

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1056 – 1065, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Loosely Coupled Application Model for Grids

Fei Wu and K.W. Ng

Dept. of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{fwu, kwng}@cse.cuhk.edu.hk

Abstract. Scheduling distributed applications effectively and efficiently on
Grid environments is difficult because of the dynamic and heterogeneous char-
acteristics of the Internet. In this paper, we propose a loosely coupled applica-
tion model for building distributed applications on Grids. We assume that a
Grid application is composed of a group of independent modules. Each module
performs either a remote service request or local processing. Different modules
in such an application exchange information by explicitly described data that
can be understood by both the application and the Grid environment. Each
module is triggered by its input data, and finally it produces some output data.
All information exchanges are completed transparently as they are carried out
by the Grid management system. We call a module in such an application a
loosely coupled module (LCM). A loosely coupled application can be defined
by the combination of dependent or independent LCMs. By the loosely coupled
application model, Grid applications can be built by employing discrete and
heterogeneous resources on the Internet. The loosely coupled relationships
among different LCMs can guarantee the robustness of the application. Parame-
ters are defined in the application model so that application schedulers in the
Grid environment can efficiently implement application scheduling by design-
ing appropriate scheduling algorithms based on these parameters.

1 Introduction

The main goal of Grid computing [1] [2] [3] [4] is to effectively organize various
computational resources distributed on the Internet to provide computing facilities to
users as a large virtual computer. A Grid application can dynamically compose a large
number of resources across the environment and implement its computations with
high performance. The two most important features that distinguish a Grid from tradi-
tional distributed systems are heterogeneous resources and the dynamic network.
Traditional distributed and parallel applications are hard to be scheduled on Grid
environments because they presume a homogeneous and stable execution environ-
ment. The ease of development of Grid applications is a key problem to make the
Grid a mature platform for general-purpose computing. While many studies on the
development of Grid applications have been put forward, a common opinion is that
current tools and languages are insufficient to develop effective and efficient applica-
tions for the Grid environment. Many issues must be tackled to bridge the gap be-
tween Grid applications and Grid environments, such as interoperability, adaptability,

 A Loosely Coupled Application Model for Grids 1057

service discovery, application performance, large-scale data transfer, robustness,
security, schedulability, etc. [5] [6]. Among these issues, robustness, adaptability and
schedulability are deemed to be especially important because they promise the valid-
ity of Grid applications and guarantee the availability and performance of Grid
environments.

In this paper, we propose a loosely coupled application model to guarantee the ro-
bustness, adaptability and schedulability of Grid applications. A loosely coupled ap-
plication is composed of some independent software components and the correspond-
ing data set that the components will process. Different components exchange infor-
mation by explicitly described data in the data set. When running on a Grid, different
components of such applications can be scheduled flexibly according to the runtime
status of Grid resources. In this application model, the robustness of a Grid applica-
tion can be guaranteed from two aspects: applications are composed in a loosely cou-
pled style so as to reduce the effect on the whole applications when a partial error
occurs; the necessary knowledge about Grid applications are known by the environ-
ment so that remedial actions can be applied to ensure applications can be executed
correctly. As the modules in such loosely coupled applications are more independent
than in tradition manners, adaptability and schedulability of these applications are
much increased. The rest of this paper is organized as follows: Section 2 gives the
definitions of loosely coupled applications and their properties; Section 3 describes
the scheduling problems of loosely coupled applications; some future work will be
outlined in Section 4, and finally, a conclusion of this work will be given.

2 The Loosely Coupled Application Model

2.1 Loosely Coupled Applications

A Grid application is a distributed application consisting of a number of components
that runs in a Grid environment. The dependencies between different components can
be an important factor that influences the performance of the application. In Grid
environments, if the dependencies among components are weak, any partial failure
will produce a smaller influence on the whole execution of the application. A strong
dependency increases the probability of application failures and at the same time, the
communication load. For distributed applications, the dependencies can be repre-
sented by data exchange. Suppose that A and B are two related modules in an applica-
tion. If module A and module B know the internal information of each other, they can
exchange data by data sharing or synchronized message passing. We call such rela-
tionship tightly coupled. The message passing model is a typical example of this
class. If module A knows B’s interface and they communicate by asynchronous mes-
sages, we call it moderately coupled. Some implementations of distributed objects and
Web services fall into this style. If modules A and B do not know each other, and their
produced and required data are coordinated by a third-party unit or system, we say
that the two components are loosely coupled. The messages in such a situation are
called loosely coupled messages. These three kinds of relationships are shown in
Figure 1.

1058 F. Wu and K.W. Ng

Fig. 1. Relationships between application modules. The last case shows a loosely coupled
relationship between module A and module B

By such loosely coupled relationships, the influence among modules is much re-
duced. Partial failures won’t cause the whole application to crash. Once execution
resumption mechanisms are introduced, the application can complete its computation
successfully even when normal errors or exceptions occur. Thus the robustness of the
application can be guaranteed. The loosely coupled structure also reduces the diffi-
culty of resource co-allocation since the resource allocation for one module affects
little on the resource allocation for another module.

We define a loosely coupled module (LCM) as an individual module of a distrib-
uted application that can be scheduled independently onto remote or local resources.
It can be either a remote service request or local processing. A LCM communicates
with other parts of the application by loosely coupled messages. A loosely coupled
application (LCA) is a distributed application that contains LCMs. How to schedule
LCMs is an important part of work in the scheduling of the whole application. For
convenience, in the rest of the paper, when we say scheduling of loosely coupled
applications, we actually indicate scheduling of a group of LCMs.

The loosely coupled application model is part of our framework of Service-based
Heterogeneous Distributed computing (SHDC) [7]. In our framework, implementing
such loosely coupled applications mainly involves three aspects of work. On the ap-
plication level, each component can be designed independently, and communication
among these components is completed by either file exchanging or explicit messages.
On the system level, tools are needed to administrate various services, schedule appli-
cations and coordinate data communication. On the SHDC framework level, services
in the Internet are organized into a P2P network and distributed applications are
scheduled by the cooperation of different peers [8]. Moreover, powerful description
methods are required to enable an application and the system to understand each
other. The descriptions shall have the ability to describe the necessary semantic con-
tents of applications so that they can be scheduled rightly by system-level tools.

2.2 The Loosely Coupled Application Model

We define a loosely coupled application as a set M containing n modules: M0, M1, …,
Mn-1. Each module Mi is composed of 5 elements: {attributei, {inputmsgpi, …,

 A Loosely Coupled Application Model for Grids 1059

inputmsgqi}, {outputmsgjk, …, outputmsgjm}, {termpi, … termqi}, Li}. Attributei holds
the attributes of the corresponding component such as its functionality, execution
requirements. The attribute element provides the necessary information of a compo-
nent so that it can be scheduled onto proper resources. The element inputbufpi holds
messages received from module Mp (0≤p≤n-1) but Mi hasn’t processed the messages
by internal computation steps. The element outputbufik holds messages that Mi wants
to send to module Mk (0≤k≤n-1) but the messages haven’t been delivered out. The
term element is used to monitor input messages to ensure they conform to the re-
quirement of the corresponding modules. When any exception occurs on the input
messages, the corresponding events will be issued by the term element so that the
exceptions can be dealt with. A key function of the term element is to solve the non-
response problems in an asynchronous system. It can satisfy the acceptable period of
time of receiving a message. When the deadline reaches and the message has still not
arrived, an exception event can be issued. Another element is the logic element L
which monitors the output messages. It is used to produce communication events to
transfer the output messages to other modules. It is useful especially when implement-
ing logic controls among a group of components: when the output satisfies some con-
ditions the data transfer can be re-directed by element Li. This loosely coupled appli-
cation model is a state-based model. Each state of module Mi contains three sets:
{inputmsgpi …inputmsgqi}, {outputmsgik…outputmsgim}, {termpi … termqi}. The at-
tribute element and the logic element are not included in Mi’s state since they are
predefined and unchangeable. The state set Qi contains a distinguished subset of ini-
tial states and a distinguished subset of terminal states. In an initial state every in-
putmsgpi must be empty.

The module Mi’s states, except for the outputmsgi (because in an asynchronous sys-
tem, the computation will be triggered by the input, the output will not influence the
state transition), comprise the accessible states of Mi. When the transition function
accepts an input value of the accessible state of Mi, it produces a value of the accessi-
ble state of Mi as output in which outdated data in inputbufi is cleared. It also pro-
duces as output at most one incident message to every other module in M. Each step
processes the necessary messages waiting to be delivered to Mi and results in a state
change and at most one message to be sent to every other module. When there is an
input message inputmsgij or an output message outputmsgpq, we say that module j is
dependent on module i, or module q is dependent on module p, denoted by DEP(i,j)
and DEP(p,q) respectively.

There are five kinds of normal events in the system. One kind is a computation
event, denoted computation(i), representing a computation step of module Mi in
which Mi’s transition function is applied to its current accessible state. When a com-
ponent finishes its computation, a finishcomputation(i) event will be created denoting
that the computation result is ready to be further used. Another kind of events is a
delivery event, denoted delivery(i,j,m), representing the delivery of message m from
module Mi to Mj. The fourth kind of events is exception events, denoted termexcep-
tion(p,i,m), representing that module Mi cannot receive (or accept) message m from
module Mp according to the setting of termpi due to either a network exception or a
computation error or a service fault. The fifth kind of events is communication events,
denoted communication (i,j,m), representing that module Mi will send message m to
module Mj.

1060 F. Wu and K.W. Ng

A configuration is a vector

C = (q0, … ,qn-1)

where qi is a state of module Mi. The states of the outputmsg variables in a configura-
tion represent the messages that are in transit on the communication channels. An
initial configuration is a vector (q0, … qn-1) such that each qi is an initial state of Mi.
The behavior of a system over time is modeled as an execution, which is a sequence
of configurations alternating with events. An execution is a (finite or infinite) se-
quence of the following form:

C0, φ1,C1, φ2,C2, φ3,…

where each Ck is a configuration and each φk is an event. If the execution is finite
then it must end in a configuration. Furthermore, several conditions must be satisfied:

1. If φk = delivery(i,j,m), then m must be an element of outputmsgij in Ck-1. The
only changes in going from Ck-1 to Ck are that m is added to inputmsgji in Ck. In an-
other word, a message is delivered only if it is arrived and the only change is to copy
the message from the sender’s outgoing message buffer to the recipient’s incoming
message buffer.

2. If φk = computation(i), then the only changes in going from Ck-1 to Ck are that Mi
changes state according to it’s transition function operating on Mi’s accessible states
in Ck-1 and Mi will not be accepting any input messages during the computation time
to ensure the computation can be rightly implemented.

3. If φk =finishcomputation(i), then the only changes in going from Ck-1 to Ck are
that Mi changes state according to its transition function and the output messages are
produced and ready for further communication. At the same time, the set of input
messages specified by Mi’s transition function are removed from outputmsgpi in Ck.

4. If φk = termexception(i,p,m), then the only changes in going from Ck-1 to Ck are
that either a communication request is sent out to re-transfer messages m from module
Mp (when the termexception event is caused by a network failure) or the state of Mp is
set to it’s initial state (when the termexception event is caused by a computation fail-
ure), and then reset the term settings relevant to module Mp in Ck.

5. If φk = communication(i,j,m), the system doesn’t change its state. Moreover, the
message m is supposed to be still accessible after the communication events and de-
livery events occur to ensure the application’s robustness. After the asynchronous
message m has been sent from Mi to Mj, a delivery event will be produced.

We assume that all events are produced by a unified application controller or can
be notified to the controller before the next actions. Thus all of the events in the
model can be arranged into an event queue by a unified time. We use time(q) to de-
note the time that event q occurs.

The execution time of a module Mi at phase k is:

execT(iphaes-k)= time(finishcomputation(iphaes-k))-time(computation(iphaes-k))

The transfer time of a message m from module Mi to Mj at phase k is:

transT(i,j,mphaes-k)= time(delivery(i,j,mphaes-k))-time(communication(i,j,mphaes-k))

 A Loosely Coupled Application Model for Grids 1061

The execution time of the application is:

T= max {time(delivery (i,j,m))}

0<=i,j<=n-1, m is any possible message that carries the results of the computation.
The unstable network status and heterogeneous Internet services are two important

characteristics of Grid environments. The robustness of an application becomes a
basic requirement. The loosely coupled application model proposed here emphasizes
the fault-tolerant issue in two aspects. One of the functions of the terms in the model
can be used to solve the problems of asynchronous messages passing. With these
terms, network faults and service faults can be detected, the corresponding data can be
re-delivered and necessary application modules can be re-scheduled. Communication
between different applications modules are implemented by buffered asynchronous
message passing. Each output buffer is reserved until the data in the buffer has been
dealt with by the next step in the computation successfully. This buffer mechanism
may lead to some storage waste, but can guarantee computations to be executed accu-
rately even when a network fault or a service fault occurs.

The termexception event is the key to detect a network or resource exception. The
termexception events are created by the constraints of input messages. Application
designers can set term elements to ensure the input messages satisfy some conditions.
When a message cannot satisfy a condition, a termexception event will be created.
Usually a term element termi is in such a form:

termi: {message m; condition c; actions}

It implies that when message m cannot satisfy condition c, the following actions
will be issued. Usually those actions are to create some termexception events. The
condition c can be any conditions to restrict the messages, such as message size, mes-
sage precision, etc. Moreover, one important function of the term element is to limit
the arrival times of messages. Actually this functions like a timer. When an appointed
message has not arrived during the prescribed time period, the corresponding events
will be created to inform the system or other modules.

Suffering from the explicit message communication, applications designed in this
model might meet problems for some uncertain messages. For an example, if one
component in the application is defined as:

component A
{
…
if (condition1) then send message m to component B;
if (condition2) then send message m to component C;
…
}

To deal with the uncertain messages, the logic element can be introduced to imple-

ment control logics at the component-level. Each logic element Li is in such a format:

Li: {message m; condition c; actions}

in which m is a message, c is a logic expression, actions are usually communication
events. When message m satisfies the condition c, the actions will be issued.

1062 F. Wu and K.W. Ng

To apply the logic element to the above example (suppose components A, B and C
are included in modules Mi, Mj and Mk respectively):

component A
{
…
produces message m;
…
}
L0: {m; condition1; communication(i,j,m)}
L1: {m; condition2; communication(i,k,m)}

By producing communication events according to conditions at runtime, the

loosely coupled application model can implement complex logic controls such as
branches and loops at the component-level. In this way, the modularization of each
component is largely enhanced. The complexity of the design of each component is
reduced and the schedulability of the whole application is improved.

Initiation;
While (N<100)
{
Service request (S1, data);
Service response (S1, data1);
if exp(data1) terminate;
Service request (S2, data1);
Service response (S2, data)
}
terminate;

Fig. 2. An example application implemented by Web services and the loosely coupled model.
The implementation by LCMG is more modularized than by Web services. It introduces only
two modules and at most 200 data communications. The implementation of Web services style
may cause 200 possible service requests and 400 possible data communications

This loosely coupled application model is based on services. Also there are other
service-based models such as Web services and Grid services. The most important

 A Loosely Coupled Application Model for Grids 1063

difference between this model and other work is that modules of an application in our
model are absolutely loosely coupled: each module only interacts with the outside
world by reading or writing predefined format of messages; different modules do not
need to know each other even when they are dependent; the global execution flow is
understandable to the system so that various exceptions can be caught and dealt with;
applications’ robustness can be guaranteed. Distributed applications in the loosely
coupled model are well modularized and each module in the applications is compara-
tively independent. By Web services or Grid services methods, services are called
from programs, and application developers must face various exceptions caused by
the network or services. But in our model, each module in an application can be de-
signed independently, and can be developed in any programming languages, software
or hardware tools and remote services. As long as the interfaces of the modules are
correctly designed, the application can be scheduled by the Grid management system
efficiently. Moreover, data caching is an important feature of the model. Input and
output can be cached on the server side, and they can be transferred to any other
server by the direction of the application scheduler dynamically. By using proper
scheduling algorithms, the communication cost can be dramatically reduced, and at
the same time, applications can be executed with better performance. We give an
example application that implemented by Web services and LCMG respectively in
Figure 2.

3 Schedule of Loosely Coupled Applications

The procedure of mapping an application onto computing resources according to some
rules to implement the computation is called task scheduling. The objective of task
scheduling is to order the execution of applications so that task precedence require-
ments are satisfied and a minimum schedule length is provided. Task scheduling is one
of the most important subjects that have been extensively studied in parallel computing
and distributed computing. The loosely coupled application model we proposed in our
framework largely weakens the relationship between different application components,
and provides an explicit structure to increase the schedulability of Grid applications.
The efficiency and effectiveness of scheduling algorithms can largely influence the
performance of the application. There are many scheduling algorithms based on vari-
ous computing platforms. But traditional scheduling algorithms are mostly based on
shared-memory systems or a cluster of workstations, they cannot be used on such het-
erogeneous scheduling problems. In this section, we present the definition of schedul-
ing a loosely coupled application onto a heterogeneous distributed system.

We define a heterogeneous distributed system D as: D = {S, C, T, P}, where T is
the attribute set of services; S is a finite set of services, each element Si represents a
service that can be employed by applications, for ∀ Si ∈ S, Si = {Ti | Ti ⊆ T}; C is a
communication cost matrix, for ∀ 1 <= i, j <=N, Cij ∈ C, Cij is the communication
cost between service Si and Sj, and P is a set of dependency functions describing the
dependence relationship between different services, for ∀ Pi ∈ P, Pi = fi(Sr0, …Srk),
denoting that service Si is dependent on services Sr0, Sr1, … and Srk, and there is a
function fi() that can be used to compute the influence on performance that services
Sr0 to Srk have on Si.

1064 F. Wu and K.W. Ng

A loosely coupled distributed application DA is defined as: DA = {MODULE,
DATA, T, COST}, where MODULE is a finite set of n modules, DATA is a finite set
of data, T is a finite set of attributes, COST is a finite set of functions to predict the
performance of modules. For ∀ 0<j<n+1, MODULEj ∈ MODULE, MODULEj =
{(inputj, outputj, costj, ATj)| inputj ⊆ DATA, outputj ⊆ DATA, costj ∈ COST, ATj ⊆
T}. In this definition, inputj is the set of data module MODULEj requires. Once inputj
is ready, the module MODULEj can start its execution. While outputj is the set of data
the module MODULEj produces. The function of costj is used to approximately
evaluate the computation cost of MODULEj. ATj contains attributes of the module.

A general schedule scheme is a map from the task graph to the target system: f: DA
! D × [0, ∝]. f(i) = (Sj ,ti) means module MODULEi is scheduled onto service Sj,
and its predictable start time is ti. A module MODULEi can be scheduled onto service
Sj if ATi ⊆ Tsj. The time that all modules complete execution and return results is
called the Schedule Length (SL). One of the aims of a scheduling algorithm is to
reduce SL to as small a value as possible. Such a task scheduling problem is shown to
be NP-complete [9]. As a Grid environment may contain a huge number of resources
or services, it is impossible for the scheduling algorithm to map a loosely coupled
distributed application based on all possible resources that can satisfy the applica-
tion’s requests. How to select appropriate resources and make better scheduling
schemes is an important issue for ensuring both client’s and system’s performance.

We can use the definitions of the loosely coupled application model to define some
parameters such as adaptability and schedulability to implement various scheduling
algorithms for Grid applications. For example, we give a simple definition of adapta-
bility below. Suppose there are limited services in the environment, the number of the
services is N. For any module Mi in an application that contains n modules
(0<=i<=n), if there are K services that can satisfy the requirements of module Mi, we
denote the adaptability of module Mi as adaptability(Mi) = (K-1)/N. For those mod-
ules that can only be scheduled onto one resource, the adaptability is always 0. The
parameter of adaptability can be used in scheduling algorithms for applications to
achieve better performance or for the system to keep its usability. For example, we
can give a simple insufficient resource first algorithm based on the adaptability of
each module. This algorithm schedules modules with lower adaptability first to avoid
potential resource conflicts in later computations.

while (there are un-scheduled modules)
{

while (there are ready-for-scheduling modules)
{

select a module with lowest adaptability: Mi;
if (there is available resources to schedule Mi)

 {
schedule Mi;

 mark Mi as scheduled;
 }
 }
}

 A Loosely Coupled Application Model for Grids 1065

4 Conclusions

In this paper, we have introduced a loosely coupled application model which can be
used to model Grid applications. Comparing to other models, this application model is
powerful to model Grid applications more directly and efficiently; and at the same time
it can guarantee the robustness, adaptability, and schedulability of Grid applications.

Acknowledgements

The work described in this paper was partially supported by the following grants:
RGC Competitive Earmarked Research Grants (Project ID: 2150348, RGC Ref. No.:
CUHK4187/03E ; Project ID: 2150414, RGC Ref. No.: CUHK4220/04E).

References

1. M. Baker, R. Buyya and D. Laforenza, “Grids and Grid Technologies for Wide-Area Dis-
tributed Computing”, Software - Practice and Experience 32(15): 1437-1466 (2002).

2. I. Foster, and C. Kesselman, (Eds.), The Grid 2: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann, 2004.

3. I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid", International Journal
on Supercomputing Applications 15(3):200-222, 2001.

4. I. Foster, C. Kesselman, J.M. Nick, and S. Tueche. “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration”, Open Grid Service Infra-
structure WG, Global Grid Forum, June 2002.

5. C. Lee and D. Talia, “Grid programming models: current tools, issues and directions”, in
Grid Computing – Making the Global Infrastructure A Reality, F. Berman, G.C. Fox, and
A.J.G. Hey, (Eds.), John Wiley, 2003.

6. D. Bader, et al., “The Role and Requirements of Grid Programming Models”, www-
unix.Gridforum.org/mail_archive/ models-wg/pdf00002.pdf

7. F. Wu and K.W. Ng, “A Toolkit to Schedule Distributed Applications on Grids”, Fourth
International Network Conference, pp. 11-18, UK, 2004.

8. F. Wu and K.W. Ng, “SHDC: A Framework to Schedule Loosely Coupled Applications on
Service Networks”, Grid and Cooperative Computing - GCC 2004: Third International
Conference, Wuhan, China, October 21-24, 2004.

9. R.L. Graham. "Bounds on multiprocessing anomalies." SIAM Journal of Applied Mathemat-
ics , 17(2): 416-429, 1969

	Introduction
	The Loosely Coupled Application Model
	Loosely Coupled Applications
	The Loosely Coupled Application Model

	Schedule of Loosely Coupled Applications
	Conclusions
	Acknowledgements
	References

