7. A GUI for clients

Line ChartLine Chart

Fig. 8. Line chart of processor load

The second step is that of the CQ query execution process (right algorithm).
When the CQ Manager receives the updateData (i.e., resource name and model ID)
fromtheSubscriptionManager, it uses its hash table to search forCQs thatmonitor
the changes of the given model (line 1). If it finds any, the CQ Manager then gets all
tuples, where the monitored resource set contains the given resource name (line 3).
Finally, the CQ Manager executes all CQs contained in the tuples and puts the exe-
cution results into the corresponding SDEs (lines 4–5). Since clients whose CQs are
executedhavesubscribedtotheSDEs,theyreceivetheexecutionresultsthroughno-
tification messages sent by Ont-GIS. It is important to note that because the execu-
tion results are delivered to the clients through theOGSAsubscription-notification
mechanism, Ont-GIS can also collaborate with the GT3.2’s Index Service.

4.5 Implementation

We have implemented the proposed framework using Java. Currently, Ont-GIS is
deployed in GT3.2’s service container and is able to collect semantic serviceData
from computing and database services. Fig. 7 shows a graphical user interface
(GUI) that helps clients construct an RDQL query. The upper and lower search

6 Since CQ always deals with dynamic SDE values, we assume CQ contains triple (?r,
oisf:valueState, ’dynamic‘), where ?r is a variable.
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forms of the GUI correspond to the General and Computing Service Ontology,
respectively. The GUI also allows clients to submit an RDQL query as either a
pull or a push query (CQ). Fig. 8 shows a line chart of the execution of a CQ,
which monitors the last-1-minute processor load of a resource of the type Host.

5 Conclusions and Future Work

Two clear benefits of enriching serviceData with semantic information are those
of automatic resource discovery and improved search results. Besides allowing
users to explore the semantic parts of the serviceData, Ont-GIS also provides the
CQ mechanism for efficient and effective resource monitoring. This mechanism
uses the OGSA subscription-notification mechanism that enables it to cooperate
with the GT3.2’s Index Service. We are now considering a distributed architec-
ture for Ont-GIS. This reason for this is that the Grid is distributed by nature
and, as such, always deals with a great number of resources.
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