
Load Balancing by Changing the Graph
Connectivity on Heterogeneous Clusters

Kalyani Munasinghe1,2 and Richard Wait2

1 Dept. of Computer Science,
University of Ruhuna, Sri Lanka

2 Dept. of Information Technology,
Uppsala University, Sweden

{kalmun, richard}@it.uu.se

Abstract. This paper examines the problem of adapting parallel ap-
plications on a cluster of workstations. The cluster is assumed to be a
heterogeneous, multi-user computing environment so that efficient load
balancing within the application must take external factors into account.
At any time the users of the network are competing for resources. Perfor-
mance of a particular processor, as a component in the parallel (message
passing) computation, depends on both static factors, such as the pro-
cessor hardware, and dynamic factors, such as the system load and the
activities of other users. For each processor, the external factors can be
condensed into a single parameter, the load index, which is a normalised
measure of the current spare capacity of the processor available to the
application.

Numerical experiments show the efficiency of the load balancing
strategies on a finite element application with a domain decomposition
and the effect on overall computation time.

1 Introduction

Shared cluster networks provide a useful platform for parallel applications be-
cause of their cost performance ratio. The cluster environment can offer high
performance if resources are managed efficiently. One of the problems in achiev-
ing high performance in clusters is that resources may not be fully under control
of the individual application. In this environment, parallel programs may be
competing for resources with other programs and may be subject to resource
fluctuation during execution. In such a system, an important issue is to find
effective techniques that distribute the tasks of a parallel program appropri-
ately on processors. One problem is how to schedule the tasks among proces-
sors to achieve goals such as minimizing execution time or maximizing resource
utilization.

For example, an irregular finite element mesh, may be partitioned into sub-
domains and each subdomain assigned to a single processor. Assuming that the

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1040–1047, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Load Balancing by Changing the Graph Connectivity 1041

computational effect is proportional to the size of the subdomain, two questions
arise:

1. What is the optimal size for each subdomain?
2. How can the problem domain be partitioned into such subdomains?

On a homogeneous cluster of dedicated processors (e.g. Beowulf [2]) with a
fixed problem size, the partition may be uniform and static.

For some irregular grid applications, the computational structure of the prob-
lem changes from one computational phase to another. For example, in an adap-
tive mesh, areas of the original graph are refined in order to model the problem
accurately. This can lead to a highly localized load imbalance in subdomain
sizes. Alternatively, load imbalance may arise due to variation of computational
resources. For example in a shared network of workstations, computing power
available for parallel applications is dynamically changing. The reasons may be
that the speed of machines are different or there are other users on some part of
the cluster, possibility with higher priority. The partitioning has to be altered
to get a balanced load. We propose an algorithm which reduces the load imbal-
ance by local adjustments of current loads to reduce the load spike as quickly
as possible and to achieve a load balance. It is assumed that the connections for
data transfers between the processors are determined by the data locality but
data movement should be kept as low as possible. The load balance is adjusted
in general by migrating data to adjacent processors with modifications to the
connectivity where necessary.

2 Background

2.1 Some Definitions

Let p be the number of processors. The processor graph is represented by a
graph (V,E) with |V | = p vertices and |E| edges. Two vertices i and j form
an edge if processors i and j share a boundary of the partitioning. Hence the
processor graph is defined by the topology of the data subdomains. As the edges
of the processor graph are defined by the partitioning of the domain, when the
partition changes the graph topology may change. Each vertex i is associated
with a scalar li, which represents the load on the processor i.
The total load is

L =
p∑

i=1

li (1)

The average load per processor is

l̄ =
1
p
L (2)

and we can define the vector, b, of load imbalances as

bi = li − l̄ (3)

1042 K. Munasinghe and R. Wait

This definition is based on the assumption that in order to achieve a perfect
balanced computation, all the loads should be equal. If however the processor
environments are heterogeneous and corresponding to each processor there is a
load index αi which can be computed using current system and/or processor
information, then the ideal load l̃i is defined as

l̃i = αi
1∑
j αj

L (4)

Load difference from the ideal load can be defined as

di = li − l̃i (5)

A processor is therefore overloaded if di > 0. These simple definitions assume
that the computation can be broken down into a large number of small tasks
each of which can be performed on any processor for the same computational
cost. This is not necessarily true as for example in a finite element computation,
the cost of the computation might depend on the number of edges between
subdomains in addition to the cost proportional to the size of the subdomains.
So the total distributed computational cost is not necessarily equal after any
redistribution of the data.

A processor is highly overloaded if the load difference is excessive

di > cli(for some constant c < 1)

typically c ≈ 0.3 was used in the experiments, a partition is balanced if no
processor is overloaded.

In order to reduce any unnecessary fragmentation of data, data will in general
only be moved between contiguous subdomains. It is assumed that any processor
is equally accessible from all other processors.

3 Related Work

Different techniques have been proposed for adapting parallel applications run-
ning on clusters. Different dynamic load balancing and migration strategies have
been proposed.

There are many studies dealing with the problem of load balancing for dis-
tributed memory systems. Some work [6] assume that the processors involved
are continuously lightly loaded, but commonly the load on a workstation varies
in an unpredictable manner.

There are algorithms exist for scheduling parallel tasks. The Distributed Self
Scheduling (DSS) [7] technique uses a combination of static and dynamic schedul-
ing. During the initial static scheduling phase, p chunks of work are assigned to
the p processors in the system. The first processor to finish executing its tasks
from the static scheduling phase designates itself as the centralized processor
and it stores the information about which tasks are yet to be executed, which

Load Balancing by Changing the Graph Connectivity 1043

processors are idle and dynamically distributes the tasks to the processors as
they become idle.

Alessandro [3] introduced a method to obtain load balancing through data
assignment on a heterogeneous cluster of workstations. This method is based on
modified manager-workers model and achieves workload balancing by maximiz-
ing the useful CPU time for all the processes involved.

Dynamic load balancing scheme for distributed systems [5] considers the het-
erogeneity of processors by generating a relative performance weight for each
processor. When distributing the workload among processors, the load is bal-
anced proportional to these weights.

The AppLes approach [1] uses parameterizable application and system spe-
cific models to predict application performance using a given set of resources.
Using these models and forecasts of expected resource load, an AppLeS agent
selects a resource set and an application schedule by evaluating candidate map-
pings. The mapping with the best expected performance is implemented on the
target resource management system.

Many methods proposed in the literature to solve the load balancing problem
are applicable to adaptive mesh computation. One of the earliest schemes was
an iterative diffusion algorithm [4]. At each iteration, new load is calculated by
combining the original load and the load of neighbouring processors. The advan-
tage of this approach is, it requires local communication only, but the problem is
its slow convergence. Several scratch-remap [8] and diffusion based [9] adaptive
partitioning techniques have also been proposed. These different approaches are
better for different system environments and different computational environ-
ments. In our approach, we try to identify sharp increases and to reduce them
quickly as possible without necessarily achieving a perfect load balance.

4 Repartitioning with Minimum Data Movement

In this section, we describe our proposed approach. It operates on the processor
graph which describes the interconnection of the subdomains of a mesh that has
been partitioned and distributed among the processors.

We assume that an overloaded node initiates the load balancing operation
whenever it detects that it is overloaded.

An important feature of our approach is to capture the need for the processor
load to adapt very quickly to external factors for example, a key press or a mouse
click may indicate that machine is no longer available. This is useful assuming
we can use workstations only if the owner not using it and we need to move load
when ever the owner returns. A subdomain is then deleted and the corresponding
processor emptied of all load. If at a later time, the processor becomes available
again a new subdomain may be created, possibly in another part of the graph.

If a processor is to be removed then the load has to be distributed onto neigh-
bouring processors that are lightly loaded. The neighbouring processors are de-
fined by the subdomain connectivities. The load to be distributed of partitioned
into sections that are proportional to the load differences di of the neighbours

1044 K. Munasinghe and R. Wait

that are not already overloaded. The redistribution has two phases, the data
partition and the data movement. The partitioning uses a greedy algorithm. In
a typical finite element computation with an unstructured mesh distributed as
subdomains, the partitioning starts from the subdomain boundaries adjacent to
the lightly loaded neighbours and reallocates the old subdomain into appropri-
ately sized sections. The mesh data is then transferred to the new subdomains,
the processor connectivities are modified to take account of the new subdomain
topology and the processor is released.

Those processors that are overloaded to a lesser degree, i.e. that need to shed
some load but will remain as part of the computational cluster with a nontrivial
load after the redistribution, also redistribute load to their lightly loaded neigh-
bours using a similar greedy approach selected parts of the subdomain to be
redistributed starting from the boundaries. These modifications may also result
in changes to the subdomain topology and hence to the processor connectivities.

Additional processors, when available, may be (re)introduced at the point in
the processor graph were the data movement is greatest.

5 Experimental Results

The experiments were performed on the problem of using the finite element
method on an unstructured grid. Here we assumed that the computation is
element based so that the load to be redistributed can be considered as reparti-
tioning of the elements into subdomains, i.e. partitioning the dual graph.

Our proposed algorithm was implemented in C and MPI on 8 Sun worksta-
tions connected by 100 Mb/s Ethernet. All Suns share a common file server and
all files are equally accessible from each host due to the implemented NFS (Net-
work File System). Unix provides a large amount of statistical information that
can be used to describe a workload. Here we used a simple load sensor which
uses Unix commands to collect the system information. The load sensor calcu-
lates percentage of unused CPU of each machine. Here we used a combination
of processor speed and unused CPU amount as a load index. For loosely coupled
linux clusters that do not incorporate NFS it same results can be gathered us-

Table 1. System Information

Processor Speed Mb/s Unused CPU Load Index

1 300 99 29700

2 360 92 33120

3 333 99 32967

4 450 70 31500

5 333 99 32967

6 300 99 29700

7 450 71 31950

8 333 98 32634

Load Balancing by Changing the Graph Connectivity 1045

Table 2. Initial Distribution

Processor 1 2 3 4 5 6 7 8

Load 540 540 604 540 444 617 540 495

subdomains by ordering triangles

Fig. 1. Original Grid

Table 3. Test1: Running Times in milliseconds

Initial Partition With Load Balance

16.7276
iteration 1 2.51483
iteration 2 2.35808
iteration 3 2.31213

ing software agents. In our environment, some machines can only be used if the
owner is not using it and the processes should be moved if the user returns before
they finish. If a mouse is moved or a key pressed, we need to move application
workload from that particular machine and this information overides the normal
load index. In order to determine when such a machine can be returned to the
cluster, it is necessary to identify inactive time of a machine, this is achieved by
a simple script in the background which gives the idle time of the machine.

The table 4 gives a typical snapshot of the system information on each ma-
chine in the cluster used in the experiments.

The experiment illustrated is a small finite element calculation, the initial
partitioning of the grid into subdomains is shown in figure 1. The sizes of the
subdomains are shown in table 5, the mean size is 540.

The finite element solution was computed iteratively, the times given in table
5 are for one iteration with the initial distribution and the first three iterations
with a load balancing step between each iteration.

In the second experiment, the initial load was modified so that it was more
unbalanced an the results shown in figure 2 illustrate how quickly the load on

1046 K. Munasinghe and R. Wait

1 2 3 4 5 6 7 8
300

350

400

450

500

550

600

650

700

750

800
Inital load
Iteration1
Iteration 2
Iteration 3

Fig. 2. Test2:Reduction of Load Spike

subdomains by ordering triangles

Fig. 3. Test3: Grid after removing one processor

Table 4. Test3: Redistribution of load

Processor 1 2 3 4 5 6 7 8

Load 737 618 618 619 539 588 601 0

a heavily overloaded node is reduced, again a single load balancing step was
allowed after each iteration.

The results of the third experiment, in figure 3, show the redistribution of the
load if one processor is removed, the distribution of the load is given in table 5
shows how the load is removed from the processor that is no longer available, it is
not necessarily distributed evenly as the load indices of the machines may vary.

In the fourth test, the additional processor was reintroduced after several it-
erations when the load had become evenly balanced between the other processors
(assuming equal load indices in this case).

Load Balancing by Changing the Graph Connectivity 1047

Table 5. Test4: Reintroduction a processor

Processor 1 2 3 4 5 6 7 8

Iteration 1 618 618 617 617 629 618 603 0
Iteration 2 618 540 617 540 540 540 540 385
Iteration 3 540 540 540 540 540 540 540 540

Table 6. Different Load Index

Load Index Run time

Processor speed x Unused CPU 2.51483
Unused CPU 6.2142

The final results in table 5 illustrate how the timings depend on the choice
of load index.

6 Conclusions

Assuming that a single overloaded node has a greater effect on overall efficiency
than a single underloaded node, we have presented an approach to load balancing
that attempts to reduce an imbalance due to a load spike as quickly as possible.
The experimental results show a performance improvement with the approach.
According to the experimental results, we can see that the load index also plays
an important role. Our future work includes experimenting on larger clusters
with larger data sets.

References

1. http://www.-cse.ucsd.edu/users/breman/apples.html/.
2. http://www.beowulf.org/.
3. Alessandro Bevilacqua, A dynamic load balancing method on a heterogeneous cluster

of workstations, Informatica 23 (1999), no. 1, 49–56.
4. G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Par-

allel and Distributed Computing 7 (1989), 279–301.
5. Zhilling Lan and Valerie E. Taylor, Dynamic load balancing of SAMR applications

on distributed systems, Scientific Programming 10 (2002), 319–328, no. 21.
6. C. K. Lee and M. Hamdi, Parallel image processing application on a network of

distributed workstations, Parallel Computing 26 (1995), 137–160.
7. J. Lin and V. A. Saletore, Self scheduling on distributed memory machines, Super-

Computing (1993), 814–823.
8. L. Oliker and R. Biswas, Plum: Parallel load balancing for adaptive structured

meshes, Parallel and Distributed Computing 52 (1998), no. 2, 150–177.
9. Kirk Schloegel, George Karypis, and Vipin Kumar, Multilevel diffusion schemes for

repartitioning of adaptive meshes, Journal of Parallel and Distributed Computing
47 (1997), no. 2, 109–124.

	Introduction
	Background
	Some Definitions

	Related Work
	Repartitioning with Minimum Data Movement
	Experimental Results
	Conclusions
	References

