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Abstract. The mapping of workflows on Grid resources differs from
mapping a single job, as dependencies between the subjobs has to be
considered and resolved. This is a major task, if underlying Service Level
Agreements (SLAs) have to be satisfied, which define the deadline for the
entire workflow but also allow flexibility while assigning the subjobs to
resources. Therefore, new requirements regarding selection of optimal re-
source destination and satisfying multiple time constraints are important
issues, which are not completely addressed by existing methods.

This paper presents a method which performs an efficient and precise
assignment of workflow subjobs to Grid resources with respect to SLAs
and subjob dependencies. The quality of the created results is evaluated
with a number of experiments and compared to the results of existing
planning tools.

1 Introduction

The mapping of jobs to suitable resources is one of the core tasks in Grid Com-
puting. A substantial research in this area led to a number of methods, which
allow the specification of job requirements, the description of available resources
and the matching in order to find an appropriate execution platform [1, 2, 3].
However, the majority of the research is related to the mapping of singular jobs,
which do not exhibit dependencies to other jobs regarding input/output data.
The mapping of workflows, where a single job is divided into several subjobs, is
the next research step. Demands for Grid-based workflows result from many sci-
entific and business application, where data or suitable resources are distributed
over multiple administrative domains. Thus, supporting workflows in Grid en-
vironments increases the applicability of Grid Computing for a large number of
processes.

An intuitive approach of treating each subjob as an independent job and its
mapping with the traditional methods reaches the limits in case of SLA-based
processing. An SLA defines the start and end time of the workflow execution,
which has to be considered within the execution chain. Thus, the subjobs has
to be mapped in a way, that the final workflow deadline will be reached, regard-
less of the actual execution resource for the subjobs and the time needed for
the transmission of output/input data between the subjobs. Thereby, two main
problems arise. Firstly, for each subjob involved in the workflow the start and
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end time has to be computed and verified with respect to the global deadline.
According to results the corresponding time slots on the selected resources have
to be reserved. For this purpose we assume that the user provides the maximal
runtime of each subjob and that the underlying resource management system
(RMS) supports advance reservations such as CCS [5]. Queuing-based RMS are
not suitable, as no information about the starting time is provided. Secondly,
the selection of the Grid resources should be based on a minimal cost for the
resource usage. For this purpose well-known models such as the flexible job shop
scheduling [4, 7] are applied, which minimize the runtime of the workflow. In this
paper, time is computed in slots, where each slot corresponds to a-priori defined
time period. Reserved resources include number of CPUs, required memory size,
availability of experts etc. An extension to other devices, software licenses, and
other related resources is straightforward.

This paper is organized as follows. Section 2 presents a formal problem state-
ment. Section 3 and 4 describe the related work and the proposed algorithm
respectively. Empirical measurements and comparisons with existing planning
methods are subject of Section 5.

2 Formal Problem Statement

The formal specification of the described problem includes following elements:

– Let K be the set of Grid RMSs. This set includes a finite number of RMSs
which provide static information about controlled resources and the current
reservations/assignments.

– Let S be the set of subjobs in a given workflow including all subjobs with
the current resource and deadline requirements.

– Let E be the set of connections (edges) in the workflow, which express the
dependency between the subjobs and the necessity for data transfers between
the jobs.

– Let Ti be the set of time slots for the subjob Si, Si ∈ S.
– Let Ki be the set of resource candidates of subjob Si . This set includes all

resources which can run subjob Si, Ki ∈ K.

Based on the given input, a feasible and possibly optimal solution is sought,
which allows the most efficient mapping of the workflow in a Grid environment
with respect to the given global deadline. The required solution is a set defined as
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Fig. 1. A sample workflow

Table 1. RMSs resource reservation

ID ID hpc CPUs mem exp start end
31 2 128 256000 8 0 1000000
23 0 128 256000 9 0 1000000
30 1 128 256000 6 0 1000000
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Table 2. Resource requirements for sub-
jobs

Sj ID CPU mem exp runtime earliest latest
0 51 59700 1 21 5 35
1 62 130030 3 45 27 57
2 78 142887 4 13 57 87
3 128 112933 4 34 28 66
4 125 171354 2 21 28 65
5 104 97560 3 42 27 62
6 45 117883 1 55 71 101

Table 3. Connections

From To Transfer time Data
0 1 1 636
0 3 2 638
0 4 2 892
0 5 1 192
1 2 2 401
2 6 1 300
3 6 1 200
4 6 2 200
5 6 1 271

R = {(Si, kij , til)|Si ∈ S, kij ∈ Ki, til ∈ Ti} (1)

A feasible solution must satisfy following conditions:

– For all Ki �= 0 at least one RMS exists which can satisfy all resource require-
ments for each subjob.

– The earliest start time slot of the subjob Si ≤ til ≤ the latest start time slot
of Si. Each subjob must have its start time slot in the valid period.

– The dependencies of the subjobs are resolved and the execution order re-
mains unchanged.

– Each RMS provides a profile of currently available resources and can run
many subjobs of a single flow both sequentially and parallel. Those subjobs
which run on the same RMS form a profile of resource requirement. With
each RMS kij running subjobs of the Grid workflow, with each time slot in
the profile of available resources and profile of resource requirements, the
number of available resources must be larger than the resource requirement.

In the next phase the feasible solution with the lowest cost is sought. The cost
of a Grid workflow in this specific example is defined as a sum of four factors:
compute time, memory usage, cost of using experts knowledge and finally time
required for transferring data between the involved resources. If two sequent
subjobs run on the same RMS, the cost of transferring data from the previous
subjob to the later subjob neglected.

An example of a specific instance of the described problem is presented in
Figure 1 and Tables 1-3. Figure 1 visualizes the sequence of subjobs, the corre-
sponding parameter are summarized in Table 3, where the data to be transferred
between subjobs as well as the estimated duration of each task is presented. Ta-
ble 2 describes the resource requirements and the range of valid start time slots
of each subjob. Information about the available resources of the three involved
RMS, which will execute the flow, is presented in Table 1.

Considering the RMS’s ability to run several subjobs in parallel and the
evaluation of resource profiles increases the complexity of the flexible job shop
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3 Related Work

Cao et al. presented an algorithm that maps each subjob separately on individual
Grid resources [2]. The algorithm processes one subjob at a time, schedules it to
a suitable RMS with start time slot not conflicting the dependency of the flow.
The selection of the destination resources is optimised with respect to a minimal
completion time. When applying this strategy to the specified problem, each
subjob will be assigned separately to the cheapest feasible RMS. This strategy
allows fast computation of a feasible schedule, but it does not consider the entire
workflow and the dependencies between the subjobs.

The mapping of Grid workflows onto Grid resources based on existing plan-
ning technology is presented in [1]. This work focuses on coding the problem
to be compatible with the input format of specific planning systems and thus
transferring the mapping problem to a planning problem. Although this is a
flexible way to gain different destinations, significant disadvantages regarding
the time-intensive computation, long response times and the missing considera-
tion of Grid-specific constraints appeared. The latter is the main cause that the
suggested solutions often do not express the expected quality.

The described problem can also be seen as a special case of the well known
job shop scheduling problem [4, 7]. For solving this problem, two main methods
– complete and incomplete method – exist. A complete method explores sys-
tematically the entire search space, while the incomplete (non-exact) method
examines as rapidly as possible a large number of points according to selective
or random strategy. Local search is one of the most prominent examples for this
approach, which is realized by a number of methods such as Tabu Search [11, 12],
Simulated Annealing [8], GA [6] etc. However, with the appearance of resource
profiles, the evaluation at each step in local search is very hard. If the problem
is big with highly flexible variable, the classical searching algorithm need very
long time to find a good solution.

4 Planning Algorithm for Workflows

The proposed algorithm for mapping workflows on Grid resources uses Tabu
search to find the best possible assignment of subjobs to resources. In order to
shorten the computation time caused by the high number of resource profiles to
be analysed and by the flexibility while determining start and end times for the
subjobs, several techniques for reducing the search space are introduced.

The core algorithm requires a specification of the workflow and subjob re-
quirements as well as the description of the available resources as input. This
information is necessary in order to resolve the dependencies in the workflow
and is stored in a file. The properties of the involved RMS are contained in a
database.

scheduling problem. It can be shown easily that the optimal mapping of Grid-
based workflows as described above is a NP hard problem.
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This input information is processed according to the following algorithm
steps:

1. Based on the description in the database, all RMS are selected, which fulfil
the requirements of at least one subjob.

2. Computation of the earliest start time and latest start time for each subjob
by analysing the input workflow with traditional graph techniques.

3. Removing requirement bottlenecks. This task aims to detect bottlenecks
with a large number of resource requirements, which can reduce the possible
start/end times of a subjob. Based on this information subjobs are moved
to other sites with more available resources in order to gain a longer time
span for the positioning of the subjobs in the workflow.

4. Definition of the solution space by grouping all RMS candidates, which have
enough available resources to start the subjobs within the determined slack
time and to run the subjob until it is completed. This task is performed
by establishing a connection with the site and retrieving the current and
planned schedule.

5. The gained search space is evaluated with respect of the contained number of
feasible solutions (large or small number of possible solutions). Subsequently,
an initial solution is created.

6. Starting with the initial solution, a Tabu search is applied in order to in-
crease the quality of the solution and to find the best possible and feasible
assignment.

In following the individual algorithm steps are described in detail.

4.1 Resolving Requirement Bottlenecks

The generated requirement and resource profiles show those time slots, where
a large number of resources is required, but not available. A sample of such
situation is shown in Figure 2(a) on an example of required and available CPU
instances. At each possible time slot, the total number of available CPUs over all
involved RMS and the total number of required CPU as sum of the requirements
of all subjobs possibly running in this time slot are computed. The contribution
of each subjob in the profile is computed from the earliest start time to latest
possible deadline. Figure 2(a) shows that at period 28-55 or 78-84 the number
of required CPUs is larger than in other profile periods. This leads to a signifi-
cantly reduced number of feasible start times and thus reduces the probability
for finding an optimal solution or even a good solution. Therefore, the peak
requirements have to be reduced by moving selected jobs to other time slots.
Furthermore, by reducing the number of parallel running jobs on the same site,
the probability for cost-effective execution of two subsequent jobs on the same
site with a low communication effort increases.

For resolving the requirement bottleneck the profiles of the required resources
and the available resources are compared as shown in Figure 2(b). At each time
slot, we define J as the set of m subjobs running at that time slot and R as the
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CPU requirement profile
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Fig. 2. Profiles of the sample
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Fig. 3. Removing possible requirement bottlenecks

set of n possible resource candidates for J . Subsequently, following measures can
be computed.

TotalCPUrequire :=
∑

i=1,m Ji.CPUreq with Ji ∈ J (2)
TotalMEMrequire :=

∑
i=1,m Ji.memreq with Ji ∈ J (3)

TotalEXPrequire :=
∑

i=1,m Ji.EXPreq with Ji ∈ J (4)

TotalCPUavail :=
∑

j=1,n Rj .CPUavail
mj

m with Ji ∈ J, mj ≤ m (5)

Totalmemavail :=
∑

j=1,n Rj .memavail
mj

m with Ji ∈ J, mj ≤ m (6)

TotalEXPavail :=
∑

j=1,n Rj .expavail
mj

m with Ji ∈ J, mj ≤ m (7)

The parameter Ji.CPUreq, Ji.memreq, and Ji.EXPreq represent the number
of required CPUs, the size of needed memory (in MB), the required experts for
supervision of the of subjob Ji respectively. Finally, mj is the number of subjobs
which Rj can run simultaneously.

rate :=
TotalCPUrequire

TotalCPUavail
+ Totalmemrequire

Totalmemavail
+ TotalEXPrequire

TotalEXPavail

3
(8)

The removal of the requirement peak is performed by adjusting the start
time slot or the end time slot of the subjobs and thus by moving out of the
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bottleneck area. One possible solution is shown in Figure 3(a), where either the
latest finished time of subjob1 is set to t1 or the earliest start time of subjob2 is
set to t2. The second way is to adjust both subjobs simultaneously as depicted
in Figure 3(b). A necessary prerequisite here is that after adjusting, the latest
completion time - earliest start time is larger than the total runtime.

4.2 Initial Solution

The algorithm for determining the initial solution is based on a fail-first heuristic
and the forward checking algorithm [10]. According to the Greedy strategy for
each subjob under investigation, an RMS with the minimal cost is selected and
assigned as described in the following four steps:

1. Determine the subjob in the workflow with the smallest number of RMS
candidates, which can execute the subjob according to the provided specifi-
cation.

2. If the set with RMS candidates for this job is empty, than assign one ran-
domly selected RMS and mark the assignment as conflict. Otherwise, assign
the RMS with the minimal cost to that subjob.

3. Repeat the process with the next subjob, until all subjobs are assigned.
4. Resolve the marked conflicts.

In case of conflicts, the Tabu search is modified in order to find a conflict-free
and thus a feasible solution. The application of the Tabu search for finding at
least one feasible solution is performed analogously with the one described in
Section 4.3. Solely the cost function has to be replaced by function based on the
number of remaining subjob conflicts in the workflow. If this is possible, the first
found feasible solution is declared as initial solution and the mapping process
proceeds with the Tabu search for the best solution. Otherwise the owner of the
workflow is notified, that the workflow can not be executed according to the
given conditions and rejected until new specification is submitted.

4.3 Tabu Search

The Tabu search is well-known method for finding feasible and best possible
solutions for NP hard problems. In order to adapt Tabu search to the problem
of workflow mapping, following parameters are set. The configuration Rt ∈ R is
any feasible assignment of the set R = {(Si, kij , til)|Si ∈ S, kij ∈ Ki, til ∈ Ti}.
However, at this step for each Si only one til is available leading to kij as a
single variable factor. In the next step the neighbourhood to be evaluated is
determined. Let Rt be a feasible configuration in R, then the neighbourhood
N(Rt) consists of all R′

t, where R′
t is a feasible configuration and Rt differs from

R′
t at a single variable. The considered cost function is computed as stated in

Section 2.
Subsequently, the created configuration is evaluated. In every iteration the

most suitable candidate in the neighbourhood N(Rt) is selected and the feasibil-
ity of the new configuration is checked. This is a compute-intensive step, as the
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resource and job profiles (see Figure 2) have to be compared before determining
the total processing cost. The Tabu tenure goes with each instance of resource
in the solution space, thus after each move, the solution space is scanned and
the Tabu list is updated. In order to consider very promising configurations, a
simple aspiration criterion is applied. The Tabu status of a move is removed if
the move leads to the solution with the lower cost than the best configuration
found so far. The pseudo-code of the Tabu search algorithm is found in following:

begin {
Get initial solution from previous step
while(num_move < max){

Select the best configuration from the current neighbourhood
Update the Tabu list
if (cost( ) > cost( ) )

<---
num_move+=1 }}

5 Performance Evaluation

Planning systems emerged as an effective and power tool for mapping Grid work-
flows to Grid resources[1]. Therefore, a sample planning-based method will be
used as a basis for the comparison of the solution quality. A suitable data mod-
els were produced and given as input to a planning system and to the proposed
algorithm. The planning method was selected from the list of systems, which
participated in the international AI planning contests. Preliminary evaluations
showed that solely Metric-FF [9] – well-known planner with very high perfor-
mance – can handle fully the required Planning Data Description Language
(PDDL 2.1) [13] and can solve the workflow mapping problem.

The hardware used for the experiments is rather standard and simple (Pen-
tium 4 2,8Ghz, 1GB RAM, Linux Redhat 9.0). All necessary information about
the resource requirements and resource specifications/reservations used in the ex-
periments are on the web site wwwcs.upb.de/cs/ag-kao/en/persons/dang minh/
experiment1.html.

The goal of the experiment is to measure the feasibility of the solution, its
cost and the time needed for the computation. For this purpose three different
scenarios with increasing complexity level were analysed. The performance mea-
surements started with a low-level experiment and a workflow with 7 subjobs
and 3 RMSs as shown in Section 2. The total number of time slots is 138. The
problem is coded in PDDL 2.1 and run using a simplified algorithm, where the
feasibility check of resources is performed only at the start slot and the end slot
of each subjob. The result of this experiment is presented in Table 4.

A second experiment is based on a Grid workflow presented in Figure 4,
which includes 10 subjobs, 12 RMSs and 40 time slots. The results are presented
in Table 5, where faster computation and slightly lower cost of the solution by
the proposed algorithm were observed. Moreover, a significant difference in the
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Table 4. Results of the simple level experiment

Metric-FF New method
Subjob RMS TS start RMS TS start

0 RMS0 35 RMS2 5
1 RMS1 57 RMS2 27
2 RMS1 87 RMS2 57
3 RMS0 66 RMS1 28
4 RMS2 65 RMS1 65
5 RMS0 28 RMS0 62
6 RMS0 101 RMS2 101

Runtime 6.33 sec < 1 sec
Cost 171343.52 152870.61
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97 97

196

90 89
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84

96
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Subjob 2 Subjob 6
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89
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197 189

Fig. 4. Intermediate level flow

Table 5. Intermediate level flow

Metric-FF New Method
Subjob RMS Start RMS Start

0 RMS5 14 RMS1 14
1 RMS0 36 RMS1 34
2 RMS0 33 RMS1 29
3 RMS5 34 RMS1 32
4 RMS5 21 RMS1 20
5 RMS0 21 RMS1 21
6 RMS3 40 RMS2 35
7 RMS0 37 RMS1 35
8 RMS0 32 RMS1 32
9 RMS0 43 RMS1 43

Runtime 67.13 sec < 1 sec
Cost 38802.96 38615

required memory space was noticed, as Metric FF used about 500MB for the
computation.

Finally, the last model contains 20 randomly selected jobs together with
randomly selected requirements for CPU, memory, etc. Unfortunately, it was
not possible to find a feasible solution with Metric-FF, as the existing memory
was not sufficient while the proposed algorithm created a solution in a less than
a second.

6 Conclusion

This paper presented a method which performs an efficient and precise assign-
ment of workflow subjobs to Grid resources with respect to SLAs defined dead-
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proposed algorithm creates solution of equal or better quality than well-known
planning system Metric-FF and needs significantly shorter computation time
and less main memory. The latter is a decisive factor for the applicability of the
method in real environments, because large scale workflows can be planned and
assigned efficiently.

Future work sets a strong focus on the network transfer rates, as the transfer
time has a major impact on the possible starting and ending time slots for every
subjob. If it is possible to predict the network performance, the planning process
and the required reservations can be executed more precisely.
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