A Model for Flexible Service Use and Secure
Resource Management

Ken’ichi Takahashi!, Satoshi Amamiya?, and Makoto Amamiya?

! Institute of Systems & Information Technologies/KYUSHU,
2-1-22 Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
takahashi@isit.or. jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University,
6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
{roger, amamiya}@al.is.kyushu-u.ac.jp

Abstract. Grid computing is promissing as an infrastructure that al-
lows users to use distributed computer resources by simple connecting a
computer to the network without special operation; just like connecting
to the electricity, water or gas grid. In this paper, regarding resources as
services, we propose a new architecture for realizing an environment in
which users can use services that are in various locations through their
portable terminals. In this architecture, a service is managed by an agent,
which has two resource management spaces named the Public Zone and
the Private Zone. The Public Zone is a space for realizing flexible pub-
lic service use. The Private Zone is a space for protecting private user
information. Moreover, agents are organized in a group called the com-
munity and are managed independently in each community. Thus, we
realize both of flexible service use while protecting private information.

1 Introduction

Grid computing is promissing as an infrastructure that allows users to use dis-
persed computer resources by simply connecting a computer to the network
with no special operation; just like connecting to the electricity, water or gas
grid. SETI@home][5] and distributed.net[I] are the two well-known grid comput-
ing projects. These projects try to search for extraterrestrial intelligence or carry
out cryptographic analysis by using CPU resources connected to the Internet. In
these projects, a resource is a CPU resource. But a resource is not only a CPU
resource, but also data and a service. If we regard a resource as a service, we
will be able to realize an environment that allows users to use services provided
in various locations through their portable terminals. For example, if a user is
in the laboratory, he can use the printer and the copy machine in the laboratory
through his portable terminal; if he is in his house, he can use the television, and
the audio player there and so on. In this way, users will be able to use services
which are based on their locations. To realize such an environment, the following
functions are required.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1143-[IT53] 2005.
© Springer-Verlag Berlin Heidelberg 2005

1144 K. Takahashi, S. Amamiya, and M. Amamiya

Service-Use Mechanism. Each service has a method for its use. For exam-
ple, when we use a telephone, first, we pick up the telephone receiver and put
in coins and dial. In a same way, we must get the method for using a service
and use the service according to the method appropriate to it.

Protection of Private Resources. In the real world, various services are
provided in exchange for resources/information like money and e-mail address.
So, when a user receives a service, he may have to provide some private infor-
mation. But users don’t want to unconditionally make their own information
public. Therefore, it is necessary to protect their resources/information.

Decentralized Service Management. In this environment, there are count-
less services. So it is difficult to manage and dispatch resources to users in a
centralized way. Therefore, we need a mechanism for managing resources in a
group depending on the location and/or other indicators.

The availability of a service-use mechanism depends on the degree of pro-
tection of private resources. If a user does not provide all his information, the
services he can use are limited; if he provides more information, he may be
able to use more services. Therefore, we need to balance these two functions. In
this paper, we propose a new architecture based on two agent systems, named
KODAMA[6] and VPC[3]. In this architecture, a service is managed by its agent,
which has two resource management spaces named the Public Zone and the
Private Zone.

The Public Zone is a space for realizing flexible public service use. The Private
Zone is a space for protecting private user information. Moreover, agents are
organized in a group called the community and are managed independently in
each community. Thus, we realize the flexible service use and the protection of
private information.

2 The Public Zone and the Private Zone

In this section, we introduce the Public Zone and the Private Zone. In our
architecture, agents have a Public Zone and a Private Zone. The Public Zone is
for flexible public service use. The Private Zone is for the protection of private
resources. An overview of our architecture is shown in Fig. [l

The Public Zone manages public resources. A public resource is a resource,
like a service or information. Public resources are open to the public. A public
resource has a public policy which consists of a method for its service use and a
specification of attributes. A user agent acquires a public policy from the service
provider agent and uses its service by behaving according to its method.

A Security Barrier exists between the Public Zone and the Private Zone. The
Security Barrier has functions for restricting access to private resources and for
restricting communications of a program which accesses private resources.

A Model for Flexible Service Use and Secure Resource Management 1145

From other agents

Public
To other agents Polic

Agent interaction

Public Zone

Public 4.
Resource

Security Barrier

Private Zone

register

Private |I
P

olicies

access

Private
Resource

Fig. 1. An Overview of the Public and Private Zone Model

The Private Zone manages private resources. An agent cannot directly access
private resources, but must access them through the Public Zone. A private
resource has a private policy which consists of a method for accessing its resources
and attributes governing access permission. Private policies are registered with
the Security Barrier. The Security Barrier monitors access to private resources
and communications of a program which has accessed private resources.

2.1 Public Policies and Private Policies

Each resource has a public policy or a private policy both of which consist of a
method and attributes. A method is implemented by a program called the client
program. The details of the client program are introduced at Sect.[2.3] Attributes
consist of common attributes and characteristic attributes.

The common attributes are composed of owner, type, description and
agent_attr. The owner attribute is the name of the agent which generated the
policy. The type attribute shows whether the policy is a public policy or a pri-
vate policy. The description attribute gives an explanation of the resource. The
agent_attr is the list of attributes of the agent which managed the policy.

The characteristic attributes of a public policy are dependency and commu-
nication. The dependency attribute shows what resources are needed for using
the resource. The dependency attribute is defined as the list of description at-
tributes of the public policy. When an agent wants to use its resource, the agent
must gather resources specified in the dependency attributes in advance. The
communication attribute shows whom it is necessary to communicate with for
using the resource. The value of the communication attribute can be any one of
no_communication, owner_only or agent_list. No_communication means that no
communication is required. Owner_only means that it requires only communica-
tions with the resource provider. Agent_list is defined as the list of agent name
and means that it requires only communications with agents specified in its list.

1146 K. Takahashi, S. Amamiya, and M. Amamiya

The characteristic attributes of a private policy are access and allowable_com-
munication. The access attribute specifies attributes of programs which are per-
mitted the access the private resource. The allowable_communication attribute
specifies communications allowed to the client program which accesses the pri-
vate resource. The value of the communication attribute can be any one of al-
low_all, agent_list, owner_only and deny_communication. Allow_all permits only
communications with agents specified in the communication attribute of the
client program. Agent_list permits only communications with agent specified
in its list. Owner_only permits only communications with the distribution origin
(represented by the owner attribute) of the client program. Deny_communication
denies all communication.

2.2 The Security Barrier

The Security Barrier is prepared for the protection of private resources between
the Public Zone and the Private Zone in each agent. All the access must be
done through the Security Barrier. The Security Barrier forbids the access from
other agents and also checks the access from programs in the Public Zone. In this
architecture, each private resource has a private policy. The private policy is reg-
istered with the Security Barrier. The Security Barrier protects private resources
by restricting the access to private resources and restricting communications of
the client program.

When the client program accesses to a private resource, the access is checked
by the Security Barrier. The Security Barrier compares the common attribute
(owner, description and agent_attr) of the client program and the access at-
tributes of the private resource. If the access is accepted, the Security Barrier
returns its value and registers the client program with the access-list; if it is re-
jected, Illegal AccessException happens. After that, the Security Barrier monitors
the communication of the client program in the access-list. When the client pro-
gram communicates with other agent, the Security Barrier compares the commu-
nication partner and the allowable_.communication attributes of the private pol-
icy. Then, if its communication is allowed, the client program can communicate;
if it is rejected, Illegal AccessException happens. In this way, the Security Barrier
protects private resources by restricting the access and the communication.

2.3 The Client and the Service Program

In this architecture, each service is provided by one agent. A user agent uses
a service by communicating with the service provider agent according to the
method for use of the service. But methods for service use are different for each
service. Therefore, it is difficult to implement an agent which is able to ab initio
use various services. Therefore, we define the service program and the client
program as a pair.

A service provider agent sets up a service program and a client program (as
a part of the public policy) in its Public Zone. A user agent acquires a client
program from a service provider agent and invokes it in its Public Zone. Then,

A Model for Flexible Service Use and Secure Resource Management 1147

Table 1. Additional Methods for the Service and the Client Program

Result accessToPublicResource(service_desc)
Call a client/service program specified in service_desc on the Public Zone
and return its result

Result accessToPrivateResource(service_desc) throws Illegal AccessException
Call a client/service program specified in service_desc on the Private Zone
and return its result

void inform(agt_name, method, par, res_method) throws Illegal AccessException
Send an invocation of the method(par) to agt_name.
When the agent receives a response, it invokes the res_method(response)

Result accessTo(agt_name, method, par) throws IllegalAccessException
Send an invocation of the method(par) to agt-name and suspend the program.
When the agent receives a response, the program works again

void reply(Result res)
Send res back

the service is actualized by communications, guided by the client program and
the service program, between the service provider and user. The service and
client program are implemented in Java with additional methods as shown in
Table [

3 Decentralized Service Management

In an environment with a lot of services, it is difficult to manage and dispatch
resources to users in a centralized way. Therefore, a decentralized service man-
agement mechanism is required. For that, we define the community. Each com-
munity manages agents in its community independently. Each community has a
portal agent which is the representative of each community. A portal agent has
tax policies that are obligations imposed on agents in its community. Agents are
able to use services provided in the community to the extent that they fulfill
their obligation.

3.1 The Tax Policy

The tax policy is the obligation imposed on agents who have joined a community.
The tax policy is designed for checking the qualification to join the community
and/or for obligating to provide the service. The tax policy consists of a client
program and attributes. The attributes are the same as for the public policy.
When agents join a community, they must install the client program specified
in the tax policy in their Public Zone.

When an agent joins a community, it receives tax policies from the portal
agent of the community. The agent installs the client programs in its own Public
Zone and notifies that to the portal agent. If the community needs to check

1148 K. Takahashi, S. Amamiya, and M. Amamiya

Portal Agent
[
Resource
List . .

1,2.Request Service Provider Agent
the resourct?/ Public Zone
and receive it .

3,4. Request a policy| Bubli Public

AN ublic | ..
%mt and receive it +*fResource
ublic Zone

Security Barrier

Security Barrier

Fig. 2. The Steps for Obtaining a Client Program

the qualification to join the community, the portal agent accesses to the client
program in the agent’s Public Zone. Then, the client program accesses resources
of the agent for checking the qualification to join the communityﬁ and returns its
result. As the result, the portal agent sends a participation permission/refusal
notification message. If the agent receives a participation permission notification
message, the agent joins the community. Moreover, agents in the community
provide the services specified in the tax policies to other agents in the community.

3.2 The Registration of the Service

The portal agent manages resources provided by agents in the community. When
an agent joins the community, it sends owner and description attributes to the
portal agent. The portal agent registers them in the resource table, allowing an
agent to find resources by querying to the portal agent.

3.3 Service Use

An agent acquires a client program from a service provider agent and uses a
service. The steps for obtaining a client program are shown in Fig. 2l

1. A user agent sends a resource list request message to a portal agent.

2. The portal agent returns the resource list (which consists of owner and de-

scription attributes).

The user agent finds necessary resources from the resource list.

4. The user agent requests a public policy from the service provider agent
(indicated by the owner attribute in the resource list).

5. The service provider agent returns the requested public policy.

6. The user agent installs the client program detailed in the received public
policy.

@

3 A method for checking the qualification is not shown in this paper, because it depends
on applications.

A Model for Flexible Service Use and Secure Resource Management 1149

UserX Agent

Portal Agent

Taxl policy

L Public
\ Private
> | Member LabID="*
Resource | | _Check
List
. UserY Agent
Printer Agent egister Public
Printe -
Home Directory Agent Prlli/:lt)TDﬂ*“

Fig. 3. The Application Overview

In this way, an agent acquires a client program. Subsequently, the user agent
acquires public policies indicated in the dependency attribute of the received
public policy. Finally, the user agent invokes the client program.

4 An Application Example

In this section, we show an application example in which a member of a labora-
tory makes use of services provided in the laboratory. In the example, we assume
that sensors for detecting user’s location are installed in the laboratory and no-
tify the user agent of the community name corresponding to each user’s location.
We also assume that the problems of tapping, spoofing and masquerading have
been solved by importing technologies of encryption, digital signature, Public
Key Infrastructure and so on.

4.1 The System Structure

The application overview is shown in Fig. Bl

In this application, there is a printer agent and a home directory agent in the
LabA community and the LabB community. A printer agent provides a printer
services. A home directory agent provides home directory access services for
users who have a login password. Also, LabA is simulating MPU (MicroProcessor
Unit) processes that requires more CPU power. Accordingly, the portal agent
of the LabA community has a tax policy (MPU_Sim) which supplies the CPU
resources for the simulation, and a tax policy (Member_Check) which confirms
whether agents are members of its laboratory or not.

UserX/userY are members of LabA /B, repectively. They have a LabID with
the following attributes:

owner="UserX/Y", type="private", agent_attr=attribute of userX/Y,
description="Belonging to laboratory",

1150 K. Takahashi, S. Amamiya, and M. Amamiya

UserX Agent

Portal Agent
LabA

Community | | Tax Policy, m

. [[Member
_Check

Home Directory Agent

Pfinter Agent|

2. usgr confirmal

Private Zone

Fig. 4. The Behavior when the UserX agent Enters the LabA community

access=agent_attr:{owner="portal of LabA/LabB"},
allowable_communication="owner_only"

. Also, userX has a HomeDirLoginPass with the following attributes:

owner="UserX", type="private", agent_attr=attributed of userX,
description="Home directory login password",
access=agent_attr:{owner="Home Directory Agent"},
allowable_communication="owner_only".

4.2 Behavior When Entering the Laboratory

The behavior when userX enters LabA is shown in Fig. @l When userX visits
LabA, its community name (LabA) is notified to his agent by sensors. The agent
then receives tax policies (MPU_Simu, Member_Check) from the portal agent of
the LabA community and installs their client programs in its own Public Zone;
the portal agent accesses Member_Check installed in userX’s Public Zone and
tries to confirm whether he is a member of LabA. The Member_Check program
tries to access the LabID. Then, the access is allowed because attributes of LabID
are access=agent_attr:{owner="portal of LabA"}, allowable_communica-
tion="owner_only". As the result, the confirmation succeeds. After that, the
userX agent receives a participation permission notice message and joins the
LabA community. On the other hand, even if userY tries to join the LabA com-
munity, he can not join because attributes of his LabID are Access=agent_attr:
{owner="portal of LabB"}.

And agents in the LabA community have the MPU_Simu program in their
Public Zone, because MPU _Simu is specified in the tax policy of the LabA com-
munity. Therefore, agents in the LabA community supply the CPU resources for
the MPU simulation. In this way, we can simulate MPU processes using CPU
resources of other agents through their MPU_Simu program.

A Model for Flexible Service Use and Secure Resource Management 1151

Portal Agent

-
Resource
. List
irectory Agent <
\(7 =
e
i Rd
HomeDITL ior Agent Use Agent-” 1_display

“_- /”\/‘ 2. select

LabA Community

Hom

_executej_refresh J

File name: | test

Pagerange: @ All Pages: ’—

Number of copies: | 1

Fig. 5. The Behavior when a User Agent Uses a Service

4.3 Service Use in the LabA Community

The behavior involved in using a service in the LabA community is shown in
Fig.[Bl A user agent receives the resource list. The user agent shows its description
attributes to the user. If the user selects a service he wishes to use, the user agent
acquires the public policy and invokes the appropriate client program.

For example, when userX enters LabA, ”Printer service” and ”Home dir ac-
cess service” are shown on his portable terminal. If he selects ”Printer service”,
his agent acquires the Printer policy and invokes its client program. This results
in the interface for ” Printer service” being shown on his portable terminal, and he
uses the printer through this interface. Also, if he wishes to use "Home dir access
service”, his agent acquires the HomeDir policy and invokes its client program.
Then, the HomeDir client program tries to access the HomeDirLoginPass. Here,
attributes of the HomeDirLoginPass are Access=agent_attr:{owner="Home
Directory Agent"}, Allowable_Communication="owner_only". Therefore, the
HomeDir client program accesses the HomeDirLoginPass and tries to authenti-
cate. If its authentication succeeds, userX can access his home directory; if it
fails, he cannot. Of course, only programs generated by the Home Directory
agent can access the HomeDirLoginPass .

4.4 The Evaluation of Our System

Service-Use Mechanism. We have defined pairs of service programs which
are executed by a service provider agent and client programs which are executed
by a user agent. A service provider agent provides service programs to user
agents. Therefore, by getting client programs from service provider agents, user
agents make use of various services. In the application example, if a user agent
does not know a method for the service use in advance, he can use services by
getting appropriate client programs from their service provider agents.

We also defined the tax policy, which is the obligation imposed on members
of the community. Agents in the community must provide services specified in

1152 K. Takahashi, S. Amamiya, and M. Amamiya

tax policies. In the application example, the portal agent confirms whether an
agent is a member of the laboratory or not by the Member_Check program, and
the agents supplies the CPU resources for MPU simulation by the MPU_Simu
program.

Protection of Private Resources. We defined two resource management
spaces, the Public Zone and the Private Zone. The Public Zone is a space for
flexible public service use. The Private Zone is a space for protecting private
resources. All the access to resources in the Private Zone is examined by the
Security Barrier according to each private policy. In the application example,
we showed that only programs permitted by the private policy can access the
LabID and the HomeDirLoginPass.

Decentralized Service Management. We introduce the community, which
manages agents independently. In the application example, we defined the LabA
and LabB community, each of which manages agents independently.

5 Related Work

UDDI (Universal Description, Discovery and Integration) , WSDL (Web Services
Description Language) and SOAP (Simple Object Access Protocol) are three key
specifications for implementing dynamic web service integration. UDDI offers
users a unified and systematic way to find service providers through a centralized
registry of services. WSDL is designed to describe the capabilities of any Web
Service. SOAP is an XML-based protocol for messaging and Remote Procedure
Calls (RPC). Because WSDL description is an interface for RPC or messaging,
users must program to use its service. In our architecture, by getting a method
for each service, user can use services without programming.

Many researchers are trying to develop security systems for Digital Rights
Management and Trusted Computing[2,[4]. However, most of them are prin-
cipally based on the client-server model or domain-specific distributed environ-
ments. Therefore, it is difficult to cover widely distributed environments in which
there are a lot of services.

6 Summary

In this paper, we introduced a new architecture which has two resource man-
agement spaces: one is the Public Zone for flexible public service uses based on
the acquisition of client programs; the other is the Private Zone where private
resources are protected under the supervision of the Security Barrier. There-
fore, a user agent can use various services while protecting private resources.
Future work will clarify the details of the public/private policy attributes and
the details of the client/service programs through practical application of the
architecture.

A Model for Flexible Service Use and Secure Resource Management 1153

References

1. distributed.net. http://distributed.net/.

2. J. S. Erickson. Fair Use, DRM, and Trusted Computing. Communication of ACM,
Vol. 46(4), pp. 34-39, 2003.

3. T. Iwao, Y. Wada, M. Okada, and M. Amamiya. A Framework for the Exchange
and Installation of Protocols in a Multi-Agent System. CIA2001, pp. 211-222,
September 2001.

4. L. Kagal, T. Finin, and A. Joshi. Trust-Based Security for Pervasive Computing
Environments. IEEE Computer, Vol. 34(12), pp. 154-157, 2001.

5. SETI@home. http://setiathome.ssl.berkeley.edu/.

6. Guoqgiang Zhong, et al. The Design and Implementation of KODAMA System.
IEICE Transactions INF.& SYST., Vol. E85-D, No. 4, pp. 637-646, April 2002.

	Introduction
	The Public Zone and the Private Zone
	Public Policies and Private Policies
	The Security Barrier
	The Client and the Service Program

	Decentralized Service Management
	The Tax Policy
	The Registration of the Service
	Service Use

	An Application Example
	The System Structure
	Behavior When Entering the Laboratory
	Service Use in the LabA Community
	The Evaluation of Our System

	Related Work
	Summary

