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Abstract. While existing work concentrates on developing QoS models of busi-
ness workflows and Web services, few tools have been developed to support the
monitoring and performance analysis of scientific workflows in Grids. This paper
describes a Grid service for performance monitoring and analysis of Grid scientific
workflows. The service utilizes workflow graphs and various types of performance
data including monitoring data of resources, execution status of activities, and per-
formance measurement obtained from the dynamic instrumentation, to provide a
rich set of monitoring and performance analysis features. We store workflows and
their relevant information, devise techniques to compare constructs of different
workflows, and support multi-workflow analysis.

1 Introduction

Recently many interests have been shown in exploiting the potential of the Grid for
scientific workflows. Scientific workflows [12] are normally more flexible and diverse
than production and administrative business workflows. As the Grid is diverse, dynamic
and inter-organizational, even with a particular scientific experiment, there is a need
of having a set of different workflows because (i) one workflow mostly is suitable
for a particular configuration of underlying Grid systems, and (ii) available resources
allocated for a scientific experiment and their configuration are changed in each run on
the Grid. This requirement is a challenge for the performance monitoring and analysis of
workflows (WFs) because very often the client of performance tools wants to compare
the performance of different WF constructs with respect to the resources allocated in
order to determine which WF construct should be mapped onto which topology of the
underlying Grid. Therefore, multi-workflow analysis, the analysis and comparison of
the performance of different WF constructs, ranging from the whole WF to a specific
construct (e.g. a fork-join construct), is an important feature. Moreover, the performance
monitoring and analysis of Grid scientific workflows must be conducted online. Even
though numerous tools have been developed for constructing and executing scientific
workflows on the Grid, e.g. [9, 14, 4], there is a lack of tools that support scientists to
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monitor and analyze the performance of their workflows in the Grid. Most existing work
concentrates on develop QoS models of business workflows and Web services [8, 3, 1].

To understand the performance of WFs on the Grid, we need to collect and analyze
a variety of types of data relevant to the execution of the WFs from many sources. In
previous work, we have developed a middleware which supports services to access and
utilize diverse types of monitoring and performance data in a unified system named
SCALEA-G [16]. This paper presents a Grid performance analysis service for scientific
WFs. The analysis service, utilizing the unified monitoring middleware, collects moni-
toring data from the WF control and invocation services, and performance measurements
obtained through the dynamic instrumentation of WF activities, and uses WF graphs to
monitor and analyze the performance of WFs during the runtime. Relevant data of WFs
including WF graphs and performance metrics are stored, and we develop techniques
for comparing the performance of different constructs of WFs.

The rest of this paper is organized as follows: Section 2 outlines the Grid performance
analysis service. Performance analysis for WFs is presented in Section 3. We illustrate
experiments in Section 4. Section 5 discusses the related work. Finally we summarize
the paper and outline the future work in Section 6.

2 Grid Performance Analysis Service

Figure 1 presents the architecture of the Grid monitoring and performance analysis ser-
vice for WFs. The WF is submitted to the Workflow Invocation and Control (WIC) which
locates resources and executes the WE. Events containing execution status of activities,
such as queuing, processing, and information about resources on which the activities
are executed will be sent to the monitoring tool. The Event Processing processes these
events and the Analysis Control decides which activities should be instrumented, mon-
itored and analyzed. Based on information about the selected activity instance and its
consumed resources, the Analysis Control requests the Instrumentation and Monitoring
Control to perform the instrumentation and monitoring. Monitoring and measurement
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Fig. 1. Model of monitoring and performance analysis of workflow-based application
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data obtained are then analyzed. Based on the result of the analysis, the Analysis Con-
trol can decide the next step. The performance monitoring and analysis service uses
SCALEA-G as its supportive monitoring middleware. The monitoring service (MS) and
Instrumentation Service (IS) are provided by SCALEA-G [16].

3  Performance Monitoring and Analysis of Grid Workflows

3.1  Supporting Workflow Computing Paradigm

Currently we focus on the WF modeled as a DAG (Direct Acyclic Graph) because
DAG is widely used in scientific WFs. A WF is modeled as a DAG of which a node
represents an activity (task) and an edge between two nodes represents the execution
dependency between the two activities. An invoked application of an activity instance
may be executed on a single or multiple resources.

We focus on analyzing (i) fork-join model and (ii) multi-workflow of an application.
Figure 2(b) presents the fork-join model of WF activities in which an activity is followed
by a parallel invocation of n activities. There are several interesting metrics that can be
obtained from this model such as load imbalance, slowdown factor, and synchronization
delay. These metrics help to uncover the impact of slower activities on the overall per-
formance of the whole structure. We also concentrate on fork-join structures that contain
structured block of activities. A structured block is a single-entry-single-exit block of
activities. For example, Figure 2(c) presents structured blocks of activities.
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Fig. 2. Multiple workflows of an workflow-based application: (a) Sequence workflow, (b) Fork-
join workflow, and (c) Fork-join of structured blocks of activities
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A workflow-based application (WFA) can have different versions, each represented
by a WE. For example, Figure 2 presents an application with 3 different WFs, each may
be selected for execution on specific underlying resources. When developing a WFA, we
normally start with a graph describing the WF. The WFA is gradually developed in a step-
wise refinement that creates a new WF. In a refinement step, a subgraph may be replaced
by another subgraph, resulting in a set of different constructs of the WF. For example,
the activity a1l in Figure 2(a) is replaced by set of activities {al(1),al(2),---,al(n)}
in Figure 2(b).

We focus on the case in which a subgraph of a DAG is replaced by a another subgraph
in the refined DAG. This pattern occurs frequently when developing WFs. Let G and H
be DAG of WF W F, and W Fj,, respectively, of a WFA. G and H represent different
versions of the WFA. H is said to be a refinement of GG if H can be derived by replacing
a subgraph SG of G by a subgraph S H of H. The replacement can be controlled by the
following constraints:

- Every edge (a,b) € G,a ¢ SG, b € SG is replaced by an edge (a,c) € H,
Ve € SH satisfies no d € H such that (d,c) € SH.

— Every edge (b,a) € G,a ¢ SG,b € SG is replaced by an edge (c,a) € H,
Ve € SH satisfies no d € H such that (¢,d) € SH.

S H is said to be a replaced refinement graph of SG. Note that SG and S H may not be a
DAG nor a connected graph. For example, consider the cases of Figure 2(a) and Figure
2(b). Subgraph SG = {al} is replaced by subgraph SH = {al(1),al(2),---,al(n)};
both are not DAG, the first is a trivial graph and the latter is not connected graph.
Generally, we assume that a subgraph SG has n components. Each component is either
a DAG or a trivial graph. Comparing the performance of different constructs of a WFA
can help to select and map WF constructs to the selected Grid resources in an optimal
way.

Graph refinement is a well-established field and it is not our focus. We do not con-
centrate on the determination of refinement graphs in WFs, rather, the WF developers
and/or WF construction tools are assumed to do this task. In this paper, (a;, a;) indicates
the dependency between activity a; and a;, and pred(a;) and succ(a;) denote sets of the
immediate predecessors and successors, respectively, of a;.

3.2 Activities Execution Model

We use discrete process model [13] to represent the execution of an activity a. Let P(a)
be the discrete process modeling the execution of activity a. A P(a) is a directed, acyclic,
bipartite graph (S, £/, A), in which S is a set of nodes representing activity states, F is
a set of nodes representing activity events, and A is a set of edges representing ordered
pairs of activity state and event. Simply put, an agent (e.g. WIC, activity instance) causes
an event (e.g. submitted) that changes the activity state (e.g. from queuing to processing),
which in turn influences the occurrence and outcome of the future events (e.g. active,
failed). Figure 3 presents an example of a discrete process modeling the execution of an
activity.

Each state s is determined by two events: leading event ¢;, and ending event e; such
thate;,e; € E,s € S,and (e;, s), (s, e;) € Aof P(a). To denote an event name of P(a)
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initializing submitted queuing processing

Fig. 3. Discrete process model for the execution of an activity. [J represents an activity state, O
represents an activity event

We USe ename(a). We use t(e) to refer to the timestamp of an event e and t,,,, to denote
the timestamp at which the analysis is conducted. Because the monitoring and analysis
is conducted at the runtime, it is possible that an activity a is on a state s but there is no
such (s,e) € A of P(a). When analyzing such state s, we use t,,,,, as a timestamp of
the current time of state s. We use — to denote the happened before relation between
events.

3.3 Intra-activity and Inter-activity Performance Metrics

Performance data relevant to a Grid WF are collected and analyzed at two levels: activity
and workflow level.

Activity Level. Firstly, we dynamically instrument code regions of the invoked applica-
tion of the activity. We capture performance metrics of the activity, for example its exe-
cution status, performance measurements of instrumented code regions (e.g. wall-clock
time, hardware metrics), etc. Performance metrics of code regions are incrementally
provided to the user during the execution of the WF. Based on these metrics, various
analysis techniques can be employed, e.g. load imbalance, metric ratio. We extend our
overhead analysis for parallel programs [15] to WFAs. For each activity, we analyze
activity overhead. Activity overhead contains various types of overheads, e.g. commu-
nication, synchronization, that occur in an activity instance.

Secondly, we focus on analyzing response-time of activities. Activity response time
corresponds to the time an activity takes to be finished. The response time consists
of waiting time and processing time. Waiting time can be queuing time, suspending
time. For each activity a, its discrete process of execution model, P(a), is used as the
input for analyzing activity response time. Moreover, we analyze synchronization delay
between activities. Let consider a dependency between two activities (a;, a;) suchas a; €
pred(aj). Va; € pred(a;), when ecompieted(@i) — €submitted(a;), the synchronization
delay from a; to a;, Tsq(a;, a;), is defined as

Tsd(aia aj) == t(esubmitted(aj)) - t(ecompleted(ai)) (1)

If at the time of the analysis, esypmitted(a;) has not occurred, Tsq(a;, aj) is com-
puted as Tsq(a;, ;) = tnow — t(€completea(ai)). Each activity associates with a set of
the synchronization delays. From that set, we compute maximum, average and mini-
mum synchronization delay at a;. Note that synchronization delay can be analyzed for
any activity which is dependent on other activities. This metric is particularly useful for
analyzing synchronization points in a WE.
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Workflow Level. We monitor and analyze performance metrics that characterize the
interaction and performance impact among activities. Interactions between two activities
can be file exchanges, remote method invocations or service calls. In the analysis phase,
we compute load imbalance, computation to communication ratio, activity usage, and
success rate of activity invocation, average response time, waiting time, synchronization
delay, etc. We combine WF graph, execution status information and performance data
to analyze load imbalance for fork-join model. Let a( be the activity at the fork point.
Va;,i =1:n,a; € succ(ayp), load imbalance Tj;(a;, s) in state s is defined by

- Z?:l T(ai’ 3)

Tii(ai, s) = T'(ai, s)
n

@)

We also apply load imbalance analysis to a set of selected activities. In a WF, there
could be several activities whose functions are the same, e.g. mProject activities in
Figure 4, but are not in fork-join model.

34  Multi-workflow Analysis

We compute slowdown factor for fork-join model. Slowdown factor s f is defined by

mazi_, (Tn(a:))
sf (@) 3)
where Ty, (a;) is the processing time of activity a, in fork-join version with n activities
and T} (a;) is the processing time of activity a; in the version with single activity. We
also extend the slowdown factor analysis to fork-join structures that contain structured
block of activities. In this case, T, (a;) will be the processing time of a structured block
of activities in a version with n blocks.

For different replaced refinement graphs of WFs of the same WFA, we compute
speedup factor between them. Let SG be a subgraph of WF W F, of a WFA; SG has
ng components. Let P; =< a;1, a;2, - -, a;, > be a critical path from starting node to
the ending node of the component ¢, C;, of SG. The processing time of SG, T.,(SG),
is defined by

Ty (SG) = max?y (Tep(C:)), Tep(C) = Y Tain) )
k=1

where T'(a;1,) is the processing time of activity a;x. Now, let S H be the replaced refine-
ment graph of SG, SG and SH are subgraphs of WF W F}, and W F},, respectively, of
a WFA. Speedup factor sp of SG over SH is defined by
T, (SG)
— —p T 5
sp T.,(SH) ®)
The same technique is used when computing the speedup factor between W F; and
W Fp,.
In order to support multi-workflow analysis of WFs, we have to collect and store dif-
ferent DAGs of the WF, performance data and machine information into an experiment
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repository powered by PostgreSQL. Each graph is stored with its associated performance
metrics; graph can be DAG of the WF or a subgraph. We use a table to represent relation-
ship between subgraphs. Currently, for each experiment, the user can select subgraphs,
specifying refinement relation between two subgraphs of two WFs. The performance
tool uses data in the experiment repository to conduct multi-experiment analysis.

4 Experiments

We have implemented a prototype of the Grid performance analysis service with WIC
is based on JavaCog [10]. JGraph [6] and JFreeChart [5] are used to visualize WF
DAGs and performance results, respectively. In this section, we illustrate experiments
of different WFs of the Montage application in the Austrian Grid [2].

Montage [11] is a software for generating astronomical image mosaics with back-
ground modeling and rectification capabilities. Based on the Montage tutorial, we de-
velop a set of WFs, each generates a mosaic from 10 images without applying any back-
ground matching. Figure 4 presents experimental WFs of the Montage application. In
Figure 4(a), the activity tRawImage and tUncorrectedMosaic are used to transfer
raw images from user site to computing site and resulting mosaics from computing site
to user site, respectively. mProject reprojects input images to a common spatial scale.
mAdd coadds the reprojected images. mImgtbll is used to build image table which
is accessed by mProject, mAdd. In WFs executed on multiple resources, we have
several subgraphs t RawImage — mImgtbll — mProjectl — tProjectedImage,
each subgraph is executed on a resource. The new tProjectedImage activity is
used to transfer projected images produced by mProject to the site on which mAdd
is executed. When executed on n resources, the subgraph mImgtbl2 — mAdd —
tUncorrectedM osaic is allocated on one of that n resources.

We conduct experiments on sites named GUP (University of Linz), UIBK (University
of Innsbruck), AURORAG6 (University of Vienna) and VCPC (University of Vienna) of
the Austrian Grid. Due to the space limit, we just present a few experiments of online
performance analysis of Montage WFs.

Figure 5 presents the performance analysis GUI when analyzing a Montage WF
executed on two resources in UIBK. Performance analysis component retrieves profiling
data through the dynamic instrumentation of invoked applications. The left-pane shows
the DAG of the WF. The middle-pane shows the dynamic code region call graph (DRG)
of invoked applications of activities. We can examine the profiling data of instrumented
code region on the fly. The user can examine the whole DRG of the application, or
DRG of an activity instance. By clicking on a code region, detailed performance metrics
will be displayed in the right-pane. We can examine historical profiling data of a code
region, for example window Historical Data shows the execution time of code region
computeOverlap executed on hafner.dps.uibk.ac.at. The user also can
monitor resources on which activities are executed. For example, the window Forecast
CPU Usage shows the forecasted CPU usage of hafner.dps.uibk.ac.at.

Figure 6(a) presents the response time and synchronization delay analysis for activity
mlImgtbl2 when the Montage WF, presented in Figure 4(c), is executed on 5 machines,
3 in AURORAG and 2 in GUP. The synchronization delay from tProjectedlmage3, 4,
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Fig.4. Experimental workflows of the Montage application: (a) workflow executed on single
resource, (b) workflow executed on two resources, and (c) workflow executed on n resources
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Fig. 5. Online profiling analysis for WF activities

5 to tImgtbl2 are very high. This causes by the high load imbalance between mProject
instances, as shown in Figure 6(b). The two machines in GUP can process significantly
faster than the rest machines in AURORAG6.

Over the course of the WF development process, subgraph named
mProjectedImage which includes t Rawlmage — mImgtbll — mProjectl in
single resource version is replaced by subgraphs of tRawlImage — mlImgtbll —
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Fig. 6. Analysis of Montage executed on 5 machines: (a) response time and synchronization delay
of mImgtbl, (b) load imbalance of mProject
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Fig.7. Speedup factor for refinement graph ProjectedImage of Montage WFs

mProjectl — tProjectedImage in a multi-resource version. These subgraphs
basically provide projected images to the mAdd activity, therefore, we consider
they are replaced refinement graphs. We collect and store performance of these
subgraphs in different experiments. Figure 7 shows the speedup factor for the subgraph
mProjectedImage of Montage WFs executed on several experiments. The execution
of mProjectedImage of the WF executed on single resource in LINZ is faster
than that of its refinement graph executed on two resources (in AURORAG6 or UIBK).
However, the execution of mProjectedImage of WF executed on 5 resources, 3 of
AURORAG6 and 2 of LINZ, is just very slightly faster than that executed on 5 resources
of AURORAG. The reason is that the slower activities executed on AURORAG resources
have a significant impact on the overall execution of the whole mProjectedImage
as presented on Figure 6(b).

5 Related Work

Monitoring of WFs is an indispensable part of any WfMS. Therefore it has been discussed
for many years. Many techniques have been introduced to study quality of service and
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performance model of WFs, e.g., [8, 3], and to support monitoring and analysis of the
execution of the WF on distributed systems, e.g. in [1]. We share them many common
ideas and concepts with respect to performance metrics and monitoring techniques of
the WF model. However, existing works concentrate on business WFs and Web services
processes while our work targets to scientific WF executed on Grids. We support dynamic
instrumentation of activity instances and online monitoring and performance profiling
analysis of WFs, and integrate resources monitoring with WF monitoring.

Most effort on supporting the scientist to develop Grid workflow-based applications
concentrates on WF language, WF construction and execution systems, but not focuses
on monitoring and performance analysis of the Grid WFs. P-GRADE [7] is one of a few
tools that supports tracing of WF applications. Instrumentation probes are automatically
generated from the graphical representation of the application. It however limits to MPI
and PVM applications. Our Grid WF monitoring and performance analysis service sup-
ports monitoring execution of activities and online profiling analysis. Also the dynamic
instrumentation does not limit to MPI or PVM applications.

6 Conclusion and Future Work

This paper introduces a Grid performance analysis service that can be used to monitor
and analyze the performance of scientific WFs in the Grid. The Grid performance anal-
ysis service which combines dynamic instrumentation, activity execution monitoring,
and performance analysis of WFs in a single system presents a dynamic and flexible
way to conduct the performance monitoring and analysis of scientific WFs. We be-
lieve techniques for comparing performance of subgraphs of WFs and for supporting
multiple-workflow analysis are very useful for optimizing WF structures and mapping
WF constructs onto selected underlying Grid resources.

In the current prototype, we manually instrument WIC in order to get execution status
of activities. We can extend WF specification language with directives specifying moni-
toring conditions. These directives will be translated into code used to publish the status
to the monitoring middleware. WIC can also offer an interface for the monitoring service
to access that status. Meanwhile, the process of analysis, monitoring and instrumentation
is controlled by the end-user. The future work is to automate that process.
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