
GridARM: Askalon’s Grid Resource
Management System?

Mumtaz Siddiqui and Thomas Fahringer

Institute for Computer Science, University of Innsbruck,
Technikerstrasse 13, A-6020 Innsbruck, Austria

{Mumtaz.Siddiqui, Thomas.Fahringer}@uibk.ac.at

Abstract. The emergence of Grid computing has accentuated the need
of an adaptable, scalable and extensible resource management system. In
this paper we introduce GridARM system which renders the boundaries
of resource brokerage, virtual organization wide authorization and ad-
vanced reservation, and represents a scalable and adaptive Grid resource
management as a middleware infrastructure. The GridARM system pro-
vides mechanisms for Grid resource discovery, selection and allocation
along with resource requestor and provider interaction. Experiments are
presented that demonstrate the effectiveness of our approach.

1 Introduction

With the emergence of distributed computing, and the ’always on’ environment
of the computing elements; the computing services become scalable, extensible
and environment independent. This results in a high performance computational
environment composed of diverse resources spanning the entire Internet and mul-
tiple administrative domains. The new discipline called Grid Computing intends
to make high performance computational resources available to anyone. An effec-
tive Grid Resource Management System (GRMS) is required for the provisioning
and sharing of resources while keeping autonomy of their environment and geo-
graphical location.

In contrast to traditional resource management system, GRMS has to bal-
ance global resource sharing with local autonomy, by dealing with heterogeneous,
shared and variant resources distributed under different trust domains, address-
ing issues of multiple layers of schedulers and working with system participants
having inconsistent performance goals and assorted local and global policies.

In the Grid computing literature, Grid job scheduling is represented and
treated as part of the Grid resource management, therefore in most of the existing
Grid enabled systems, meta scheduling is integrated with resource management
and the terms Grid job scheduling and Grid resource management are used
interchangeably. Now the Grid computing has been evolved enough to redefine
and redesign its components so that they can be used as self comprised building

? This research is supported by the Higher Education Commission of Pakistan.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 122–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

GridARM: Askalon’s Grid Resource Management System 123

blocks in GRMS. Resource broker is one of the important GRMS components,
which is manual or semi manual in existing systems. An automatic resource
broker is essential for a stable and successful Grid computing infrastructure.

A GRMS must provide Resource discovery and selection mechanism which
performs persistent resource state and capacity checking, by discovering and
matching resources, Capability check mechanism which performs resource selec-
tion based on dynamic information, Resource allocation with advance reservation
and co-allocation and finally Resource requester and provider interaction for ne-
gotiation and notifications.

To our knowledge no widely deployed single GRMS supports these functions.
Attribute based resource description and resource matching available in existing
systems is unsuitable for ever evolving Grids. Virtual Organization (VO) wide
authorization, advance reservation and Co-allocation are still illusions for the
Grid users. We propose a new approach to flexible resource management for
Grid computing system which provides the management functions mentioned
above. The goal of our work is to provide an effective, efficient, extensible and
adaptive GRMS based on off-the-shelf technologies while making it capable to
adapt new emerging technologies.

This paper presents a design architecture and work-in-progress prototype im-
plementation of GridARM (Askalon’s [14] Grid Resource Management) System,
a new architecture for Grid resource management, resource control and resource
provisioning across sites and administrative domains. It provides automatic re-
source brokerage, VO-wide fine-grained authorization, advanced reservation and
negotiation between a potential client and resource provider. The automatic bro-
ker was necessary not only because of its usability, efficiency and low cost but
also because users don’t have time to make selection between alternative choices.
VO-wide authorization and user profiling mechanism reduces involvement of lo-
cal site administrators and even the user itself.

The rest of the paper is as follows. In Section 2, we describe general Grid
resource management architecture and define basic mechanisms to provide an
automatic resource brokerage system. Section 3 is about the client-GridARM
interaction mechanism. In Section 4, we described our experiences about the
proposed system, and examined its performance in a networked environment.
Related work is presented in Section 5. Finally we summarize our conclusion
about the proposed system and discuss future work in Section 6.

2 GridARM Architecture

The GridARM system is dynamically extensible, scalable and adaptive in which
new protocols and tools can easily be integrated without suffering from system
downtime and expensive code reorganization. In contrast to existing work which
is based on manual brokerage we propose an automated brokerage in this system.
This automation is required especially for Grid enabled workflows and execution
environments where the brokerage process acts as a middle tier between Meta-
scheduler and other Grid enabled components like Grid enabled resources and

124 M. Siddiqui and T. Fahringer

services. The brokerage process is responsible to discover and allocate suitable
resources for the Meta schedulers.

Client/Meta−scheduler GridARM

Referral

GridARM Resource Broker

Reservation Authorization Discovery
LRM Drivers MP/CAS Drivers GIS Drivers

Grid Computing Infrastructure
LRM/GRAM MyProxy/CAS MDS/NWS

Fig. 1. GridARM system architecture

We are developing GridARM sys-
tem which is WSRF [11] complaint.
The system consists of four persis-
tent and distributed Grid-enabled ser-
vices called Discovery, Authorization,
Reservation and Broker.

As shown in the Fig. 1, the Broker
service is a gateway to the GridARM
sytem. It is a configurable and cus-
tomizeable WS-Resource which works
with one or more other GridARM ser-
vices. An important feature of the Bro-
ker is its ability to recursively discover
Grid resources by interacting with the
other distributed GridARM brokers.

The Discovery service provides resource discovering and matching capability,
mainly to the Broker. It can be configured with one or more Grid Information
Services (GIS).

Authorization and Reservation services provide resource authorization and
advance reservation capabilities respectively. Authorization is based on the Grid
Security Infrastructure (GSI) [3] and works in coordination with My-Proxy [7]
and Community Authorization Service (CAS) [2]. The Reservation service pro-
vides capabilities like advanced reservation and negotiation for reservation with
the resource provider, based on time and cost model and other constraints set
by the both parties.

Each GridARM service is configured to have one or more drivers to the
resource specific modules like GIS service. In the following sections we describe
GridARM services in detail.

2.1 Discovery Service

A resource discovery mechanism mainly provided to the Broker service is based
on a set of information and monitoring services. It discovers and provides an op-
timal resource ensemble along with solicited specification congregated from the
underlying information services. We are currently working on a Grid resource
description language, a language to be used for describing Grid resources in an
ontological way. The internal structure of a discovery service is illustrated in
Fig. 2. It consists of a Request-Resource Correlator (RRC), Ontological Engine
(OE) and Resource Discoverer (RD). Correlator receives a request, checks its
integrity, correlates it with the resources and returns the result back. It inter-
acts with OE and the RD for request transformation and resource discovery. A
client can subscribe in the discovery service by registering resource requirements
or preferences in the RRC and receives notification from it when a matching
resource joins the Grid and observed by the discovery service.

GridARM: Askalon’s Grid Resource Management System 125

RR Correlator

Grid Information Services NWS
MDS

Ontology
Engine DiscovererOntology

GIS Drivers
Processors

Query

Client/Broker
<ResourceRequest>
 <resources>
 <totalNodes constraint="exact"> 15 </totalNodes>
 <constraints>
 <cpuCount constraint="min">4</cpuCount>
 <cpuAvailable constraint="min">2.5</cpuAvailable>
 <osType flavor="any">Linux</osType>
 <platform>sparc</platform>
 </constraints>
 </resources>
</ResourceRequest>

Fig. 2. A: Internal structure of a discovery service B: A simple resource request with
both static and dynamic attributes

Ontological Engine selects appropriate Query Processor (QP) and transforms
the request into resource filters for the registered information services, based on
which resources are discovered and selected. The transformation is done in two
steps: First, the compound request is split into multiple but simple requests, for
example by separating static and dynamic attributes of a request and making
two different GIS-specific requests. Second, it transforms requests from generic
format to GIS specific filters. For instance, a generic request given in Fig. 2 is
transformed into LDAP filter for the MDS2 [4] driver.

The RD component discovers resources and their specification based on the
filters provided by OE and congregates all found resources along with their
specification into a unique GIS-independent generic format. Finally it returns
the result back to the Correlator.

Discoverer drivers and query processors are loaded dynamically based on the
GIS and query type respectively. The default GIS type is mds2 and query type
is generic. A client can make a query for resources based on both static and
dynamic attributes. For instance, a resource request given in Fig. 2, contains
both static and dynamic attributes and discovery service uses MDS to collect
static information like OsName and Platform and NWS [5] to collect dynamic
information of resources such as AvailableCpu.

2.2 Reservation Service

Reservation is an undertaking by the system that an application will receive a
certain level of service from its resources. The reservation service provides this
functionality by supplying instant as well as advanced reservation of underlying
Grid-enabled resources. The architecture is flexible enough to work with different
local reservation managers for example Maui [6]. But our aim is to provide a
new VO wide reservation manager which is consistent with other Globus Toolkit
(GT) based components like CAS [2]. This service is used to interact with a
single resource, whereas Co-allocation of multiple resources is handled by the
Broker service which also acts as a Co-allocation manager.

The reservation service provides high level methods to create, modify, bind,
cancel, monitor and verify a resource reservation instance. Verification is re-

126 M. Siddiqui and T. Fahringer

quired to be performed before acquiring a reserved resource by a job submission
component. Also, the service can be used to look ahead for the advanced reser-
vation of a resource by employing its lookahead method. The Local Reservation
Managers (LRM) can be registered and managed dynamically.

The essential attributes of a reservation instance are LRM contact, reser-
vation mode, start time, end time, duration and constraints. The reservation
mode can be a single phase or a two-phase committable. In two-phase mode,
once a reservation is created, it remains on hold for a configurable duration.
If reservation is not committed within that time interval, then it is cancelled
automatically. The reservation, which is not committed with in specified time-
frame, represents a soft allocation of resource as described in Section 2.4. The
optional end time attribute can also be provided for flexibility. The reservation
is accepted if it can be started any time after start time and finished any time
before end time.

A special Constraint-based Advanced Reservation (CAR) can be created based
on resource constraints instead of hard coded resource manager contact. In CAR,
the LRM contact linking is deferred until bind time. Reservation service ensures
that minimum required resources which fulfill the CAR’s constraints should be
available during that time frame. In this way the required QoS is ensured.

A Ticket, which is granted by the service after making a reservation, is a
reference to a reservation instance. It embraces a unique reservation id, user’s
security principal and resource access point. Once a reservation has been made,
all future interactions, like monitoring for its status, modification, cancellation
and resource acquisition can only be done by producing a valid ticket. Before
performing any task, a user credential is produced or retrieved from the Au-
thorization service. The reservation is not possible if a user possesses invalid
credential or a given policy does not permit a reservation. A policy is described
in the form of constraints and used with authorization information to provide
enhanced quality of service. One can specify a list of users or groups allowed
to use a reservation ticket in subsequent operations. The integrity is ensured by
signing the policy with trusted entity.

2.3 Authorization Service

The Globus system lacks a middleware-based authorization. It uses local resource
mechanism for authorization by mapping a Grid user to a local identity which
also serves as an access control check. This scenario has several shortcomings
such as scalability, lack of expressiveness, and consistency between the policies
of different sites. In order to overcome these shortcomings GridARM proposes an
authorization mechanism, in which, the Grid users and sites are registered in a
middleware service, which maintains user profiles, proxy credentials, policies and
preferences. The Grid sites are registered by creating a local identity representing
the VO or community.

This service grants authorization to a user by verifying its access rights for
a particular resource ensemble and provides a restricted proxy credential to the
user. A restricted proxy credential can only be used during the reservation time-

GridARM: Askalon’s Grid Resource Management System 127

frame. Our authorization service uses Globus My-Proxy [7] as a credential repos-
itory, and we plan to integrate Community Authorization Service (CAS) [2] in
our approach.

2.4 Broker Service

The Broker service works as a gateway to the GridARM system. It makes an ef-
ficient and smart use of the other services, which can be registered and managed
dynamically. It also works as a Co-allocation manager and performs advance
reservation of multiple resources on request. Its role in the overall system is
illustrated in Fig. 1. High level interfaces are provided for resource selection, al-
location and management. These interfaces include methods like select, allocate,
confirm and release etc. Selection operation results in a resource ensemble based
on the resource request, whereas allocation operation results in a reservation en-
semble or reservation ticket. The input to the broker, provided mainly by Grid
scheduler, is examined and an appropriate and optimal operation is performed.

The allocation of resources can be a result of an interactive transaction by
following select-allocate-confirm cycle in steps, or it can be an atomic transaction
by making a direct confirmed reservation. An allocation of resources without
confirmation is a soft allocation. A soft allocation is one in which allocated
resources will be available to new clients only if (1) they are explicitly released
or (2) they are not used within certain configurable duration of time. Once
reservation is confirmed it becomes a hard allocation that means the allocated
resource ensemble remain dedicated to a client during the reservation timeframe.

If a broker could not find suitable resources, it can refer its clients to another
broker service, or it can be configured to work in a recursive mode to retrieve
required resources by interacting with the remote brokers.

Once a reservation ensemble is created, the Broker instantiates a resource
Ensemble Manager (EM) on one of least loaded GridARM-enabled hosts. EM
is responsible for further coordination and negotiation with client on behalf
of resource providers. It provides comprehensive functionality for editing and
managing a reservation ensemble. Also EM monitors its members while they
are being used by the client and ensures that resources are working according to
the constraints specified at the time of reservation. A node failure, if occurs, is
notified to the job submission system.

The GridARM system works based on GSI [3] provided by the Globus. A
client can interact with system via frontend broker service by providing its
own proxy credential supplied directly or through My-Proxy [7]. If an inter-VO-
referral based recursion is performed, then it would be possible that a requesting
user is not part of a referred VO. In this case user credentials are replaced with
referral or ’remote’ broker’s credential and a chained authorization is performed
to make it possible. The management interfaces of GridARM services are im-
plemented with message level security, so that an unauthorized Grid user could
not make changes in the configuration.

128 M. Siddiqui and T. Fahringer

3 Interaction Mechanism

Advanced reservation and Co-allocation of a resource ensemble is a multi transac-
tional process, which is simplified by providing a Proxy Resource Ensemble(PRE)
in the response of a resource request. The broker executes a request by selecting
a resource ensemble, instantiating an Ensemble Manager (EM), and returning
back a proxy (PRE). The PRE being a mobile agent, is downloaded to a client
machine and used as a stub of the resource ensemble for further interaction with
the GridARM system. It hides authorization mechanism and optionally physi-
cal resources from the client. This is done by providing a login mechanism, in
which the user along with reservation ticket is verified, and the user credential
is replaced with restricted community credential. The client presents community
credential to the resource ensemble before submitting a job. We plan to integrate
a policy evaluation mechanism in the PRE in order to provide a fine-grained user
authorization by the PRE.

4 Experiments

The Globus toolkit provides a decentralized scheduling model in which new
components can be integrated. An unofficial release of GT4 which consists of
core implementation of WSRF [11] was introduced in the beginning of 2004.
WSRF is a new model on which Grids are to be built. The GridARM system is
WSRF complaint and uses mechanisms like subscription/notification and service
lifetime management. We have deployed the system in ZID-Grid, University
of Innsbruck, which consists 13 Grid sites, one with 15 Solaris machines and
12 with 141 Linux PC boxes. GT2 is installed on all Grid sites whereas GT4
core is installed only on Solaris machines. Apart from site specific services like
GRAM [1], we have installed NWS [5] and MDS2 [4] with the Glue schema.
Both MDS and NWS cover all ZID-Grid sites. All the machines involved in the
experiment were located on a lightly loaded network with a maximum latency
between two computers of about 2 milliseconds.

A resource request can be a simple or compound request. A simple request
could be an attribute-based request for the selection of resources or a reservation
request for already selected resource. A compound request is one in which mul-
tiple operations are requested atomically. In the following sections we describe
different experiments conducted in the deployed Grid infrastructure.

4.1 Atomic Transaction

A compound request shown in Fig. 3 is made to the system for resource al-
location. The request consists of both resource and reservation description. In
this scenario, the broker service performs resource selection, authorization, allo-
cation and confirmation cycle as a single transaction. To determine the cost of
requested operation, we timed a series of requests varying both the total number
of required resources and their attributes. We measured the time for the request

GridARM: Askalon’s Grid Resource Management System 129

T
im

e(
se

c)

Nodes

25

0 1815129631

10

5

15

20

30

0

<ResourceRequest>
 <type> compound </type>
 <resources negotiation="no">
 <constraints>
 <cpuCount constraint="min">3</cpuCount>
 <cpuCurrent constraint="min">1.5</cpuCurrent>
 <osType flavor="any">Linux</osType>
 <platform>intel</platform>
 </constraints>
 </resources>
 <reservation negotiation="yes">
 <startTime format="YYMMddhhmm" constraint="exact">
 0410151230
 </startTime>
 <duration unit="minutes">150</duration>
 </reservation>
</ResourceRequest>

Fig. 3. A: GridARM system latency for resource reservation, time taken for atomic
transactions for the given number of nodes/CPUs B: Atomic transaction: A compound
request for a resource ensemble selection and confirmed allocation

T
im

e(
S

ec
)

Nodes
0 1815129631

0

2

4

6

8

10

Select
PRE Download
Verify
Allocate
Confirm
Login

12

Fig. 4. A: Time variation of GridARM system functions B: Breakdown of times spent
in processing a resource allocation request for a single resource

by starting a timer in the client program immediately before invoking the broker
and then stop this timer on successful login to the resource ensemble through
proxy PRE (See Section 3). The result of this experiment is shown in Fig. 3.
The graph shows how the time for request brokerage varies as the number of
resources changed. A further breakdown of the time spent in different GridARM
operations is given in Fig. 4, which shows the cost of each operation.

4.2 Interactive Transaction

In this experiment, the compound request shown in Fig. 3, is broken down into
two requests, and the brokerage is performed in steps by implying execute, verify,
allocate, confirm and login functions in a sequence by the client. The interactive
transaction is useful in case when a client wants to perform some intermediate
tasks. A simple use case could be as follows: A Metascheduler first reserves
the resource ensemble and then confirms after interacting with a performance
predictor, that may evaluate a Grid resource in the meantime. A client can
also call lookahead function for the reservation of the resource ensemble before
making a confirmed reservation.

A breakdown of the time spent in different system functions is given in Fig. 4.
The authorization (verify + login) and discovery (select) services are very con-

130 M. Siddiqui and T. Fahringer

sistent and economical. Most of the time is consumed by allocate and confirm
functions of the reservation service. This is due to the fact that currently a
separate request is made for each resource in the resource ensemble. We plan
to enhance the service by adding the functionality in which an entire resource
ensemble could be handled with a single request. As shown in the Fig. 4(right),
allocate and confirm functions collectively take less than one second, therefore
there will be a significant improvement in the system performance after having
the enhanced functionality.

5 Related Work

In the domain of GRMS, numerous projects and tools are available, but most of
them do not provide the required level of resource management. This pervasive
domain needs to split down further in more self contained and adaptable sub
domains. Most of the existing Grid enabled systems try to address resource
brokerage, job scheduling and monitoring under the same integrated scenario. It
works, but it’s not scaleable and adaptable. The resource broker in the Globus
system is missing. A few Grid systems like Condor [8], Legion [9], GridLab [16],
European Data Grid [10], Nimrod-G [15] and Maui [6] address GRM but the
broker is not a well divulged and concrete module. Also none of these systems
addresses resource management as a mechanism of the Grid middleware, in which
distributed resource brokerage, community-based authorization and advanced
reservation are consistent with each other.

A distributed resource management architecture that supports advance reser-
vation and Co-allocation is described in [12] but the modification proposed in the
local resource management is an overhead. Ontology based resource matching
proposed in [13] simplifies resource matching, but community based authoriza-
tion and reservation has not been addressed. The Global Grid Forum (GGF) is
actively working on devising new standards in different areas of resource man-
agement. The GridARM system will adopt GGF standards once fully specified.

6 Conclusion and Future ork

Unleashing the power of Grid infrastructures is a complex and tedious task
without a sophisticated resource management system. The focus of this paper
is to render the boundaries of resource brokerage, community wide authoriza-
tion and advanced reservation mechanism. The paper proposes a modular and
dynamically extensible Grid resource management architecture, which fills the
gap between Meta-scheduler and the Grid infrastructure. The GridARM system
makes the use of the Grid resources simple and efficient with the help of VO-wide
authorization and reservation mechanism. Our aim is to make the system fully
consistent with the Grid forum recommendations. We are evaluating different
related technologies which can be exploited to make the system more functional
and consistent with emerging web technologies.

W

GridARM: Askalon’s Grid Resource Management System 131

The GridARM system automates the process of the Grid resource manage-
ment, but its own management and VO-wide deployment is manual. The plan
for the future enhancement of the system is to make it fully automated.

References

1. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S.
Tuecke. A Resource Management Architecture for Metacomputing Systems. Proc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing,
po. 62-82, 1998.

2. L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A Community Au-
thorization Service for Group Collaboration. IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2001.

3. Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Archi-
tecture for Computational Grids. In Fifth ACM Conference on Computers and
Communications Security, November 1998.

4. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services
for Distributed Resource Sharing. Tenth IEEE International Symposium on High-
Performance Distributed Computing(HPDC-10), IEEE Press, Aug 2001.

5. Rich Wolski, Neil Spring, and Jim Hayes. The Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing Future Gen-
eration Computing Systems Journal, Vol 15, 5-6, pp. 757-768, Oct. 1999.

6. The Maui Scheduler home page. http://maui-scheduler.mhpcc.edu
7. J. Novotny, S. Tuecke, V. Welch. An Online Credential Repository for the Grid:

MyProxy. Proceedings of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

8. Condor project homepage. http://www.cs.wisc.edu/condor/
9. Steve Chapin, Dimitrios Katramatos, John Karpovich, Andrew Grimshaw. The

Legion Resource Management System. Proceedings of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP ’99)

10. B. Sagal. Grid Computing: The European DataGrid Project. In IEEE Nuclear Sci-
ence Symposium and Medical Imaging Conference Lyon, France, October 2000

11. Web Services Resource Framework. http://www.globus.org/wsrf/
12. K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in Compu-

tational Grids. In Proc. of the 8-th IEEE Int’l Symp. on High Performance Dis-
tributed Computing, pages 219-228, Redondo Beach, CA, USA, July 1999

13. H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-based Resource Match-
ing in the Grid–The Grid meets the Semantic Web. Second International Semantic
Web Conference, Sanibel-Captiva Islands, Florida, USA, Oct. 2003

14. Thomas Fahringer ASKALON: A Programming Environment and Tool Set for
Cluster and Grid Computing Institute for Computer Science, University of Inns-
bruck. http://dps.uibk.ac.at/askalon/

15. R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a Re-
source Management and Scheduling System in a Global Computational Grid, HPC
ASIA’2000, China, IEEE CS Press, USA, 2000

16. Allen, G., Davis, K., et al. (2003). Enabling Applications on the Grid: A GridLab
Overview In International Journal of High Performance Computing Applications:
Special Issue on Grid Computing, August 2003.

	Introduction
	GridARM Architecture
	Discovery Service
	Reservation Service
	Authorization Service
	Broker Service

	Interaction Mechanism
	Experiments
	Atomic Transaction
	Interactive Transaction

	Related Work
	Conclusion and Future Work
	References

