

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 1022 – 1031, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Task Replication and Fair Resource Management
Scheme for Fault Tolerant Grids

Antonios Litke, Konstantinos Tserpes, Konstantinos Dolkas, and
Theodora Varvarigou

Department of Electrical and Computer Engineering,
National Technical University of Athens,

9, Heroon Polytechniou Str, 15773 Athens, Greece
{ali, tserpes, dolkas, dora}@telecom.ntua.gr

http://telecom.ece.ntua.gr/

Abstract. In this paper we study a fault tolerant model for Grid environments
based on the task replication concept. The basic idea is to produce and submit to
the Grid multiple replicas of a given task, given the fact that the failure prob-
ability for each one of them is known a priori. We introduce a scheme for the
calculation of the number of replicas for the case of having diverse failure prob-
abilities of each task replica and propose an efficient resource management
scheme, based on fair share technique, which handles the task replicas so as to
maintain in a fair way the fault tolerance in the Grid. Our study concludes with
the presentation of the simulation results which validate the proposed scheme.

1 Introduction

Grid can be an appropriate solution for many computational intensive and grand scale
applications ranging from scientific, industrial and engineering field. It is also an
emerging solution for utility and pervasive computing. However, Grids as all the large
scale distributed platforms are prone to failures, which restrain it to become a reliable
execution platform for high performance and distributed applications. So the fault
tolerance feature is of vital importance. By the term fault tolerance we denote the
ability of the Grid system to perform correctly in the presence of faults.

Fault tolerance is of big importance in Grid computing, as the emerging grid-
oriented applications have a significantly increased size and complexity from the
traditional ones. Experience has shown that systems with interacting and complex
activities are inclined to errors and failures. Thus, Grid computing is not expected to
be fault free, despite the fact that individual techniques such as fault avoidance and
fault removal [1] may additionally be applied to its resources. The fault tolerance
feature is introduced in the Grid systems in order to enhance them with the appropri-
ate reliability, which is mandatory in the context of diverse, dependable and cross-
organizational environments. The reliability in Grid comprises the probability of all
grid applications to be executed fully with no errors in the grid computing environ-
ment. As applications scale to take advantage of a Grid’s vast available resources, the
probability of failure is no longer negligible and must be taken into account.

 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1023

There are various approaches to make grid computing fault tolerant [1],[2],[3]. The
basic however are the checkpoint recovery and the task replication. The former is a
common method of ensuring the progress of a long-running application by taking a
checkpoint, i.e., saving its state on stable storage periodically. A checkpoint recovery
is an insurance policy against failures. In the event of a failure, the application can be
rolled back and restarted from its last checkpoint—thereby bounding the amount of
lost work to be recomputed. Task replication is another common method that aims to
provide fault tolerance in distributed environments by scheduling redundant copies of
the tasks, so that to increase the probability of having at least a simple task executed.
A brief overview of the options in the fault tolerant computing on the Grid can be
found in [2].

There has been a variety of implementations that have addressed the problem of
fault tolerance in Grid and distributed systems. Globus [15] provides a heartbeat ser-
vice to monitor running processes to detect faults. The application is notified of the
failure and expected to take appropriate recovery action. Legion [16] provides mecha-
nisms to support fault tolerance such as checkpointing. Other Grid systems like
Netsolve [17], Mentat [18] and Condor-G [19] have their failure detection mecha-
nisms and their failure recovery mechanisms. They provide a single user-transparent
failure recovery mechanism (e.g. retrying in Netsolve and in Condor-G, replication in
Mentat). The difference between these systems and our proposed scheme relies on the
fact that the one presented here addresses the fault tolerance as a metric that is ad-
justed in a fair way for all the Grid users. Moreover it applies to all Grid environ-
ments and is especially beneficial for low workload jobs in unreliable environments,
such as Mobile Grids [20], which consist of mobile resources (hosts and users) con-
nected by wireless links and forming arbitrary and unpredictable topologies.

In this paper we study a fault tolerant model for Grid environments based on the
task replication concept. The basic idea is to produce and schedule in the Grid infra-
structure multiple versions (replicas) of a given task, based on the fact that the failure
probability for each one of them is known a priori. The replication model that is
adopted is based in static replication [4] meaning that when a replica fails it is not
substituted by a new one. The failure of a task replica is based on aspects that concern
the task itself and not the resource on which it is going to be executed. This approach
implies that the Grid infrastructure remains unchanged concerning its topology and
total computational capacity, and independent from the faults that occur in the Grid
environment. The introduction of task replicas causes an overhead in the workload
that is allocated for execution to the Grid environment. Moreover, scheduling and
resource management are important in optimizing Grid resource allocation, and de-
termining its ability to deliver the negotiated QoS and provide fair access to all users
[5][3]. The basic idea that is applied in this study is to address the additional overhead
caused by the task replicas in the Grid system with a fair scheme of resource man-
agement that will provide a fair share of computational resources to the Grid users
[8][9].

The remainder of this paper is structured as follows: Section 2 provides the prob-
lem formulation for the fault tolerance and task replication in the Grid and the nota-
tion that will be used. Section 3 provides the task replication model for tasks’ whose
failure probability is a random function. In section 4 we describe the need for adopt-
ing a mechanism for the efficient handling of the additional load that has been caused

1024 A. Litke et al.

by the replicas and which is based on the max min fair share scheme, aiming to sat-
isfy as many as possible users with the available resources. Finally, in section 5 we
present the simulation results of the developed scheme and conclude, in section 6,
with a discussion on future work as well as on potential improvements and enhance-
ments on our proposed scheme.

2 Notation and Problem Formulation

We consider that a set of M processors forms a Grid infrastructure. Each processor
has a fixed computational capacity denoted as { }Mjc j ,...,2,1, ∈ , thus the total com-

putational capacity of the Grid is ∑
=

=
M

j
jcC

1

. We also consider a set of N different

tasks { }NiTi ,...,2,1, ∈ to be assigned to the Grid for execution. We assume that the

tasks are non-preemptable and non-interruptible [10]. This means that a task cannot
be broken into smaller sub-tasks or modules and it has to be executed as a whole on a
single processor. Additionally as soon as a task starts its execution on a processor, it
cannot be interrupted and it consumes the whole processor computational capacity as
long as it is executed.

Each task iT has an execution time iET and a deadline iD . The execution time

corresponds to the time interval that the execution of iT lasts if it is executed in a

processor of unitary capacity 1=c . The deadline of the task represents the latest time
at which the Grid has to deliver the results to the user. It is a quantity specified by the
end-user who is willing to pay for the Grid resources used. During a task execution on
the Grid, various errors might occur causing task failure. In this study we will deal
with those cases that are based upon the distributed systems fault model, which in-
cludes omission, timing and arbitrary faults [12]. These kinds of errors are commonly
met in distributed systems as well as in Grid environments. We will omit other types
of failures such as hardware failures [2][4][13], etc.

We define the failure probability iPf of a task iT , which is the probability that

the task fails to be executed on the Grid. Respectively, success probability iPs is the

probability that the task iT concludes its execution within the Grid system, providing

the presumable results. The correlation between failure probability and success prob-
ability is:

ii PsPf −= 1 . (1)

At this point we introduce the concept of workload. Workload { }Niwi ,,2,1, Κ∈ is

the computational capacity that is required by a task iT in order to be executed in

unitary time on a given resource. For simplicity reasons we have focused only on
computational capacity and we have omitted other parameters such as communication
delays, disk input/output delays etc. Moreover, in our study we have reduced the
computational capacity into unitary, when referring to the workload, in order to treat
the resources as homogeneous simplifying thus the presented model. However, the

 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1025

extended scheme incorporating various heterogeneous resources can be derived in the
same manner. The workload is equal to the inversed execution time iET , and can be

written as:

1)(−= ii ETw . (2)

Task replicas are generated and assigned to the Grid for execution. The term rep-
lica or task replica is used to denote an identical copy of the original task. By produc-
ing task replicas, a low probability of task failure can be achieved. We assume that

im replicas –denoted by iik mkT ,,1, Κ= - of a task iT are produced and are placed

among other tasks and replicas that are to be submitted for execution. Given the fail-
ure probability ikPf of each one of the im replicas ikT of task iT , the failure prob-

ability is defined as:

∏
=

=
im

k
iki PfPf

1

. (3a)

The above corresponds to the probability of the event “all task replicas fail”. Re-
spectively, the success probability iPs is equal with the probability of the event “at

least one task replica succeeds” and is given by the equation:

∏
=

−=−=
im

k
ikii PfPfPs

1

11 . (3b)

It can be assumed that the similarity of the replicas implies that the variations of
the failure probabilities of each one of them cannot be large. Given that assumption,
we can define two bounds for the failure probability ikPf of each replica ikT , namely

iu and il are the maximum and the minimum value that ikPf can take for each of the

replicas of iT . These two bounds can be either estimated by the Grid user or can be

statistically determined by the previous history of the system according to the relative
tasks that have been already submitted. Alternatively, prediction models can be ap-
plied for the estimation of the failure probabilities based on the individual task fea-
tures in a similar way as described in [14].

In order to guarantee a low failure probability our scheme produces as many task
replicas as needed so as to satisfy the constraint of success probability. We now de-
fine a probability threshold δ , which denotes the probability that each task (includ-
ing its replicas) will not finish its execution. We can write:

δ≤iPf . (4)

where δ is a constant between 0 and 1.

3 Task Replication Model

We will present a way to calculate the number of replicas that is required in order to
secure a fault tolerant operation of the Grid for all cases. We will distinguish between

1026 A. Litke et al.

two cases that will be examined in this section. In the first case it is assumed that two
different positive numbers ii lu , bound the failure probability ikPf of a replica ikT .

In the second case ikPf is unbounded and it can take random values, so a simple

algorithm is used to produce replicas in order to follow inequality (4).
First case: iii uPfl <<

The failure probability ikPf for each replica of a task can be bounded by two

positive real numbers ii lu , . From (3a) and (4) we have:

δ≤≤ ii m
i

m
i ul , (5)

and in the sequel:

()
()

()
()⎥⎦

⎥
⎢
⎣

⎢
≤⇒≤

i
i

i
i u

m
u

m
log

log

log

log δδ
. (6)

In the simple case of a constant failure probability constFPf ii == , it becomes:

()
()⎥⎦

⎥
⎢
⎣

⎢
≤

i
i F

m
log

log δ
. (7)

Second Case: ikPf is a function of k.

We use a simple algorithm to specify the number of the needed replicas for each
task. The idea is to produce a replica of a task each time the failure probability is
bigger than δ . The replication procedure stops when inequality (4) holds true for a
given number of replicas im . The proposed algorithm computes the number of repli-

cas to be produced for a task iT in order to reduce the failure probability iPf at least

bellow the value δ .
The replication procedure for both cases takes place in the Grid middleware, which

is responsible for keeping the level of fault tolerance for the whole Grid environment.
This approach does not make necessary any communication between the replicated
tasks themselves. The presented scheme, however, does not exclude any parallel pro-
gramming applications from being executed on the specific platforms, since it does
not comprise a constraint to these tasks. Moreover, although the failure probability is
attached to tasks, this assumption does not affect the generality of our approach, since
in the second case, where the failure probability is a random function of k, we can
assign to k values that are dependent to the resource itself.

4 Efficient Fault Tolerant Mechanism with Fair Share

We assume that the workload of each task is the sum of the workloads of its replicas,

which can be written as ∑
=

=
im

k
iki ww

1

 or 1iii wmw ⋅= , since every replica is identical

 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1027

to the primary task which was assigned by the user. In this way every task can be
considered as a virtual task, comprising as the set of itself and all of its replicas and
which has a workload equal to an integral multiple of the original’s workload.

We propose a max min fair share mechanism for the management of the fault tol-
erant feature of each task, by reducing in a fair way the replicas of each task. It is
important to clarify the difference between the demanded capacity id and the capac-

ity provided by the Grid which will be symbolized with ia . In our case we will con-

sider as required capacity the workload iw . The number of replicas actually allowed

by the Grid is other than the one required (im) to guarantee the fault tolerance of the

Grid. We denote the number finally assigned replicas as in . This fact raises the need

to determine the new number of replicas that actually can be assigned in order to have
the maximum possible probability threshold δ which utilizes the total of the Grid
capacity so as to satisfy the tasks’ deadlines. We will apply a max min fair share tech-
nique [8][9] to determine the fair share that can be allocated at each task.

The main idea of this scheme is that all users submitting their jobs in the Grid are
allocated an equal share of the computational resources for the execution. Although
many schemes can be adopted for the efficient handling of Grid resources, we deal in
this study with the fair share model which is a decent way to share resources without
having prioritized and weighted clients. In case where a specific job does not require
all its assigned computational power, the remaining part is being distributed evenly to
the remaining users in a recursive way. In order to classify the tasks that are submitted
in the Grid according to the required computational power, we need to define the
quantity of demanded capacity id which, in our case, corresponds to the work-

load iw . We will refer to that amount as fair share x .

The demanded capacity for every task is compared with the fair share x . If the
task’s computational capacity allocated is bigger than or equal to the fair share, then it
is considered as a satisfied task. In the other case, the task is classified as unsatisfied
(the capacity given is smaller than the fair share). In the sequel the fair share is being
recalculated. The new fair share accrues from the capacity U , which is remaining to
be shared among the unsatisfied tasks. This algorithm runs iteratively until either all
tasks are satisfied with the demanded capacity, or there is no remaining capacity U
to be distributed. The proposed scheme assigns in a fair way the total capacity of the
Grid to the virtual tasks that are submitted for execution. The virtual tasks that have
received no sufficient resources for their execution can either be scheduled in a later
phase having as disadvantage the deviation from the given deadline iD .

5 Simulation Results

The proposed efficient fault tolerant mechanism has been implemented in C++ and
evaluated against a set of tasks. In the following table we present the tasks that have
been used for the evaluation of the proposed scheme. The tasks have been selected so
as to provide a main separation between “reliable tasks” with a low failure probability

iPf between 0 and 0.15 and those that have a higher failure probability between 0.2

1028 A. Litke et al.

and 0.35. The failure probabilities of the individual tasks have been randomly gener-
ated between each of the two values respectively. The workload of each original task
ranges between 1 and 100 computational units. By this way, a mean value of 50 com-
putational units can be assigned to each one of the original tasks, which in turn leads
to a “hard” scenario, given the fact that the produced replicas will augment the de-
manded capacity overall. As fault tolerance threshold δ we have selected the value
of 0.05. This threshold has been selected so as to provide a high degree of reliability,
higher than the mean value of the “reliable” tasks.

Table 1. Input provided for the simulation results of the proposed fault tolerant scheme

Fault tolerance threshold δ =0.05

No of
tasks

No of “reli-
able” tasks

Grid's
Capacity

C

% of
satisfied

tasks

30 20 1500 80%

50 30 2500 52%

100 50 5000 63%

200 120 10000 85%

500 300 25000 65%

1000 400 50000 88.2%

Figure 1 shows the relation of the workload generated for each iT before and after

the use of the max min algorithm. Figure 2 depicts the relation between the failure
probability iPf before and after the use of the max min fair share algorithm for each

virtual task. Examining the presented results, we can see that in some cases there is
not enough workload assigned to a virtual task, leading to the incapability of the pro-
cedure to provide service even to a single replica. This fact is clearly depicted in Fig.
2 where the failure probability after the max min fair share algorithm reaches to 1,
which is interpreted as a complete failure to serve the certain task which actually
means its rejection from the fault tolerant Grid and, consequently, its deviation from
the user specified deadline. This rejection, although undesired, does not imply ineffi-
ciency of the proposed scheme, since the basic motivation of the work is to construct
a mechanism of providing a fault tolerant Grid for both “reliable” and “less reliable”
tasks and not to guarantee the achievement within the given deadline.

The result analysis in Fig. 1 shows that even in the case where the tasks are equally
distributed among “reliable” and “less reliable”, the tasks that are finally blocked are
3, while less than 10% of the tasks have a failure probability between 0.2 and 0.3.
Again, the majority of the tasks, comprising the 80% of the total tasks assigned, is
successfully scheduled in the Grid with a failure probability less or equal to 0.05,
although their initial failure probability was significantly higher before applying the
proposed scheme.

 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1029

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Task i

w
(i

) Demanded

Assigned

Fig. 1. The case of 50 different tasks with 30 reliable ones and fault tolerance threshold δ =
0.05. The respective workloads of the virtual tasks as resulted for the demanded and assigned
case for δ = 0.05

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Task i

P
f(

i) Before MaxMin

After MaxMin

Fig. 2. The case of 50 different tasks with 30 reliable ones and fault tolerance threshold δ =
0.05. The failure probability for each task before and after the max-min fair share technique

From the workload perspective the maximum deviation between the primary de-
manded and the eventually assigned workload to each set of tasks ranges between
43.43% of the demanded workload in the set of the 1000 tasks and 77,54% in the set

1030 A. Litke et al.

comprising of 500 tasks. The largest number of not satisfied tasks in terms of work-
load is presented in the set of 50 tasks. In particular, 24 out of 50 tasks are not pro-
vided with the required amount of workload by the proposed mechanism. The average
percentage of the deviations in the demanded workload of the 50 tasks set is 17.09%,
a rather small number, if we consider the overall required satisfaction level of fault
tolerance threshold. Some results of special interest are those of the biggest set of
1000 tasks. In that case, 88.2% of the tasks are satisfied in terms of assigned workload
while at the same time the average deviation of the assigned workload is 2.89% of the
demanded workload.

6 Conclusions

In this paper we have studied a task replication scheme that applies max-min fair
share resource management for providing fault tolerance in Grids. The main contribu-
tion of this work relies in performing task replication by using the proposed algorithm
which is designed for the case of having diverse failure probabilities between a task
and its replicas, and in the handling of the fault tolerance fair share for the efficient
assignment of the tasks in the Grid. The scheme has been implemented and validated
for a variety of tasks with a diverse set of failure probabilities for the given tasks and
their replicas. It showed that in cases where we have tasks equally distributed among
“reliable” ones and “less reliable” ones, a fault tolerant Grid can be achieved by hav-
ing rejected only a small number of tasks resulting in their deviation from their dead-
lines. The other tasks and their replicas are successfully scheduled in the Grid provid-
ing thus a high degree of fault tolerance. The presented results although in a prelimi-
nary form, are indicative for the evaluation of the proposed scheme. The approach
that is presented can be further improved by taking into consideration the deviation
from the deadline for each task and assuming this deviation as a criterion for
prioritized scheduling.

References

1. M.R. Lyu,, Software Fault Tolerance, John Wiley & Sons – Chichester, 1995
2. J. B. Weissman. Fault Tolerant Computing on the Grid: What are My Options? HPDC

1999
3. F. Wang, K. Ramamritham, J.A. Stankovic. Determining redundancy levels for fault toler-

ant real-time systems, IEEE Trans. Computers, vol 44, issue 2, 1995, pp. 292-303
4. A. Nguyen-Tuong. Integrating Fault-Tolerance Techniques in Grid Applications, PhD Dis-

sertation, University of Virginia, August 2000
5. Scheduling Working Group of the Grid Forum, Document: 10.5, September 2001
6. K. Ramamritham, J.A.Stankovic, and P.-F. Shiah. Efficient Scheduling Algorithms for

Real-time Multiprocessor Systems, IEEE Trans. on Parallel and Distributed Systems,
vol.1, no.2, 1990, pp.184-194

7. L. E. Jackson and G. N. Rouskas. Deterministic Preemptive Scheduling of Real Time
Tasks, IEEE Computer, vol. 35, no. 5, 2002, pp. 72-79

8. A. Demers, S. Keshav and S. Shenker, Design and Analysis of a Fair Queuing Algorithm,
Proc. of the ACM SIGCOMM, 1989

 A Task Replication and Fair Resource Management Scheme for Fault Tolerant Grids 1031

9. D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, 1992. The section on max-min
fairness starts on p.524

10. J.Y-T. Leung and M.L. Merrill, A Note on Preemptive, Scheduling of Periodic, Real-Time
Tasks, Information Processing Letters, 11, no. 3, 1980, pp. 115-118

11. M. L. Dertouzos and A.K.-L. Mok, Multiprocessor On-line scheduling for Hard Real Time
Tasks, IEEE Trans. on Software Eng., vol. 15, no. 12, 1989, pp. 1497-1506

12. A. S. Tanenbaum, M. van Steen, Distributed Systems: Principles and Paradigms, Prenctice
Hall, Computer Science, 2002

13. T. Varvarigou, J. Trotter, Module replication for fault-tolerant real-time distributed sys-
tems, IEEE Transactions on Reliability, vol. 47, no. 1, 1998, pp. 8-18

14. N. Doulamis, A. Doulamis, A. Panagakis, K. Dolkas, T. Varvarigou and E. Varvarigos, A
Combined Fuzzy -Neural Network Model for Non-Linear Prediction of 3D Rendering
Workload in Grid Computing, IEEE Trans. on Systems Man and Cybernetics, Part-B (ac-
cepted for publication)

15. The Globus project. http://www-fp.globus.org/hbm/
16. A. Nguyen-Tuong, and A.S. Grimshaw, “Using Reflection to Incorporate Fault-Tolerance

Techniques in Distributed Applications,” Computer Science Technical Report, University
of Virginia, CS 98-34, 1998.

17. H. Casanova, J. Dongarra, C. Johnson and M. Miller, “Application-Specific Tools”, in I.
Foster and C. Kesselman (eds.), The GRID: Blueprint for a New Computing Infrastructure,
Chapter 7, pp. 159–180, 1998

18. A.S. Grimshaw, A. Ferrari and E.A. West, “Mentat”, in G.V. Wilson and P. Lu (eds.),
Parallel Programming Using C++, Chapter 10, pp. 382–427, 1996

19. F.C. Gartner, “Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous
Environments”, ACM Computing Surveys, Vol. 31, No. 1, 1999

20. “Access to Knowledge through the Grid in a Mobile World” (AKOGRIMO) Integrated
Project FP6-2003-IST-004293. http://www.akogrimo.org/

	Introduction
	Notation and Problem Formulation
	Task Replication Model
	Efficient Fault Tolerant Mechanism with Fair Share
	Simulation Results
	Conclusions
	References

