
A Service-Based Architecture for Integrating

Globus 2 and Globus 3

Manuel Sánchez1, Óscar Cánovas2, Diego Sevilla2,
and Antonio F. Gómez-Skarmeta1

1 Information Engineering and Communications Department
2 Computer Engineering Department, University of Murcia, Spain

{msc, skarmeta}@dif.um.es
{ocanovas, dsevilla}@ditec.um.es

Abstract. During the past few years, Grid Computing has matured in
terms of programming models and available tools. Some tools like the
Globus Toolkit version 2 (GT2) are used in many international high per-
formance distributed computing projects. Recently, the OGSA standard
(Open Grid Services Architecture) has been defined, proposing a radi-
cally new philosophy compared to that of GT2. Analyzing the evolution
of the scientific community working on Grid Computing, we foresee a
progressive shift of current developments to this new standard, that al-
ready has a reference implementation: GT3. This paper describes the
analysis and design of an architecture of OGSA Grid Services that aims
to integrate both platforms seamlessly, allowing remote job invocation
from GT3 to GT2 holding all the security properties, and transparent
for the user.

1 Introduction and Motivation

The computing power and storage needed in scientific environments grow day
by day, exceeding that offered by traditional computers. Thus, a new paradigm
called Grid Computing emerged with the goal of sharing resources among dy-
namic organization coalitions in a coordinated, secure, and flexible way. Orga-
nizations belonging to the Grid can decide to share part of their resources in a
controlled fashion, conforming Virtual Organizations[12].

Nowadays, the Globus Toolkit[2] is widely accepted as a de-facto standard
for building Virtual Organizations, being GT2 the most widely used version.
However, since the publication of OGSA (Open Grid Services Architecture)[11]
in 2002, Globus is adapting to the emerging Grid Service concepts. Thus, a
new version, GT3, appeared based on this paradigm, which implements all its
functionality by means of Grid Services and standard interfaces, making the
development of Grid applications easier.

In terms of security, as described in[13], the new version of GSI (Grid Security
Infrastructure)[6], included in GT3, provides several advantages, such as the use
of IEEE/GGF compliant proxy certificates[16], or the use of the SOAP standard

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1128–1138, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Service-Based Architecture for Integrating Globus 2 and Globus 3 1129

(Simple Object Access Protocol)[4] and the recent WS-Security specifications[3]
to exchange authentication and authorization information.

Although both GT2 and GT3 try to ease the development of distributed
computing applications, they have rather different mechanisms for accessing re-
sources. While GT2 is based mainly on command line tools and scripts since it
was designed for batch execution, in GT3, resources are not accessed directly,
but by means of grid services, which are executed on the resources and perform
a particular task.

Given the wide deployment of GT2, there are a lot of applications that rely on
this Globus version. Although GT3 distributions contain an updated GT2 imple-
mentation, the migration process to GT3 does not seem to be a straightforward
task: This new version involves a complete change in the operation manner which
is incompatible with the previous version. Moreover, a number of organizations
using both versions of Globus would want to make them interoperate. In order
to achieve that integration, we have to define the elements needed to satisfy two
main goals. First, the system must be able of processing the requests sent from
GT3 clients, interpreting them, and building an equivalent request to be sent
to the GT2 nodes. It is worth noting that this process must be transparent to
the GT3 client: it should be able to use GT2 nodes as if they were OGSA grid
services. Secondly, given that the request must be translated from GT3 into GT2
by, as we will show, an intermediate element that might not be trusted by both
parties (for example, when the integration service is offered by a third party), it
is necessary to protect the job submitted for execution to guarantee end-to-end
security.

In this paper we propose an architecture based on grid services that achieve
the described integration. This architecture is based on digitally signed jobs,
allowing secure usage of GT2 resources by GT3 clients. It is composed, on one
hand, by grid services local to GT3 clients, that is, hosted by their organization,
and on the other hand, by external services hosted by third parties providing
the integration service.

Similar work has been done in the GRIP project[15]. Among the main results
of this project we can find some kind of interoperability between Globus and
UNICORE, and the promotion of standards for interoperability in the GGF.

This paper is structured as follows. First, Section 2 provides a brief overview
of the two different GT versions related to our work. Then, Section 3 describes
the proposed architecture for performing the integration, that is, the different
architectural elements, their relationships, and the mechanism based on digital
signature that is used to protect the integrity of the submitted jobs. Section 4
shows the relevant details of the implementation. Finally, we conclude with our
remarks and some future directions derived from this work.

2 Background

Nowadays, we can find several platforms for Grid Computing providing dif-
ferent sets of capabilities. Globus Toolkit is the most widely adopted, and is

1130 M. Sánchez et al.

being used in several European research projects [5, 9, 8]. In the last two years,
UNICORE[10] has also emerged as an alternative toolkit for Grid Computing,
as can be seen from the several existing initiatives which are trying to integrate
Globus and UNICORE in a seamlessly manner[15].

2.1 Globus Toolkit 2

Globus Toolkit[2] is a computing platform composed by applications and libraries
for the management, discovery and monitoring of resources. GT2 provides an
uniform access interface to the computing resources, either independent nodes
or a whole cluster of workstations using different operating systems. One of the
main elements of GT2 is GRAM (Globus Resource Allocation Manager), which
is responsible for accepting job submissions and hiding the specific details of
the platform executing those jobs. In an upper layer we can also find DUROC
(Dynamically-Updated Request On-line Co-allocator), a meta-manager responsi-
ble for the coordination of several GRAMs in order to execute complex tasks
(composed of other jobs).

Remote execution is guided by a resource specification language (RSL). By
means of RSL, users specify the job to be launched and some related execution
parameters, such as the number of processors involved or required memory.

2.2 Globus Toolkit 3

GT3 represents a completely different approach from GT2, as it uses Grid Ser-
vices as its core. Grid services are specialized Web Services that include some
new features, such as persistence, management of notifications, and use of ser-
vice data elements. GT3 grid services must be run in a service container, and
remote invocations make use of SOAP. Grid services are self-described by means
of WSDL (Web Service Description Language) documents, which must be ob-
tained by clients in order to access them. Complexity is reduced by means of
client and server stubs, which are intermediate software elements derived auto-
matically from the WSDL description. Therefore, details about SOAP and other
technological elements are hidden from the developer’s point of view.

Two of the most important novelties in GT3 are service data and notifica-
tions. The former allow the programmer to add structured data to the services,
which can be accessed through a well defined interface. Then, service data can
be used to expose the grid service internal state or metadata. Notifications are
used by a grid service or notification source to notify changes in its state to any
subscribed client or notification sink. Notifications are closely related to service
data, because a client is not subscribed to a whole grid service, but to a specific
service data belonging to the service.

The Java CoG Kit[1], in turn, offer a Java framework for accessing GT2
programs and services. In general, Commodity Grid (CoG) kits allow users,
developpers and administrators to access the grid from a higher-level framework.

A Service-Based Architecture for Integrating Globus 2 and Globus 3 1131

2.3 Security Mechanisms for Globus: GSI

Both GT2 and GT3 use the security services provided by GSI (Globus Security
Infrastructure)[6]. GSI makes use of X.509 certificates for authentication pur-
poses, and TLS for establishing confidential channels. It also supports different
authorization policies, delegation of privileges, and can also be integrated with
other local security systems being used in the organization.

3 Proposed Architecture

3.1 Requirements for the Integration of GT2 and GT3

The integration of both versions of Globus has a set of requirements derived
from the intrinsic internal architectural organization of both platforms. First,
intermediate elements with support for both GT2 and GT3 are necessary. Sec-
ond, a RSL request must be built that describes the job execution request made
by the user. Also, the code, input data, and output data must be transmitted. It
would also be desirable that the client, the intermediate element, and the GT2
nodes in charge of the final execution could be located in different administrative
domains, thus not having to belong to the same organization. Shielding the user
of the details of GT2 (such as the RSL specification or the use of the GRAM
protocol) is also desirable. Finally, the semantics of the execution stated by the
GT3 client must be preserved along all the process, that is, the architecture must
guarantee that neither the code nor the input or output data has been forged,
as well as that the identity of the caller is not supplanted by any other entity.

3.2 The Elements of the Proposed Architecture

We have proposed a generic architecture with three different administrative do-
mains, as shown in Figure 1. First, the domain of the GT3 client that wants to
execute a job in a GT2 cluster. For the sake of simplicity, we suppose that this
domain is composed exclusively of GT3 nodes, possibly connected to other GT3
nodes on different sites conforming a Virtual Organization. Second, an interme-
diate administrative domain exists to host the integration service, thus having
to support both versions of Globus. This intermediate element can be seen as an
enterprise (organization) dedicated to offer interconnection among Grids. The
last administrative domain in the picture is the destination one, in which the
execution of the job will be performed, composed of one or more GT2 nodes.

The main elements participating in the integration are the following:

– GT2Gateway Service. To avoid GT3 users having to explicitly build the
GT2 RSL request, an OGSA service is introduced that builds this specifica-
tion from the data given by the user (executable file, parameters, data files,
etc.) This service is also responsible for signing the RSL and all the files on
behalf of the user and for verifying the signed output generated by the GT2
nodes, in order to guarantee end-to-end integrity and authentication. The

1132 M. Sánchez et al.

GT3 Client

Intermediate GT3/GT2 Server

GT2 Server

User
Certificate

Client
Stub

Application

Server
Stub

GTBridge
Service

Container

GT2
GRAM

Params.
Files

SOAP
HTTP
GSI

HTTP
GSI

Proxy 1

RSL
Files

Sign

Server
Stub

GT2Gateway
Service

Container

Client
Stub

RSL
Files

Sign

Proxy 2

Proxy 1 Local GT3 Server

SOAP

HTTP
GSI

RSL
Files

Sign

Proxy 2

Organization 1

Organization 2

Organization 3

Exec.

Proxy 2

notification

notification

GT2
Nodes list

Fig. 1. Architecture of the proposed solution

GT2Gateway service must be running in the local domain to which the user
belongs, because this service has to build and sign the whole description of
the job. Besides, this service acts as a notification source for the client. We
can find a similar approach to provide job integrity by means of job signing
in UNICORE[10].

– GTBridge Service. This service offers two main functions: First, it is re-
sponsible for maintaining a list of GT2 nodes (or set of nodes) that are
available to be used from GT3. This way, the user should first check this list
(for example, using the Index Service) to see what nodes are available before
interacting with the GT2Gateway service. And second, once the RSL is built,
it receives from the GT2Gateway service the Job description, input files and
executables, and the certificates needed to verify the signature, as we will
see later. From this point on, the request has been converted into the GT2
format, and therefore it can be submitted to a GT2 GRAM server of other
administrative domain. After executing the job, the results are collected by
this service, and put in knowledge of the client.

– GT2 GRAM with digital signature support. The functionality of the
GT2 GRAM server must be augmented (in form of a plug-in) in such a
way that allows us to interpret digitally signed job descriptions. For that
purpose, the RSL must indicate that this particular job is protected using
a digital signature, making it to be interpreted by the modified GRAM. It

A Service-Based Architecture for Integrating Globus 2 and Globus 3 1133

is worth noting that this extension can be added without changing the base
Globus installation in the node. Once the job is executed, the results are also
protected against integrity attacks by means of a digital signature.

Finally, we also have to assure end-to-end security. Although GSI guarantees
a secure communication between the entities in homogeneous environments, the
introduction of an intermediate entity (the integration service) makes it neces-
sary to deeply analyze the security implications of the integration.

3.3 The Integrity Problem

The proposed solution could have the problem of having to trust an external
entity (the mediator) to which the execution of jobs is delegated. This external
entity could modify the jobs before sending them for execution or even imper-
sonate the user sending out jobs for execution without the user’s knowledge.
To overcome this problem, the job description is signed with the user’s private
key. This way the destination GT2 node can check the authenticity of the data
received. Therefore, management of proxy certificates and private keys involved
in the process is of paramount importance.

The Globus Security Infrastructure is based on the use of restricted user
proxy certificates. These certificates are issued by the user for a temporal user-
controlled key pair, and can be used to delegate operations to other elements
of the system in a secure and controlled way (those delegation chains are not
bounded). As can be seen in Figure 1, the GT3 client first generates a proxy that
will be used by the GT2Gateway service to sign the job description. After that,
this service generates another proxy, that will be sent, jointly with the signed job,
to the GTBridge service. This second proxy, together with its certificate chain,
will be used by the GTBridge service to contact the GT2 node and execute the
job on behalf of the user. As the job description is signed with the first proxy,
which is not accessible by the intermediate service, the contents of the job cannot
be modified. Moreover, the use of the second proxy will allow executing the job
on behalf of the user, thus applying the security policies mapped to that specific
user (known as “grid mapping” in Globus). Also note that the architecture of
GT3 imposes that a proxy certificate must be created for each service invocation.

4 Implementation of the Proposed Architecture

Once we have analyzed the main elements of our architecture, and having in mind
the requirements imposed by such approach, we provide some details related to
the implementation and operation of those elements.

4.1 Operation Steps

Figure 2 shows the main steps involved in the execution of GT2 jobs that have
been submitted from a GT3 client.

1134 M. Sánchez et al.

3: execGT2 (resource, exec, params, files, proxy)
4: getServiceData (GTBridgeData)

5: subscribe (GTBridgeOut)

2: subscribe (OutUrl)

7: exec (rsl, resource, signature, proxy)

8: globus-job-run (rsl, signature, proxy)

12: signedOutput
13: notify (GTBridgeOut)

15: notify (OutUrl)

1: getServiceData (GT2Nodes)

 : GT3 Client : GT2Gateway : GTBridge : GT2 GRAM

6: Creates the RSL and signs
everything

9: Verifies the signature
10: Execs the job
11: Signs the output

14: Gets the output and verifies
the signature

Fig. 2. System interaction

1. A client obtains the information about the available GT2 nodes from the
service data elements managed by GTBridge. Optionally, the client can del-
egate to GT2Gateway the selection of a specific set of nodes.

2. The client subscribes to the OutUrl notification of the GT2Gateway service
to be notified about how to get the results when the job has been executed.

3. After the selection of nodes, the client sends to the GT2Gateway the name
of the program, any input files or parameters, an identifier of the selected
GT2 node and a proxy certificate generated from the user certificate.

4. GT2Gateway gets the URL where GTBridge will leave the signed job from
the GTBridgeData service data to add it to the RSL which it is building.

5. Then, this service subscribes to the GTBridgeOut notification of the GT-
Bridge related to the availability of results derived from the job execution.

6. GT2Gateway builds the RSL document that describes the job, including a
random identifier which will be used by the GT2 node as a reference for the
client session. On the other hand, GT2Gateway creates a second proxy from
the proxy certificate submitted by the user. Finally, the RSL job description,
and its related input files, are digitally signed by GT2Gateway making use
of the private key associated to the first proxy certificate.

7. GT2Gateway uses the GTBridge service to request the remote execution in
the GT2 node, providing the RSL description, its related files, the digital
signature, and the new proxy certificate.

8. GTBridge uses the interface provided by the Java CoG Kit to submit the
job to the target GT2 node.

9. The target GT2 node checks whether it is processing a signed job (which
is specified in the RSL description in order to differentiate unsigned jobs

A Service-Based Architecture for Integrating Globus 2 and Globus 3 1135

submitted by other GT2 nodes from GT3-originated jobs). It also verifies
that the RSL description is properly signed using the first user proxy. Fur-
thermore, the proxy used for authentication purposes must also be the last
element of the trusted chain of certificates presented by the user.

10. Using the grid mapping policy, the user is mapped into a local user, and the
job is executed according to that user’s constraints.

11. Once the job has finished its execution, the GT2 node digitally signs the
standard output and any other output files derived from the job execution
with the host private key.

12. Next, the GRAM server sends the signed execution output to the GTBridge.
13. GTBridge specifies the URL where the signed output is available in the

appropriate service data, triggering the notification to GT2Gateway Service.
14. Finally, GT2Gateway makes use of those service data elements in order to

obtain the different outputs.
15. The output will be considered valid after verifying that the related digital

signature is valid and that the signer certificate belongs to the GT2 Node.
In that case, the GT3 client will be notified about the availability of results.

As we can see from these steps, clients are not aware of any operation re-
lated to RSL descriptions or digital signatures. The main goal is to achieve an
integration as seamless as possible, which might be replaced by a different im-
plementation in a transparent manner.

4.2 Some Details About the GT3 Services

Our OGSA services are specified using GWSDL, including definitions of some of
the different service data elements used for notification purposes. Those services
implement some OGSA standard interfaces, such as NotificationSource or
Factory, in order to deal with each request in an independent and persistent
manner. Figure 3 shows part of the GWSDL of GT2Gateway.

Digital signatures follow the PKCS#7 [14] standard, since this type of doc-
ument contains information about the signature, the data being protected, and
the certificates composing the verification chain.

4.3 Some Details About the Plug-in for the GT2 GRAM Server

The GT2 GRAM server should be extended for three reasons. First, it must
be able to understand the new RSL attributes for digital signature support.
Second, it has to verify the different user proxies and digital signatures. Fi-
nally, it must deal with the different results derived from job executions, also
signing the different outputs in order to protect them from an external modi-
fication or forgery. Everything has been implemented as a plug-in for the Job
manager.

To do this, when the GRAM receives a new job, it checks if it is a signed job.
In this case, first of all, the GRAM gets the location (URL) of the signed file
from the received RSL document. Then, it makes use of the Globus GASS API

1136 M. Sánchez et al.

<types>
<xsd : e l ement name=”runGT2OutputMessage”>

<xsd:complexType/>
</ xsd : e l ement>
<xsd :e l ement name=”runGT2InputMessage”>

<xsd:complexType>
<xsd : sequence>

<xsd : e l ement name=”exec” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”params” type=” tn s : s t r i n gA r r ay”/>
<xsd : e l ement name=” re sou r c e ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=” f i l e s ” type=” tn s : s t r i n gA r r a y”/>

</ xsd : sequence>
</xsd:complexType>

</ xsd : e l ement>
</ types>

<gwsdl :portType name=”GT2GPortType”
extends=” og s i :G r i dS e r v i c e o g s i :N o t i f i c a t i o nS ou r c e ”>

<operat ion name=”runGT2”>
<input message=”tns:runGT2InputMessage”/>
<output message=”tns:runGT2OutputMessage ”/>
<f a u l t name=”Fault ” message=” ogs i :Fau l tMessage ”/>

</ operat ion>
<sd : s e rv i c eData name=”GT2Nodes”/>
<sd : s e rv i c eData name=”OutUrl ”/>

</gwsdl :portType>

Fig. 3. GT2Gateway service definition.

to fetch this file. Once this is done, the digital signature, the certification chain
and the RSL can be verified. Finally, when the job has been executed, the files
generated in the execution are signed using the host private key, and included
in a new PKCS#7 document. This document is transferred to the GTBridge
Service using again the Globus GASS API.

4.4 State of the Implementation and Tests

We have tested the architecture allowing users to execute a file compressor using
the GT2/GT3 integration service. A GUI to submit jobs to the GT2 node has
also been developed, so that the user can specify the GT2 node to send the job,
the needed files, and the command to be executed in the target node. Once the
execution ends, the user is notified and can get the generated files using the same
tool. This test bench is a starting point to prove the feasibility of the proposal,
as we intend to extend it to support the new WSRF specification.

5 Conclusions and Future Directions

In this paper we outline the need for a real integration of GT3 and GT2 nodes in
order to achieve a progressive shift of current developments to the OGSA frame-
work in a seamlessly manner. We propose an architecture based on intermediate
services which make use of digital signature mechanisms and proxy certificates
to provide integrity and authentication security services.

A Service-Based Architecture for Integrating Globus 2 and Globus 3 1137

We are currently working on the extension of our architecture by adding
new operations related to the life-cycle of jobs, such as monitoring, migration,
etc.

Furthermore we are currently implementing an automated mechanism for
smart selection of GT2 nodes guided by some parameters such as computational
load, network bandwidth or economic costs.

Although the new Globus Toolkit version (GT4), based on the new WSRF[7]
specification, is in an advanced state of development, our work can be easily
adapted to that version, as both GT3 and GT4 are conceptually equivalent,
except for some changes of syntax and terminology.

References

1. CoG Kits home page. http://www.cogkit.org.
2. Globus toolkit home page. http://www.globus.org.
3. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, C. Kaler,

J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Na-
garatnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web Services Security
(WS-Security). Version 1.0, 2002.

4. Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access
Protocol (SOAP) 1.1, 2000.

5. Marian Buback, Jesus Marco, Holger Marten, Norbert Meyer, Marian Noga, Pe-
ter A.M. Sloot, and Michal Turala. CROSSGRID - Development of grid environ-
ment for interactive applications, 2002.

6. R. Butler, V. Welch, D. Engert, I. Foster, S. Tuecke, J. Volmer, and C. Kesselman.
A national-scale authentication infrastructure. IEEE Computer, pages 60–66, 2000.

7. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling,
and S. Tuecke. From Open Grid Services Infrastructure to WS-Resource Frame-
work: Refactoring & evolution, 2004.

8. F. Donno, V. Ciaschini, D. Rebatto, L. Vaccarossa, and M. Verlatto. The World-
Grid transatlantic testbed: a successful example of Grid interoperability across EU
and U.S. domains. In Proceedings of the Conference for Computing in High Energy
and Nuclear Physics, 2003.

9. F. Donno, L. Gaido, A. Ghiselli, F. Prelz, and M. Sgaravatto. DataGrid prototype
1. EU-DataGrid collaboration. In Proceedings of TERENA Networking Conference,
2002.

10. D. Erwing, H. Ch. Hoppe, S. Wesner, M. Romberg, P. Weber, E. Krenzien, P. Lind-
ner, A. Streit, H. Richter, H. Stuben, V. Huber, S. Haubold, and E. Gabriel. UNI-
CORE Plus Final Report, 2003.

11. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid. An
Open Grid Services Architecture for Distributed Systems integration, 2002. Draft.

12. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid. enabling scalable
virtual organizations. Supercomputer Applications, 2001.

13. J. Gawor, S. Meder, F. Siebenlist, and V. Welch. GT3 Grid Security Infrastructure
Overview, 2003. Draft.

1138 M. Sánchez et al.

14. RSA Laboratories. PKCS#7: Cryptographic Message Syntax, Version 1.5, 1993.
An RSA Laboratories Technical Note.

15. M. Rambadt and P. Wieder. UNICORE - Globus: Interoperability of Grid infras-
tructures. In Proceedings of Cray User Group, 2002.

16. S. Tuecke, D. Engert, I. Foster, V. Welch, U. Chicago, M. Thompson, L. Pearlman,
and C. Kesselman. Internet X.509 Public Key Infrastructure Proxy Certificate
Profile, 2003. Internet Draft.

	Introduction and Motivation
	Background
	Globus Toolkit 2
	Globus Toolkit 3
	Security Mechanisms for Globus: GSI

	Proposed Architecture
	Requirements for the Integration of GT2 and GT3
	The Elements of the Proposed Architecture
	The Integrity Problem

	Implementation of the Proposed Architecture
	Operation Steps
	Some Details About the GT3 Services
	Some Details About the Plug-in for the GT2 GRAM Server
	State of the Implementation and Tests

	Conclusions and Future Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

