

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 111 – 121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

eNANOS Grid Resource Broker

Ivan Rodero, Julita Corbalán, Rosa M. Badia, and Jesús Labarta

CEPBA-IBM Research Institute,
Technical University of Catalonia (UPC), Spain

{irodero, juli, rosab, jesus}@ac.upc.es

Abstract. Grid computing has been presented as a way of sharing
geographically and organizationally distributed resources and of performing
successfully distributed computation. To achieve these goals a software layer is
necessary to interact with grid environments. Therefore, not only a middleware
and its services are needed, but it is also necessary to offer resource
management services to hide the underlying complexity of the Grid resources to
Grid users. In this paper, we present the design and implementation of an
OGSI-compliant Grid resource broker compatible with both GT2 and GT3. It
focuses in resource discovery and management, and dynamic policies
management for job scheduling and resource selection. The presented resource
broker is designed in an extensible and modular way using standard protocols
and schemas to become compatible with new middleware versions. We also
present experimental results to demonstrate the resource broker behavior.

1 Introduction

Grid computing [1] has emerged in recent years as a way of sharing heterogeneous
resources distributed over local or wide area networks and geographically and
organizationally dispersed. Grid computing builds on the concept of distributed
computing, and software provides a way to divide up tasks so they are processed in
parallel. In that context Grid computing is a good framework for solving large-scale
problems such as bioinformatics, physics, engineering or life sciences problems.

In order to provide the necessary infrastructure for the Grid several projects have
been developed such as Globus Toolkit [2], Condor [3] or Unicore [4]. In particular,
Globus Toolkit is being implanted in several projects, with the aim of providing a
generic solution for a Grid infrastructure.

In addition to the infrastructure basic services to give support to paradigms like
Resource Management [6] are also required. The resource management in Grid
environments is different from the one used in cluster computing. Recently, many
efforts have been devoted to HPC, especially in job scheduling policies and resource
usage maximization. Globus Toolkit provides some useful services including Grid
Security Infrastructure (GSI) [7], Grid Resource Allocation and Management
(GRAM) [8], Data Management Services (e.g. gridFTP) [9], and Information
Services, Monitoring and Discovery System (MDS) [10].

Discovering and selecting suitable resources for applications in Grid environments
is still an open problem. Thus, when a user wants to interact with a Grid, all processes

112 I. Rodero et al.

related to resource management decisions should be handled manually. But these
tasks are too difficult for a user and it appears to be a good idea to take a Resource
Broker or a meta-scheduler to perform these basic functions. Additionally, no
resource broker is included in top of the Globus Toolkit.

The main motivations for developing this resource broker are developing a
resource broker compatible with emerging technologies such as Globus Toolkit 3 and
accomplish the requirements of eNANOS project. When we started this project, no
resource broker had been developed on top of Globus Toolkit 3.

In this paper, we present the design and implementation of an OGSI-Compliant
resource broker developed as a Grid Service. The main objective is to expose the
broker architecture and its characteristics not an evaluation. Our resource broker is
compatible with both Globus Toolkit 2 and Globus Toolkit 3 services, and
implements flexible mechanisms to become compatible with next Globus versions. It
is centered in resource management and focuses on dynamic policy management. This
resource broker is responsible for the Resource Discovery and Monitoring, Resource
Selection, Job Submission and Job Monitoring; and implements policy management
mechanisms from user side. It supports different policy classes including scheduling
policies, resource selection policies and complex policies (called meta-policies). It
uses a XML based language to specify user multi-criteria. It also provides a set of
Grid Services interfaces and Java API for various clients, e.g. user applications,
command-line clients or grid portals. Furthermore, we expose the main problems
encountered in developing a resource broker on top of Globus Toolkit 3.

The rest of this paper is organized as follows. Section 2 overviews previous
research on resource brokering and scheduling. Section 3 discuss the system design
and implementation details of our Grid resource broker. Section 4 describes
experimental results and section 5 concludes the paper and presents future work.

2 Related Work

At the moment there are many projects related to Grid since it is an important
research issue for the international community. Some projects, such as AppLes [11],
Nimrod/G [12], Condor-G [13], EZ-Grid [14], GridLab Resource Management
System (GRMS) [15] or GridWay [16], have been working on brokering systems.
These projects are developed on top of GT2 but other initiatives have been presented,
for instance a Grid Broker Service [17] in terms of OGSA running on GT3.

Our Grid resource broker differs from previous existing brokerage systems in the
following aspects: First, this general-purpose resource broker is compatible with GT2
and GT3 services, it implies that a uniform internal representation of objects and data
involved in any task of resource management is needed; secondly, the proposed
resource broker provides dynamic policy management which combined with user
multi-criteria requirements allows us to advanced users a large capacity of decision.
This user multi-criteria file is a XML document; it can be used in policies evaluation
and is composed of requirements and recommendations. A requirement (hard
attribute) is a restriction for resource filtering and a recommendation (soft attribute),
“with its priority,” can be used to provide a resource ranking for policies evaluation.
Finally, since our resource broker is implemented as a grid service, we can have
several broker instances to construct more scalable systems.

 eNANOS Grid Resource Broker 113

3 System Design and Implementation

3.1 Overall Architecture

This subsection presents the overall architecture of the proposed Grid resource broker.
As shown in Fig. 1, the broker consists of five principal modules, a queuing system
and data system for persistency. Moreover, the system is composed of Globus Toolkit
services and an API to access the broker services.

Resource Discovery uses both GT2 MDS (GRIS/GIIS servers) and GT3
Information Services (based in Web Services). It uses a uniform representation of
resource servers and resources based on GLUE schema.

Resource Selection performs dynamic selection of best resources from job
specifications, user criteria, resource information and policies evaluation. All
decisions related to resources are made from the local data obtained in resource
discovery and monitoring processes.

Resource Monitoring gathers information about resources and stores it as local
information which is available in “real-time” for broker modules and users.

Job Submission performs job submission to GT2 or GT3 systems depending of
user criteria and job characteristics. It receives a user criteria and RSL from the user
side. To select the appropriate job from local queues the scheduling policy is
evaluated.

Job Monitoring controls job status
changes and stores their history. It also
performs job rescheduling when
appropriate (e.g. when a resource has
fallen). To do this, some interactions
between resource monitoring and job
monitoring are needed.

The API is the responsible for
providing a unique point of access to
broker services. This API can be used by
different clients such as user applications,
grid portals or command-line.

The broker design is based on Globus
Toolkit as a middleware and as the
provider of basic services. Furhtermore,
the design is sufficiently extensible to
make it easy to adapt the broker to new
Globus versions. In order to obtain this,
uniform and standard schemes have been
used (e.g. GLUE based schema is used for internal resource representation). Recently,
some Globus versions have appeared but it is not clear what the evolution of the Grid
technology will be like. At present, the Globus project is working on implementations
based in Web Services technology, e.g. Web Service Resource Framework (WSRF).
These new technologies can be very useful but is very important to keep the
compatibility with systems based on previous Globus versions and to give support to
its users. There are a lot of projects related to different topics developed on top of

Application Portal Command-line

API
User Access Layer

Broker Layer

GT2 services GT3 services

Broker Service

Job
Submission

Job
Monitoring

Resource
Discovery

Resource
Selection

Resource
Monitoring

Queues

Persistency

Fig. 1. Overall architecture

114 I. Rodero et al.

<?xml version="1.0" encoding="UTF-8"?>
<CRITERIA>

 <Memory-Processor>
 <Attribute Name="RAMAvailable" Operator=">=" Value="100" Type="INTEGER" Importance="HARD" Priority="1" />
 <Attribute Name="VirtualAvailable" Operator=">=" Value="250" Type="INTEGER" Importance="SOFT" Priority="3" />
 <Attribute Name="ClockSpeed" Operator=">=" Value="500" Type="INTEGER" Importance="SOFT" Priority="7" />
 <Attribute Name="LoadLast15Min" Operator="<=" Value="45" Type="INTEGER" Importance="SOFT" Priority="10" />
 </Memory-Processor>

 <FileSystem-OperatingSystem>
 <Attribute Name="AvailableSpace" Operator=">=" Value="600" Type="INTEGER" Importance="SOFT" Priority="7" />
 <Attribute Name="OS Name" Operator="==" Value="Linux" Type="STRING" Importance="HARD" Priority="1" />
 </FileSystem-OperatingSystem>

 <Others>
 <Attribute Name="Total CPUs" Operator=">=" Value="4" Type="INTEGER" Importance="SOFT" Priority="1" />
 <Attribute Name="MaxQueueTime" Operator="==" Value="3600" Type="STRING" Importance="SOFT" Priority="1" />
 </Others>

</CRITERIA>

GT2, e.g. DataGrid [18], GridLab [15] or GRID SuperScalar [19]. More detailed
description of our broker architecture is presented in the following subsections and
more information can be found in [20].

3.2 Job Description and User Criteria

To describe a job a RSL is required and a user criteria is optional. We do not extend
RSL schema in order to simplify files and separate concepts. A user criteria is XML-
based and specifies basic parameters. A user criteria is composed of several attributes
organized in three categories: Memory&Processor, Filesystems&OS, and Others.
Each attribute is composed of various elements as shown in Fig. 2:

− Name: name of the attribute (e.g. RAMAvailable, ClockSpeed, OSName, etc.)
− Type: attribute values can be STRING or INTEGER
− Operator: if the attribute type is STRING the possible operator is “==”

(identical strings) and if it is an INTEGER attribute possible operator are “==”,
“<=” or “>=”

− Value: value of the attribute (corresponding to its type)
− Importance: There are two types of attributes, HARD and SOFT attributes. A

HARD attribute is a requirement for resources and must be accomplished.
However, a SOFT attribute is a recommendation for choosing between all
resources that accomplish their requirements.

− Priority: this element is considered only in SOFT type attributes in order to
obtain a ranking of resources according to the user criteria. The obtained rank
value can be useful for later policies evaluation.

Fig. 2. User criteria example

3.3 Policy Management

As well as basic brokering functions (resource discovery, job submission, etc.)
dynamic management of policies and the implementation of the necessary

 eNANOS Grid Resource Broker 115

mechanisms to support them are important subjects in the design of this broker. The
selection of the better job and better resource for a given configuration is an
optimization problem with NP-Complete solution. In order to reduce and divide the
complexity, the broker works with two kinds of basic policies, one for a job
scheduling and another for resource selection. Furthermore, beyond job scheduling
and resource selection policies, a meta-policy is offered, which can be implemented
with genetic algorithms or other optimization methods. The evaluation process of
policies is shown in Fig. 3 and consists of three phases. First an initial evaluation of
the job scheduling policy is performed and then, for each job selected, the resource
selection policy is evaluated and finally the meta-policy evaluation is performed. A
meta-policy evaluation consists of choosing the best job to be executed and the best
resource for the execution from the data structure obtained from the evaluation of the
previous policies. This data structure is a matrix corresponding to the set of jobs
obtained in the first step and for each of them a set of resources obtained in the second
one.

Fig. 3. Policies evaluation schema

Some policies implementations for the broker are outlined next. For job scheduling
FIFOjobPolicy (First In First Out), REALTIMEjobPolicy (minimizes
REALTIME=deadline time-estimated time of job finalization), EDFjobPolicy (Earlest
Deadline First). For resource selection RANKresPolicy (resource selection based in
the greatest rank obtained from the resource filtering process), ESTresPolicy (Earlest
Starting Time, based in the estimated waiting time for a job in a local queue). User
criteria can be used in some evaluation policies like RANKresPolicy.

In order to obtain dynamic policy management we propose a design based in
generic interfaces for each kind of policy. Then, the mechanism is ready for a policy
evaluation independently of its implementation.

Dynamic management of policies allows them to be managed by the user.
Considering that several instances of the broker can exist, it is possible to have broker
instances with different policies at the same time. To manage policies from the user’s
side some interfaces are available to examine the established policy, to change it and
to see what policies are available.

JOB SCHEDULING
POLICY META-POLICY

(e.g. genetic algorithm)

RESOURCE
SELECTION POLICY

1
m

resources

job1 res1

RSL + USER CRITERIA

job2

jobi

jobn

res2

res5

res4 resp

res3 res4 resk

resj

res4 res

JOB + RESOURCE

n

job
queue

available
resources

116 I. Rodero et al.

3.4 Job Scheduling and Management

When a job is submitted, it is automatically queued in the local system. Periodically
the resource broker tries to schedule all jobs according to the established policies.
When a machine fails, all the jobs running in that machine are rescheduled through
another local queue called retrying. This queue is of higher priority than the submit
one in order to prevent inanition situations. Any submitted job is scheduled until all
jobs from the retrying queue are managed.

The main issues of job management are job submission, cancellation, monitoring
and termination. In order to submit a job, a RSL is required and optionally a user
criteria file. The RSL can be a traditional RSL or XML based RSL-2 because the
resource broker is compatible with both GT2 and GT3. If the RSL used is the
traditional one this job could be executed in a GT2 or GT3 resource indifferently. If
RSL-2 is used, the job can only be executed in a GT3 resource because no RSL-2 to
RSL parser exits yet. Details about user criteria are shown in subsection 3.2.

To submit a job to a certain resource the Globus GRAM API is used. Callbacks are
managed with the GRAM interface responsible for status changes. To decide which is
the appropriate resource for a job execution the resource selection policy is evaluated
over the resources obtained previously from the resource discovery module.

In the job monitoring process the resource broker is looking for notifications and
callbacks to control the job status. In addition, the job history is kept in order to know
what is happening and what happened during the job life. In job history some
information is considered, such as date, time, operation and other details. In order to
preserve data persistence of submitted jobs a recovery file is saved with the necessary
job information to resubmit them. In case the resource broker machine crashes, when
the resource broker is restarted, all jobs in the recovery file are rescheduled for
execution.

In the implementation of this resource broker we encountered some problems
related with the Globus APIs, in particular with GRAM. Globus infrastructure adds
overhead in job submission and GRAM interfaces are not compatible with different
Globus versions at the same time. Thus, it was necessary to implement different
interfaces and objects in the job management to give support to GT2 and GT3.
Furthermore, Globus client APIs are designed to be used only from the final user side,
and we encountered some problems in job submission from a Grid Service. It was
therefore necessary to make some changes in code and correct some bugs.

3.5 Resource Management

Our resource broker has a generic and unique representation of resources based in
GLUE schema. Therefore, we can use only one internal representation for GT2 and
GT3 resources and we can make some decisions independently of the Globus version
of resources. The main attributes for this resource representation are general
information such as Globus version, hostname or #CPUs, main memory info,
operating system, processors info, processors load, file systems info and running jobs.

In order to simplify the resource discovery process we used a uniform
representation for resource servers called Global Grid Resource Information Server

 eNANOS Grid Resource Broker 117

(GGRIS). In this representation we can specify a MDS GIIS, a GRIS or a GT3 Index
Service. From these resource servers the resource broker can obtain resources and
resource details in the represent-
tation previous shown.

Resource information is
dynamic and the only required
functionality to maintain persistent
is the GGRIS information. Due to
this, we use an XML file with a
list of available resource servers.
Depending on the server type,
different information is needed for
specifying its location. For GT3
servers only the Index Service
GSH location is needed. However,
for GT2 GRIS or GIIS servers, the
hostname, port and baseDN are
needed.

Resource monitoring updates
local data about resources by
calling the resource discovery
module continuously. In order to
detect when a resource has failed
the resource broker compares
current available resources with
the previous data before updating
the list of resources. In the case
of a detection of one or multiple
resource falling, this module
interacts with job management
modules rescheduling their jobs.

In both GT2 MDS and GT3
Index Service we use the scripts
provided by Globus. The GT3
Index Service is a useful mecha-
nism for indexing data but in
some cases the scripts provided
by Globus are not powerful
enough and the provided data is
not updated. In general, there is a lack of information about local resource
management and performance monitoring. For instance, the behavior of applications
is very useful information to make scheduling decisions with coordination.
Consequently, it is difficult to give good support to HPC resources with Globus
infrastructure.

Fig. 4. Execution of some broker commands

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
T here are any job !

pcirodero:~/test$ job_submit rsl1.xml criteria1.xml
Job submitted successfully with id: 1@1087831803184
pcirodero:~/test$ job_submit rsl2.xml criteria2.xml
Job submitted successfully with id: 2@1087831807889

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_PENDING
Job ID: 1@1087831873835 at status: JOB_PENDING

pcirodero:~/test$ add_ggris http://pcirodero.ac.upc.es:.../IndexService
GGRIS added successfully: pcirodero.ac.upc.es

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_PENDING
Job ID: 1@1087831873835 at status: JOB_PENDING

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_SUBMITED
Job ID: 1@1087831873835 at status: JOB_SUBMITED

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_RETRYING
Job ID: 1@1087831873835 at status: JOB_RETRYING

pcirodero:~/test$ add_ggris http://pcmas.ac.upc.es:.../IndexService
GGRIS added successfully: pcmas.ac.upc.es

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_RETRYING
Job ID: 1@1087831873835 at status: JOB_SUBMITED

pcirodero:~/test$ job_history 1@1087831873835
21/5/2004 17:30:3 =>JOB CREATION
21/5/2004 17:30:3 =>JOB QUEUED in PENDING queue
21/5/2004 17:31:13 =>RESTORED From Recovery File

 (to be created another time)
21/5/2004 17:31:13 =>JOB CREATION
21/5/2004 17:31:13 =>JOB QUEUED in PENDING queue
21/5/2004 17:31:52 =>JOB SUBMITED to pcirodero.ac.upc.es
21/5/2004 17:33:1 =>JOB QUEUED FOR RETRYING because

 resource pcirodero.ac.upc.es has down
21/5/2004 17:34:2 =>JOB SUBMITED to pcmas.ac.upc.es

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_SUBMITED
Job ID: 1@1087831873835 at status: JOB_DONE

pcirodero:~/test$ get_AllJobs
A ll submitted jobs:
Job ID: 2@1087831873909 at status: JOB_DONE
Job ID: 1@1087831873835 at status: JOB_DONE

6

1

2

3

4

5

7

8

9

10

11

118 I. Rodero et al.

4 Experimental Results

We present results to demonstrate the functionality of the broker. Since the main
problem of GT3 is the overhead, we also present some performance results.

4.1 Behavior Analysis

In order to illustrate the broker behavior we are going to use an example shown in
Fig. 4. In that example we can find several circumstances and actions related with the
broker. Next, we explain each event and what decisions the broker system takes.

Initially, no resource is available and no job is submitted. Next in (2), some jobs
are submitted to the broker and are queued to the pending queue. In (3) the broker
falls. When the broker is restarted we add a computational resource in order to
execute submitted jobs. Then, in (4) the broker retrieves previous submitted jobs
from the recovery system and queues them again in a local queue. In (5) jobs are
submitted to the available resource and begin their execution. Suddenly, the resource
which was executing jobs (pcirodero) falls, in (6). So, in (7) all jobs that were
submitted in pcirodero are queued to retry their execution. Now there is no resource
available, so in (8) we add a new computational resource to allow job execution.
Afterwards jobs begin their execution on pcmas, in (9). In (10) we can see a job
history and how all events have happened. Finally, in (11) all jobs finish their
execution on pcmas.

4.2 Performance Analysis

In order to study the broker and system performance, we instrumented the broker
through JIS and JACIT [21]. JIS enables us to instrument Java classes and to obtain
some traces which can be visualized and analized with Paraver [22]. First, we present
results obtained from an execution of a minimum job in a GT3 resource. With these
results we can approximate various types of overhead such as Globus, the broker or
communications overhead. In Fig. 5 a trace obtained from the execution of two
minimal jobs is shown. In Paraver traces we can see the time on the X axis, each row

Fig. 5. Trace obtained in the minimal execution

2nd dispatch (3,2 s)

Submission of second job

state change - finalization (0,91 s)

(A) 26,48 s

(B) 16,20 s

(C) 6,11 s

- QMANAGER thread -

 eNANOS Grid Resource Broker 119

represents a thread, colors represent different states and flags are events. We can see
some events (such as submission requests, job dispatching actions, finalization
notifications and state requests) or the spent time for each one.

(A) is the elapsed time between the reception of the job submission and the
moment of its conclusion (including the state change, total process).

(B) is the queuing time of the job until its submission to a specific resource.
(C) is the elapsed time between the job submission to a specific resource and the

notification of its conclusion.

Then, considering the data
obtained in this test, we can obtain
some numbers relating to the
overhead. Broker overhead=61%,
Globus overhead=16%, the other
overhead is not relevant. Total
overhead=77% but this is only
the result obtained from a concrete
execution of a minimal job.

Now we are going to present
average results obtained from the
execution of several tests of
different duration. In Fig. 6 results
of those arithmetic jobs are shown, in short executions we obtain big overhead but
from a job of a minute duration, we obtain acceptable values. Then we can say the
broker is the broker is suitable enough for Grid oriented applications1 in terms of
overhead.

5 Conclusion and Future Work

In this paper, we have designed and implemented an OGSI-compliant Grid resource
broker. Our resource broker performs resource discovery and management,
scheduling and hides the underlying complexity of Grid resources from Grid users. It
is compatible with both GT2 and GT3 services and is designed as an extensible and
modular way to be easily extended and become compatible with future Globus
versions. Moreover, the proposed resource broker considers dynamic policies
management. To achieve these goals, the resource broker implements powerful
mechanisms to allow users to manage policies using a Grid Service based interface,
API, and client. Through experimental evaluations, we have successfully shown that
the resource broker system behavior and its performance are satisfactory for Grid
oriented applications.

For future work we are seeking to improve our resource broker with greater
robustness, check pointing, job migration and so on. We plan to add low level
interaction with local queuing systems in order to choose the best approaches in Grid
environments especially for parallel applications. Moreover, we need to implement

1 In this paper we do not consider results from the overhead of data transport and management.

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

<10s 1min 10min 1h

execution time broker overhead GT overhead

Fig. 6. Distribution of time in tests

120 I. Rodero et al.

complex meta-policies and new policies based on prediction concepts. We wish to
implement support for GT4 when this is stable. Finally, we plan to construct more
scalable systems.

With the experience gained from developing a broker on top of Globus Toolkit, we
have found some deficiencies. First, we believe that APIs need to be improved to give
better support for developers; currently Globus APIs are designed to be used for final
users. Resources should be managed in a more effective way. A useful middleware
should provide good monitoring tools and enable communications between the
middleware and the local environment. Finally, the Globus Toolkit should be
improved to reduce its overhead, and we hope future versions will be better.

Acknowledgments

This research has been supported by the Spanish Ministry of Science and Technology
under contract TIC2001-0995-C02-01, and the European Union project HPC-Europa
under contract 506079.

References

1. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, International Journal of High Perfomance Computing
Applications, 15(3):200-222. 2001.

2. “The Globus Project (Globus Alliance)”, http://www.globus.org
3. M. Litzkow, M.Livny, and M. Mutka, “Condor – A Hunter of Idle Workstations”,

Proceedings of the 8th International Conference of Distributed Computing Systems
(ICDCS 1988), January 1988, San Jose, CA, IEEE CS Press, USA, 1998

4. “Unicore Project”, http://www.unicore.org
5. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration”, Open Grid Service
Infrastructure WG, Global Grid Forum, 2002.

6. Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, “Grid Resource Management,
State of the Art and Future Trends”, Kluwer Academic Publishers, 2004

7. “Globus Security Infrastructure”, http://www.globus.org/security
8. “Resource Management: GT2 GRAM and GT3 GRAM”,
9. http://www-unix.globus.org/developer/resource-management.html

10. “Globus Data Management Services”,
11. http://www-unix.globus.org/toolkit/docs/3.2/datamanagement.html
12. “Information Services in the Globus Toolkit”, http://www.globus.org/mds
13. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-Level

Scheduling on Distributed Heterogeneous Networks”, Proceedings of Supercomputing’96,
1996

14. D. Abramson, R. Buyya, and J. Giddy, “A Computational Economy for Grid Computing
and its Implementation in the Nimrod-G Resource Broker”, Future Generation Computer
Systems. 18(8), 2002

15. J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: A Computation
Management Agent for Multi-Institutional Grids”. Proceedings of the Tenth International
Symposium on High Performance Distributed Computing, IEEE CS Press, August 2001

 eNANOS Grid Resource Broker 121

16. B. Chapman et al, “EZ-Grid Resource Brokerage System”, http://www.cs.uh.edu/~ezgrid/
17. “GridLab, A Grid Application Toolkit and Testbed”, http://www.gridlab.org
18. “The GridWay Project”, http://asds.dacya.ucm.es/GridWay/
19. Young-Seok Kim, Jung-Lok Yu, Jae-Gyoon Hahm, Jin-Soo Kim, and et al. “Design and

Implementation of an OGSI-Compliant Grid Broker Service”, Proc. of CCGrid 2004
20. “The DataGrid Project”, http://www.eu-datagrid.org
21. Rosa M. Badia, Jesús Labarta, Raül Sirvent, Josep M. Pérez, José M. Cela, and Rogeli

Grima, “Programming Grid Applications with GRID superscalar”, Journal of Grid
Computing, January 2004

22. Ivan Rodero, Julita Corbalán, Rosa M. Badia, Jesús Labarta, “Providing a Resource
Broker for eNANOS Project”, Technical Report UPC-DAC-2004-43, Tech. U. of
Catalonia, 2004

23. Jordi Guitart, Jordi Torres, Eduard Ayguadé, José Oliver, and Jesús Labarta, “Java
Instrumentation Suite: Accurate Analysis of Java Threaded Applications”, 2nd Annual
Workshop on Java on High Performance Computing, Santa Fe, New Mexico, USA, 2000.

24. Paraver, http://www.cepba.upc.edu/paraver/

	Introduction
	Related Work
	System Design and Implementation
	Overall Architecture
	Job Description and User Criteria
	Policy Management
	Job Scheduling and Management
	Resource Management

	Experimental Results
	Behavior Analysis
	Performance Analysis

	Conclusion and Future Work
	Acknowledgments
	References

