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Abstract. The mapping problem has been studied extensively. How-
ever, algorithms which were designed to map a parallel application on a
computational grid, such as MiniMax, FastMap and genetic algorithms
have shortcomings. In this paper, a new algorithm, Quick-quality Map
(QM), is presented. Experimental results show that QM performs better
than the other algorithms. For instance, QM can map a 10000-task par-
allel application on a testbed of 2992 nodes in 6.35 seconds, and gives
the lowest execution time whereas MiniMax and a genetic algorithm, re-
spectively, take approximately 1700 and 660 seconds, but produce 1.34
and 6.60 times greater execution times than QM’s.

1 Introduction

Computational grid has been introduced as a distributed computing paradigm
that is able to interconnect heterogeneous networks and a large number of nodes
regardless of their geographical locations [1]. This paradigm provides an access to
tremendous computational power that can be harnessed for various applications.
Parallel applications are developed to solve implementations of computational
intensive engineering or scientific problems that require such power.

The main aim of solving such problems with a parallel application is to reduce
the execution time. As a computational grid involves a large number of nodes,
one of the challenging problems that needs to be addressed is to decide the
destination nodes where the tasks of the application are to be executed. This
process is formally known as the mapping problem [2].

Unfortunately, the mapping problem is known to be a non-deterministic poly-
nomially bounded (NP) complete problem [3], which means that the problem is
intractable and very time consuming. Hence, heuristic algorithms have been em-
ployed to solve the mapping problem. Two of these algorithms are MiniMax [4]
and FastMap [5] which have the same scope as the heuristic algorithm adopted in
this paper. Genetic algorithms (GAs) are another approach that can be applied
to this problem. However, those algorithms have shortcomings, as these will be
discussed in the next section.

In this paper, a new mapping algorithm, Quick-quality Map (QM), is pre-
sented. Experimental results from the evaluation of QM compared with MiniMax
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[4] and a genetic algorithm show that QM performs better than the other al-
gorithms. For example, when mapping a 10000-task parallel application on a
testbed of 2992 nodes, QM gives the best solution. The mapping time of QM
is 6.35 seconds whereas MiniMax and GA take about 1700 and 660 seconds,
respectively.

2 Background and Related Work

In the literature, the mapping problem has been studied extensively. Researchers
often focus on the specific models of parallel applications and parallel systems,
and concentrate on optimising a particular metric. These three features then are
used to differentiate between the studies of the mapping problem.

A parallel application is usually modelled by a graph. Task Interaction Graph
(TIG) and Task Precedence Graph (TPG) – also known as Directed Acyclic
Graph (DAG), are the traditionally tools used. A DAG is used to model a paral-
lel application that the tasks have order of executions whereas a TIG a parallel
application that the tasks are simultaneously executable [6]. In both models,
there can be computational costs associated with the tasks (vertices), and com-
munication costs with the communications (edges) between the tasks.

In this paper, the parallel systems are broadly categorised into modern and
legacy systems. An example of a legacy system is the Massively Parallel Proces-
sors (MPP) node. Such node often consists of many processors. It is not uncom-
mon to assume that users can assign a particular task to a particular processor.
The network topology that links the processors together is static, such as torus
and hypercube. Examples of modern systems are a cluster and a computational
grid. Nodes and networks are two major resources. In general, users can only
assign a task to a node, and the operating system takes care of which processor
will execute the task if that node has more than one processor. The specific net-
work topology is not assumed. A graph is also used to model a parallel system
with computational costs associated with the processors/nodes (vertices), and
communication costs with the links (edges) between the processors/nodes.

Two major optimised metrics are communication and execution times (or
costs). The choice of which metric to optimise depends on the assumptions of
the application and system models. The model of the application studied in this
paper is a TIG and its associated costs are heterogeneous. The parallel system
is a computational grid, and the costs associated with the nodes and networks
are also heterogeneous. The metric to be optimised is the execution time of
the application. In the literature, MiniMax [4] and FastMap [5] are the two
algorithms which have the same scope as the process considered in this paper.

MiniMax is a suit of heuristic algorithms [4] consisting of three steps: graph
coarsening, initial partition and refinement.

In the first step, the application graph is coarsened until the number of tasks
falls below a predefined threshold. Coarsening is an approach of producing a new
application graph with less number of tasks by merging a task with one of its
neighbours to form a new task (see Fig.1 for an example).
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Fig. 1. An example of graph coarsening. After coarsening the application graph three
times the number of tasks is reduced from 9 (finest) to 2 (coarsest)

In the second step, the coarsest application graph is mapped on the system
with the graph growing algorithm. The algorithm maps high cost tasks to low
cost nodes. The limitation is the algorithm can function only when the number
of nodes is less than the number of tasks. Otherwise, a form of node selection is
needed. This raises the issue of how to select the nodes since it is necessary to
map tasks on nodes before judging whether the nodes should be chosen.

In the final step, the application graph is un-coarsened to produce the finer
graph. During each un-coarsening to the finest graph, the execution time of the
application is iteratively optimised with the vertex migration algorithm. The
performance of the algorithm is the issue in this step as the complexity grows
polynomially with both the numbers of tasks and nodes [7].

FastMap is also a suit of heuristic algorithms [5]. The optimisation is a
genetic algorithm. A serious problem with FastMap is the assumption that all
clusters have the same number of nodes. This is often not the case in real envi-
ronments.

Genetic Algorithms (GAs) are a well-known optimisation technique. Braun
et at. [8] studied the efficiencies of eleven algorithms by mapping independent
tasks (zero on all communication costs) on heterogeneous parallel systems. A GA
is among those algorithms and has shown to be one of the most efficient. Never-
theless, the high numbers of tasks and nodes can result in a massive search space.
Thus, the computational cost of applying GAs could be prohibitively expensive,
which significantly reduces their merit.

3 The Mapping Models

This section explains the models used to formulate the mapping problem.

3.1 The Parallel Application Model

An application is modelled as a weighted undirected graph G = (V,E,WV ,WE),
where V is a finite set of vertices, and E a finite set of edges. An edge e ∈
E is an unordered pair (vx, vy), where vx, vy ∈ V . V represents the tasks of
application G, |V | is the number of tasks, WV (v) the computational cost of task
v, evxvy

represents the communication between tasks vx and vy (i.e. vx and vy
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are neighbours), and WE(evxvy
) is the communication cost between tasks vx and

vy. This model is the same as the ones used in MiniMax [4] and FastMap [5].

3.2 The Computational Grid Model

A computational grid is modelled by a three-level-tree. The levels are grid (g),
cluster (c) and node (n) levels. Let G′ = (V ′, E′,W ′

V ,W ′
E) be a three-level-tree

representing a computational grid. V ′ represents the nodes in G′, |C ′| and |V ′|
are the numbers of clusters and nodes in G′, respectively, and W ′

V (v′) is the
computational cost of node v′. E′ is a finite set of undirected edges. An edge
e′ ∈ E′ is an unordered pair (v′

x, v′
y) ∈ V ′, ev′

xv′
y

represents the communication
between nodes v′

x and v′
y, and W ′

E(ev′
xv′

y
) is the communication cost between

nodes v′
x and v′

y.
A computational grid with a three-level-tree is specified according to the fol-

lowing rules. All nodes are in the same node level. When nodes can communicate
to one another with the same communication cost, they can be grouped into the
same cluster. A real cluster that has its nodes linked with the same network
technology and medium is an example of a cluster in this model. An individual
node is considered as a cluster of one node. All participating clusters (also the
nodes) are in the same grid level and communicate through the grid network.

3.3 The Mapping Functions

When a parallel application, G, is mapped on a computational grid, G′, the
execution time of the application, ET (G), is the execution time of the slowest
node in G′; i.e.,

ET (G) = ET (v′) (1)

where ET (v′) is the execution time of the slowest node v′. ET (v′) is the sum of
the computational and communication times of the tasks mapped on v′; i.e.,

ET (v′) =
N∑

i=1

WV (vi)W ′
V (v′) +

N∑

i=1

Mvi∑

j=1

WE(evivj
)W ′

E(e′v′v′
j
) (2)

where vi is the ith task mapped on node v′, N the number of tasks mapped on
node v′, vj the jth neighbour of task vi, Mvi

the number of neighbours of task
vi, and v′

j the node on which task vj is mapped (see Fig.2 for an example).

Fig. 2. A 2-task parallel application mapped on a grid modelled by a three-level-tree
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4 QM Algorithm

Unlike the other algorithms that optimise the execution time of the slowest node,
QM instead optimises the execution time of each task. The core idea is that each
task is iteratively mapped on a new node such that the execution time of the
task is lower than its current execution time. Given v as a task mapped on node
v′, the execution time of task v, ET (v), is equal to the execution time of node
v′, ET (v′); that is,

ET (v) = ET (v′) (3)

The flows of QM algorithm are shown in Fig.3. The first step is to coarsen the
application graph until the number of tasks is less than a threshold. Each task
in the coarsest graph is mapped on a randomly chosen node, which becomes
the current node of the task. The execution times of all chosen nodes are then
calculated using (2). In this step, each task has its own execution time, which is
equal to the execution time of its current node.

Iteratively, a better node for each task is searched. In the case that more
than one such node exist, the task is mapped on the best node, which is the
node that gives the task the lowest execution time. However, not all nodes in
the environment need to be considered.

Let c′ be a cluster in G′, v′
x the node in cluster c′ such that its execution

time, ET (v′
x), is lowest. If more than one such node exist, the node with the

lowest computational cost, W ′
V (·), is considered to be v′

x. Let V ′
y be a set of

nodes in cluster c′ that their computational costs, W ′
V (V ′

y), are less than the
computational cost of v′

x, W ′
V (v′

x). Let v be a task to be mapped, and V ′
z a set

of nodes in cluster c′, which the neighbours of task v are mapped on (see Fig. 4
for an example).

00. QM (G, G′)
01. while (|V | ≥ threshold)
02. G = coarsen G;
03. for (i = 0; i < |V |; i = i + 1)
04. v′

r = randomly choose a node in G′;
05. map vi on v′

r;
06. update execution times of all nodes in G′;
07. do
08. for (i = 0; i < � max

log10 |V |+1�; i = i + 1)
09. for (j = 0; j < |V |; j = j + 1)
10. v′

b = find the best node in G′;
11. if (v′

b is found)
12. map vj on v′

b;
13. update execution times of P (vj), v′

b, N(vj);
14. update v′

x and V ′
y of relevant clusters;

15. while (G = un-coarsen G is applicable)

Fig. 3. QM algorithm
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Fig. 4. Nodes in the cluster according to proposition 1

Proposition 1. If the best node v′
b for task v exists in cluster c′, then either

v′
b = v′

x or v′
b ∈ (V ′

y ∪ V ′
z ) is true.

Proof. Given the condition v′
b �= v′

x and v′
b /∈ (V ′

y ∪ V ′
z ) is true. Thus, before

mapping task v, the execution times and computational costs of nodes v′
b and

v′
x in (4) and (5) are true.

ET (v′
b) ≥ ET (v′

x) (4)

W ′
V (v′

b) > W ′
V (v′

x) (5)

If the given condition is true, then the comparison of the execution time between
nodes v′

b and v′
x after mapping task v in (6) must hold.

ET ′(v′
b) < ET ′(v′

x) (6)

where ET ′ denotes the execution time after the mapping. (6) is equal to

ET (v′
b) + WV (v)W ′

V (v′
b) < ET (v′

x) + WV (v)W ′
V (v′

x) (7)

However, (6) is false since ET (v′
b) − ET (v′

x) ≥ 0 and W ′
V (v′

x) − W ′
V (v′

b) < 0.
Hence, the given condition v′

b �= v′
x and v′

b /∈ (V ′
y ∪ V ′

z ) is false.

It can be seen that the number of nodes that each task needs to consider is
reduced significantly without any impact on the mapping solution.

If the best node v′
b for task vj is found, vj is mapped on the best node, and the

execution times of all relevant nodes are updated. These nodes are the previous
node of vj , P (vj), the best node, v′

b, and all the nodes on which the neighbours
of task vj are mapped, N(vj). v′

x and V ′
y of the relevant clusters also need to be

updated. The relevant clusters are the ones that the relevant nodes belong to. If
the best node is not found, the task is remained on its current node.

Then, the application graph is un-coarsened, and the same optimisation is
applied. This procedure is repeated until the application graph cannot be un-
coarsened. The current nodes of the tasks are then the mapping solution.

Two parameters that have effect on the performance of the algorithm are
threshold and the number of iterations for a task to find the best node. To avoid
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the degrade in performance, the number of iterations is reversely proportional
to the number of tasks (i.e. � max

log10 |V |+1�). Preliminary experiments showed that

threshold =
√

|V | and max = 13 gave promising results.

5 Experiments

In the experiments, app-1, app-2 and app-3 consists of 100, 2500 and 10000 tasks
representing small, medium and large scale parallel applications, respectively,
are mapped on ten grid testbeds. The topology of the applications is the two-
dimensional circular Cartesian. The number of neighbours of each task, and the
computational and communication costs are randomly varied from 1 to 4. The
testbeds are generated with different numbers of clusters and nodes (as shown
in Table 1). In each cluster, the number of nodes is randomly varied from 1 to
64. The computational and communication costs are randomly varied from 1 to
10. All the costs in the application graphs and testbeds are the same as the ones
used in MiniMax [4] and FastMap [5].

Table 1. The specifications of the grid testbeds

G′ grid-10 grid-20 grid-30 grid-40 grid-50 grid-60 grid-70 grid-80 grid-90 grid-100
|C′| 10 20 30 40 50 60 70 80 90 100
|V ′| 359 615 914 1228 1679 1842 2535 2684 2915 2992

QM, MiniMax and a genetic algorithm (GA) are the experimented algo-
rithms. It is preferable to compare FastMap with these algorithms. However, we
are unable to do so due to incomplete information of the algorithm on how to
calculate the execution time of the tasks during a mapping step.

There are two versions of QM: QM-1 and QM-2. QM-1 searches all nodes to
find the best node, but does not coarsen the application graph. QM-2 searches
the nodes according to proposition 1, and coarsens the application graph.

Since MiniMax cannot function if the number of tasks is less than the num-
ber of nodes (i.e. |V | < |V ′|), in such situation, |V | nodes are selected from
the testbed. Three selecting algorithms are employed, and hence there are four
versions of MiniMax: MiniMax-1, MiniMax-2, MiniMax-3 and MiniMax-4.

MiniMax-1 selects |V | nodes as to minimise their total communication cost.
This selection algorithm is used to select the nodes for Cactus (an astrophysics
application) [7]. MiniMax-2 selects |V | nodes that have the lowest computational
costs while MiniMax-3 randomly selects |V | nodes. MiniMax-4 functions in the
situation that |V | ≥ |V ′|, and no node selection is required. The GA implemented
is the same as the one used in [8].

The experiments are conducted on a 2.8 GHz Pentium-4 computer, and the
presented results are an average of 10 runs. Fig.5, Fig.6 and Fig.7 show the
quality (the lower the execution time the higher the quality), and performance
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(the lower the mapping time the higher the performance) of the experimented
algorithms when mapping app-1, app-2 and app-3 on the testbeds, respectively.

In Fig.5, QMs are better than the other algorithms in terms of quality. QM-2,
which coarsens the application graph, gives the better solutions than QM-1 while
GA is the worst. Note that MiniMax-4 is not applicable since the number of tasks
(i.e. |V | = 100) is less than the number of nodes in all testbeds. Also notice that
selecting algorithms have effects on the quality of the solutions. Random selection
(MiniMax-3) is the worst; however, it is not conclusive between MiniMax-1 and
MiniMax-2. In terms of performance, GA takes much longer time than the other
algorithms. MiniMax-3 is the fastest while QM-2 has only little overhead over
MiniMax-3’s. Notice that QM-1 is slower than QM-2 since QM-1 searches for
the best node from all nodes in the environment.

In Fig.6, MiniMax-4 is applicable when mapping the application on grid-10
to grid-60 since the number of tasks (i.e. |V | = 2500) is more than the numbers
of nodes in these testbeds. In terms of quality, QM-2 outperforms the other
algorithms, and GA is the worst. In terms of performance, GA appears to be the
worst. However, when mapping the application on grid-50 and grid-60, MiniMax-
4 takes the longest time. This is due the large number of tasks (i.e. |V | = 2500)
and the sharp increase in the number of nodes (from 1228 in grid-40 to 1679 and
1842 in grid-50 and grid-60, respectively). QM-2 is the fastest, and both QMs
are faster than all MiniMax algorithms in all mapping cases.

In Fig.7, QM-2 still outperforms the other algorithms. In terms of quality,
MiniMax-4 can produce the solutions with the quality close to QM-2’s while GA
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Fig. 5. The quality and performance of QM, MiniMax and GA when mapping app-1
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Fig. 6. The quality and performance of QM, MiniMax and GA when mapping app-2
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Fig. 7. The quality and performance of QM, MiniMax and GA when mapping app-3
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is still the worst. In terms of performance, GA takes the longest time to map the
application on grid-10 to grid-60 whereas MiniMax-4 is the slowest algorithm
when mapping the application on grid-70 to grid-100. This is also due to the
large number of tasks (i.e. |V | = 10000), and the sharp increase in the number
of nodes (from 1843 in grid-60 to 2535 in grid-70). QM-2 is still the fastest.

When considering both the quality and the performance, QM-2 performs
better than the other algorithms. For example, QM-2 can map app-3 (10000
tasks) on grid-100 (2992 nodes) in 6.35 seconds, and gives the lowest execution
time while GA and MiniMax-4, respectively, take approximately 660 and 1700
seconds, but produce 6.60 and 1.34 times greater execution times than QM’s.
From the results of QM-1 and QM-2, it is conclusive that considering the best
node according to proposition 1 improves the performance significantly while
graph coarsening is a major key to improve the quality of the mapping solutions.

6 Conclusions

The existing algorithms to map parallel applications on computational grids,
such as MiniMax, FastMap and genetic algorithms have shortcomings. In this
paper, a new mapping algorithm is presented. The core idea is to map each task
to a new node that gives a lower execution time to the task than its current node.
The technique to coarsen the application graph is also employed. Experimental
results show that QM performs better than the other algorithms, and graph
coarsening is a major key to improve the quality of the mapping solutions.

Future work aims at deploying the algorithm in real environments. However,
unrealistic assumptions hinder the deployment. These problems are currently
being investigated [9].
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