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Abstract. In this paper we describe two different DFA attacks on the
AES. The first one uses a fault model that induces a fault on only one bit
of an intermediate result, hence allowing us to obtain the key by using
50 faulty ciphertexts for an AES-128. The second attack uses a more
realistic fault model: we assume that we may induce a fault on a whole
byte. For an AES-128, this second attack provides the key by using less
than 250 faulty ciphertexts.

If we extend our hypothesis by supposing that the attacker can choose
the byte affected by the fault, our bit-fault attack requires 35 faulty ci-
phertexts to obtain the secret key and our byte-fault attack requires only
31 faulty ciphertexts.
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1 Introduction

Since Boneh, Demillo and Lipton introduced a cryptanalytic attack in Septem-
ber 1996 based on the fact that errors may be induced on smartcards during the
computation of a cryptographic algorithm to find the key [6], many papers have
been published on this subject. Boneh et al. succeeded in breaking an RSA CRT
with both a correct and a faulty signature of the same message. Lenstra then
improved their attack [9] by finding one of the factors of the public modulus
using only one faulty signature of a known message. In October 1996, Biham
and Shamir published an attack on secret key cryptosystems [4] entitled Differ-
ential Fault Analysis (DFA). In 2000, Biehl, Meyer and Müller presented a paper
describing two types of DFA attacks on elliptic curve cryptosystems [3] which
were later refined by Ciet and Joye [7].

DFA is frequently used nowadays to test the security of cryptographic smart-
cards applications, especially those using the DES. On the 2nd October 2000,
the AES was chosen to be the successor of the DES and, since then, it is used
more and more in smartcards applications. So it seems interesting to investigate
what is feasible on the AES by using DFA. Unfortunately, the DFA attack on
symmetric cryptosystems proposed by Biham and Shamir [4] does not work on
the AES. This is why we work to find a way to attack the AES by using DFA.

On a smartcard, a fault may be induced by its owner in many ways, such as
power glitch, clock pulse or radiation of many kinds (laser, etc...). These external
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interventions may induce a fault, but we do not know the real impact on the
computation inside the card. This is why, in this paper, we use two types of fault
models. The first fault model assumes that the fault occurs on only one bit of a
temporary result. Of course such a fault may be difficult to induce in practice,
so the second fault model assumes that the induced fault may change a whole
byte. The first fault model is the same as the one used in [3, 4, 6] and was put
into practice in 2002 by Skorobogatov and Anderson [13].

In the course of this paper, we describe the AES algorithm before looking
at a DFA attack on the AES by using our first fault model. This attack allows
us to find the AES-128 key by using 50 faulty ciphertexts. We then explain a
more practical DFA attack on an AES-128 by using our second fault model. This
attack allows us to find the key by using less than 250 faulty ciphertexts. Finally
we present the second attack on a real smart card from a practical point of view.

2 AES

In the rest of the paper, we will use the following notations:

– we denote by M the plaintext and by K the AES key,
– M i denotes the temporary cipher result after the ith round and M i

j the jth

byte of M i,
– Ki denotes the ith AES round key and Ki

j the jth byte of Ki,
– C denotes the correct ciphertext and Cj the jth byte of C,
– D denotes a faulty ciphertext and Dj the jth byte of D.

The following section gives a general description of the AES. For more infor-
mation, the reader can refer to [11, 8].

2.1 General Description

The AES algorithm is capable of encrypting or decrypting data blocks of 128
bits by using cryptographic keys of 128, 192 or 256 bits.

The AES key scheduling provides Nr + 1 round keys. The number of rounds
Nr is dependent on the key length as shown in the following table:

Key length Number of Rounds
AES-128 128 10
AES-192 192 12
AES-256 256 14

A 16-byte temporary result is represented as a two-dimensional array of bytes
consisting of 4 rows and 4 columns. For example, M i = (M i

0, ...,M
i
15) is repre-

sented by the following array:
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Fig. 1. General structure of AES
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2.2 A Round

The Round function is composed of 4 transformations: SubBytes (SB), ShiftRows
(SR), MixColumns (MC) and a bit-per-bit XOR with a round key. The Final
Round of the AES is composed of the same functions as a classical Round except
that it does not include the MixColumns transformation.

SubBytes. This transformation is a non-linear byte substitution and operates
on each input byte independently. So, we apply the substitution table (S-box)
on each byte of the input to obtain the output.

ShiftRows. The rows of the temporary result are cyclically shifted over differ-
ent offsets. Row 0 is not shifted, Row 1 is shifted over 1 byte, Row 2 is shifted
over 2 bytes and Row 3 is shifted over 3 bytes.

MixColumns. Here, the columns of the temporary result are considered as
polynomials over F28 and multiplied modulo x4 + 1 with a fixed polynomial
a(x) = 03 ∗ x3 + 01 ∗ x2 + 01 ∗ x + 02.

Notice that if we change a byte of the input of SubBytes or of ShiftRows, it
will change one byte of the output. But for the MixColumns transformation,
changing a byte of the input induces a modification of four output bytes.
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2.3 Key Scheduling

The Key Scheduling generates the round keys from the AES key K by using 2
functions: the Key Expansion and the Round Key Selection.

Key Expansion. This function computes from the AES key, an expanded key
of length equal to the message block length multiplied by the number of rounds
plus 1.
The expanded key is a linear array of 4-byte words and is denoted by EK[4 ∗
(Nr + 1)] where Nr is the number of rounds. If we denote by Nk the key length
in words, the key expansion is described in the following pseudo code:
KeyExpansion(byte Key[4 ∗ Nk], word EK[4 ∗ (Nr + 1)])

{
word temp;

for (i = 0 ; i < Nk ; i + +)

EK[i] = (Key[4 ∗ i], Key[4 ∗ i + 1], Key[4 ∗ i + 2], Key[4 ∗ i + 3]);

for (i = Nk ; i < 4 ∗ (Nr + 1) ; i + +)

temp = EK[i − 1];

if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) ⊕ Rcon[i/Nk];

else if ((Nk > 6) and (i mod Nk = 4))

temp = SubWord(temp);

EK[i] = EK[i − Nk] ⊕ temp;

}
where:

– SubWord() is a function that applies the AES S-box at each byte of the
4-byte input to produce an output word,

– RotWord() is a cyclic rotation such that a 4-byte input (a, b, c, d) produces
the 4-byte output (b, c, d, a),

– the round constant word array, Rcon[i], is defined by Rcon[i] = (xi−1, {00},
{00}, {00}) with xi−1 being powers of x (x is denoted as {02}) in the field
F28 .

Round Key Selection. This routine extracts the 128-bit round keys from the
Expanded Key.

Example of Key Scheduling for an AES-128.

AES Key: K

Expanded Key: EK0 EK1 EK2 EK3 EK4 EK5 EK6 EK7 ...
Round Keys: Round Key 0 Round Key 1 ...
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where

– (EK0, ..., EK3) is the 128-bit AES key K,
– EK4 = EK0 ⊕ SubWord(RotWord(EK3)) ⊕ Rcon[1],
– EK5 = EK1 ⊕ EK4,
– EK6 = EK2 ⊕ EK5,
– EK7 = EK3 ⊕ EK6, ...

3 Bit-Fault Attack

In this section, by using a DFA attack where a fault occurs on only one bit of
the temporary cipher result at the beginning of the Final Round, we show how
to obtain the entire last round key, i.e. the AES key for an AES-128. For more
information about this fault model, the reader can refer to [13].

For the sake of simplicity, we describe the attack on an AES using a 128-bit
key.

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling K
10

K
8

K
9

M
8

M
9

C

Fig. 2. The last rounds of an AES-128

By definition, we have

C = ShiftRows(SubBytes(M9)) ⊕ K10 (1)

Let us denote by SubByte(M i
j) the result of the substitution table applied on

the byte M i
j and by ShiftRow(j) the position of the jth byte of a temporary

result after applying the ShiftRows transformation.
So, we have from (1)

CShiftRow(i) = SubByte(M9
i ) ⊕ K10

ShiftRow(i), ∀i ∈ {0, ..., 15} (2)

If we induce a fault ej on one bit of the jth byte of the temporary cipher result
M9 just before the Final Round, we obtain a faulty ciphertext D where:

DShiftRow(j) = SubByte(M9
j ⊕ ej) ⊕ K10

ShiftRow(j) (3)

and for all i ∈ {0, ..., 15}\{j}, we have:

DShiftRow(i) = SubByte(M9
i ) ⊕ K10

ShiftRow(i) (4)

So, if there is no induced fault on the ith byte of M9, we obtain from (2) and (4)

CShiftRow(i) ⊕ DShiftRow(i) = 0 (5)



32 C. Giraud

and if there is an induced fault on M9
j , we have from (2) and (3)

CShiftRow(j) ⊕ DShiftRow(j) = SubByte(M9
j ) ⊕ SubByte(M9

j ⊕ ej) (6)

Firstly, we determine ShiftRow(j) which is the position of the only non-zero
byte of C ⊕ D and we thus obtain j. We then use a counting method in order
to find M9

j : we guess the single bit fault ej and we find a set of possible values
for M9

j which verify (6). For each of these values, we increase the corresponding
counter by 1. With another faulty ciphertext, the right value for M9

j is expected
to be counted more frequently than any wrong value, and can thus be identified.
Then we iterate the previous process to obtain all the other bytes of M9.

Now, as we know the value of the ciphertext C and the value of M9, we can
easily obtain the last round key K10 from the formula (1) and consequently the
AES key K by applying the inverse of the Key Scheduling to K10.

By using 3 faulty ciphertexts with faults induced on the same byte of M9,
we have a 97% chance of having one value left for this byte (cf. appendice A).
So, it is possible to obtain the 128-bit AES key by using less than 50 faulty
ciphertexts.

This attack operates independently on each byte, so if we succeed in inducing
a fault on only one bit on several bytes of M9, we reduce the number of faulty
ciphertexts required to obtain the key.

We notice that this attack also operates on the AES-192 and on the AES-256.
In such cases, we obtain the last round key, i.e. the security of the AES-192 is
reduced from 24 to 8 bytes and the security of the AES-256 is reduced from 32
to 16 bytes.

This attack is powerful but requires inducing a fault on only one bit at the
time of a precise event (i.e. at the beginning of the last round) which may be
difficult in practice.

4 A Second Type of DFA Attack on the AES-128

This DFA attack uses the fault model based on inducing a fault which may
change a whole byte of a temporary result. This attack, which only works on an
AES using a 128-bit key, is divided into 3 steps :

1. we obtain the last 4 bytes of K9 by exploiting the faulty ciphertexts obtained
when a fault is introduced on K9, just before the computation of K10,

2. we obtain another 4 bytes of K9 by exploiting the faulty ciphertexts obtained
when a fault is introduced on K8, just before the computation of K9,

3. finally, we obtain the AES key K by exploiting the faulty ciphertexts ob-
tained by introducing a fault on M8 before entering Round 9 and by using
the 8 bytes of K9 disclosed in steps 1 and 2.

In smartcard implementations, each round key is computed on-the-fly. In the
following section, “attack on Ki” means that the correct ith round key has been
used for the cipher and that a fault has been induced on this round key before
computing the i + 1th round key which is a faulty round key.
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4.1 DFA Attack on K9

We suppose that we know both the correct ciphertext C and a faulty ciphertext
D of the same plaintext M and that the fault occurs on one of the bytes of
K9 just before computing K10 as shown in figure 3, where the shaded squares
represent the bytes affected by the fault.

We want the fault to occur on one of the last 4 bytes of K9. In that case,
two of the last 4 bytes of the faulty ciphertext will be different from those of the
correct ciphertext. We must hence check if this condition is true: if it is not, we
abandon this faulty ciphertext and we generate another faulty ciphertext with
a fault on K9 and we test it again.

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling

Fig. 3. Fault on the 14th byte of the penultimate round key K9

Now, we will see that it is possible to identify:

– the position j of the byte on which the fault occurred
– and the value ej of this fault.

If we suppose that a fault ej occurs on the jth byte of K9 (12 ≤ j ≤ 15) just
before the Final Round, there will only be one non-zero byte in the first 4 bytes
of C ⊕ D. If we denote this byte the kth (0 ≤ k ≤ 3), j is then defined by

j = (k + 1 mod 4) + 12 (7)

By computing C ⊕ D, we determine k and thus obtain j.
By definition, we have:

∀i ∈ {0, ..., 15}, Ci = SubByte(M9
ShiftRow−1(i)) ⊕ K10

i (8)

More precisely:
- if i = 0:

Ci = SubByte(M9
ShiftRow−1(i)) ⊕ SubByte(K9

(i+1 mod 4)+12) ⊕ K9
i ⊕ 0x36 (9)

- if i ∈ {1, 2, 3}:
Ci = SubByte(M9

ShiftRow−1(i)) ⊕ SubByte(K9
(i+1 mod 4)+12) ⊕ K9

i (10)

We also have for the faulty ciphertext:

Dj = SubByte(M9
ShiftRow−1(j)) ⊕ K10

j ⊕ ej (11)
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and
- if k = 0:

Dk = SubByte(M9
ShiftRow−1(k)) ⊕ SubByte(K9

j ⊕ ej) ⊕ K9
k ⊕ 0x36 (12)

- if k ∈ {1, 2, 3}:
Dk = SubByte(M9

ShiftRow−1(k)) ⊕ SubByte(K9
j ⊕ ej) ⊕ K9

k (13)

It is easy to see, from (8) and (11), that the value of the fault ej is equal to
Cj ⊕ Dj .

We have now identify the position j of the byte on which the fault occurred
and the value ej of this fault. Let us see how to use this information to obtain
the value of K9

j .
From (9), (10), (12) and (13), we have the equation

Ck ⊕ Dk = SubByte(K9
j ) ⊕ SubByte(K9

j ⊕ ej) (14)

We know the value of Ck ⊕ Dk and the value of ej . So, we search the possible
values x ∈ {0, ..., 255} which satisfy the equation

Ck ⊕ Dk = SubByte(x) ⊕ SubByte(x ⊕ ej) (15)

We obtain K9
j and K9

j ⊕ ej as solutions to (15). So, if we obtain another faulty
ciphertext with a fault e′j (e′j �= ej) which occurs on the same byte j of K9, we
obtain K9

j and K9
j ⊕ e′j as solutions. This allows us to deduce the value of K9

j

because it is the only value that appears in both solution.
With this attack, we obtain the values of the last 4 bytes (K9

12 to K9
15) of the

round key K9 with 32 faulty ciphertexts on average.

4.2 Attack on K8

Now, we will see how to obtain the 4 bytes K9
8 to K9

11. We use faulty ciphertexts
obtained when the fault ej occurred on one byte of K8 (lets say the jth byte)
before Round 9.

We want the fault to occur on one of the last 4 bytes of K8. If it is the case,
there will only be one zero byte in the last 4 bytes of C ⊕ D. So we test this

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling

Fig. 4. Fault on the 14th byte of the antepenultimate round key K8
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condition and if it is false, we generate another faulty ciphertext with a fault
induced on K8 and we test it again.

As in section 4.1, we will:

– identify the position j of the byte on which the fault occurred
– and obtain the value ej of this fault.

If we denote by l the position of the zero byte in the last 4 bytes of C ⊕ D
(12 ≤ l ≤ 15), j is then defined by

j = (l − 1 mod 4) + 12 (16)

Now, we know on which byte of K8 the fault occurred.
We have, for the faulty ciphertext D:{

Dj = SubByte(M9
ShiftRow−1(j)) ⊕ K10

j ⊕ ej if j �= 12
Dj = SubByte(M9

ShiftRow−1(j) ⊕ ej) ⊕ K10
j ⊕ ej if j = 12 (17)

and for the correct ciphertext:

Ci = SubByte(M9
ShiftRow−1(i)) ⊕ K10

i ∀i ∈ {0, ..., 15} (18)

– If j �= 12, we easily obtain the value of ej which is equal to Cj ⊕ Dj .
– But, if j = 12, the ShiftRows transformation does not affect the 12th byte

and we cannot directly obtain the value of the fault ej . We only know that

Cj ⊕ Dj = SubByte(a) ⊕ SubByte(a ⊕ ej) ⊕ ej (19)

for a certain 8-bit value a. In this case, we guess the fault ej and we look
for a value a which satisfies (19). If such a value exists, we assume that our
guess may be correct and we keep it as a possible value for the fault ej . We
obtain between 107 and 146 different possible values for ej depending on the
value of Cj ⊕ Dj ; the average is about 127.

Now, we have identify the position j of the byte on which the fault occurred
and the value ej of this fault if j �= 12 or a set of possible values if j = 12. Let
us see how to use this information to obtain the value of K8

j .
If we induce a fault on K8

j (12 ≤ j ≤ 15), the 4 bytes of the faulty 9th round
key at position (j − 1 mod 12) + 4n, n ∈ {0, 1, 2, 3}, are different from the bytes
at the same position of the correct 9th round key K9. These four differences
between the correct and the faulty 9th round key are equal and we denote this
difference fj .

If we denote k = (j − 1 mod 4) + 12, we have K9
k ⊕ fj as the value of the kth

byte of the faulty 9th round key.
So, we have:
- if j = 14:

Dj−2 mod 4 = SubByte(M9
ShiftRow−1(j−2 mod 4)) ⊕ SubByte(K9

k ⊕ fj)
⊕K9

j−2 mod 4 ⊕ 0x36
(20)
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- if j ∈ {12, 13, 15}:
Dj−2 mod 4 = SubByte(M9

ShiftRow−1(j−2 mod 4)) ⊕ SubByte(K9
k ⊕ fj)

⊕K9
j−2 mod 4

(21)

And we obtain from (9), (10), (20) and (21):

Cj−2 mod 4 ⊕ Dj−2 mod 4 = SubByte(K9
k) ⊕ SubByte(K9

k ⊕ fj) (22)

As we know the value of K9
k from the previous attack (section 4.1), we can

easily find the value of fj which satisfies (22).
Moreover, K9

j−1 mod 4 ⊕ fj is the value of the (j − 1 mod 12)th byte of the
faulty 9th round key. So, we have for the faulty Key Scheduling:

- if j = 13:

SubByte(K8
j ⊕ ej) ⊕ K8

j−1 mod 4 ⊕ 0x36 = K9
j−1 mod 4 ⊕ fj (23)

- if j ∈ {12, 14, 15}:
SubByte(K8

j ⊕ ej) ⊕ K8
j−1 mod 4 = K9

j−1 mod 4 ⊕ fj (24)

and for the correct Key Scheduling:
- if j = 13:

SubByte(K8
j ) ⊕ K8

j−1 mod 4 ⊕ 0x36 = K9
j−1 mod 4 (25)

- if j ∈ {12, 14, 15}:
SubByte(K8

j ) ⊕ K8
j−1 mod 4 = K9

j−1 mod 4 (26)

We obtain from (23), (24), (25) and (26):

fj = SubByte(K8
j ⊕ ej) ⊕ SubByte(K8

j ) (27)

With the value of fj previously obtained from (22), we find all the possible values
K8

j which satisfy (27).
As in section 3, we use a counting method in order to find the correct K8

j .
The right K8

j can be obtained quickly when j �= 12 because we know the value
of the fault ej . However, if j = 12 it is more difficult because there are many
possible values for ej (between 107 and 146). Although we need more faulty
ciphertexts to determine K8

12 than to determine K8
13, K8

14 or K8
15, the number

required is relatively low. We need approximately 13 faulty ciphertexts from the
same plaintext to obtain K8

12 and only 2 to obtain K8
13, K8

14 or K8
15 (by using

simulation, we find that we have a 90% chance of success to determine K8
12 if

we use 10 faulty ciphertexts and this percentage grows up to 99% if we use 13
faulty ciphertexts).

Finally, to obtain K9
8 , K9

9 , K9
10 and K9

11, we use the following formula:

K9
i = K8

i+4 ⊕ K9
i+4 ∀i ∈ {8, ..., 11} (28)

At this step, we have obtained the last 8 bytes of the penultimate round key K9

by using about 240 faulty ciphertexts.
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Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling

Fig. 5. Fault on the 11th byte of M8

4.3 DFA Attack on M8

Before entering Round 9, we assume that a fault on one byte of M8 has been
induced. As we have determined the last 8 bytes of K9, we want the fault to
occur on a byte of M8 which will be XORed with one of the last 8 bytes of K9

after MC ◦ SR ◦ SB. Due to the ShiftRows and MixColumns transformations,
we know that if we induce a fault on M8

12, M8
1 , M8

6 or on M8
11 (resp. on M8

8 ,
M8

13, M8
2 or on M8

7 ), the result of these bytes after MC ◦SR◦SB will be XORed
with K9

12 to K9
15 (resp. K9

8 to K9
11). So, we want a fault to occur on one of these

8 bytes of M8 and to test if this happens, we look at the faulty ciphertext: if
only the 4 bytes (D12, D9, D6, D3) (resp. (D8, D5, D2, D15)) differ from (C12,
C9, C6, C3) (resp. (C8, C5, C2, C15)) of the correct ciphertext, this shows that
the fault occurred on one of the 4 bytes (M8

12, M8
1 , M8

6 , M8
11) (resp. (M8

8 , M8
13,

M8
2 , M8

7 )).
In the following, let (D12, D9, D6, D3) be different from (C12, C9, C6, C3).

We guess the fault ej (1 ≤ ej ≤ 255) and we list all the 4-byte values V which
verify one of the following equations:

SB(MC(V ) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (0, 0, 0, ej)) ⊕ K9

12−15) = TR12−15

SB(MC(V ) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (0, 0, ej , 0)) ⊕ K9

12−15) = TR12−15

SB(MC(V ) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (0, ej , 0, 0)) ⊕ K9

12−15) = TR12−15

SB(MC(V ) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (ej , 0, 0, 0)) ⊕ K9

12−15) = TR12−15

(29)
where K9

12−15 denotes the 4-byte value (K9
12,K

9
13,K

9
14,K

9
15) and TR12−15 the

4-byte value (C ⊕D)ShiftRow(12−15) = (C12 ⊕D12, C9 ⊕D9, C6 ⊕D6, C3 ⊕D3).
So, if we apply the same reasoning to another faulty ciphertext which differs

from the correct ciphertext on (D12, D9, D6, D3), we obtain another list of 4-
byte values. There will only be one 4-byte value present in both lists and this
will be the correct value of the last 4 bytes of the temporary result before the
MixColumns transformation in Round 9.

Proceeding in the same way with two different faulty ciphertexts in which
(D8, D5, D2, D15) differ from (C8, C5, C2, C15), we obtain the correct 8th to
11th bytes of the temporary result before the MixColumns transformation in
Round 9.

Having now identified the last 8 bytes of the temporary cipher result before
the MixColumns transformation in Round 9, we apply MixColumns to these 8
bytes. We then XOR the result with the corresponding bytes of K9 (i.e. K9

8 to
K9

15) and we apply SR◦SB. This result is a part of the correct temporary result
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before the XOR with K10. So, we XOR it with the corresponding bytes of the
ciphertext C to obtain the bytes K10

2 , K10
3 , K10

5 , K10
6 , K10

8 , K10
9 , K10

12 and K10
15 .

Using the known bytes of K9, we obtain 6 other bytes of K10 by the following
relations:

K10
13 = K10

9 ⊕ K9
13

K10
11 = K10

15 ⊕ K9
15

K10
10 = K10

6 ⊕ K9
10

K10
14 = K10

10 ⊕ K9
14

K10
7 = K10

11 ⊕ K9
11

K10
4 = K10

8 ⊕ K9
8

(30)

Finally, we find the last 2 unknown bytes of K10 by a very fast exhaustive
search and we obtain the AES key from K10 by applying the inverse of the Key
Scheduling.

Theoretically, we obtain the full AES key by using less than 250 faulty ci-
phertexts.

5 Remark

The previous number of required faulty ciphertexts was determined by supposing
that the fault location cannot be chosen, i.e. the position of the fault is uniformly
distributed among the 16 bytes of a chosen temporary result. If we suppose that
we can choose the byte where the fault is induced, we need on average 35 faulty
ciphertexts to recover the secret key by using our bit-fault attack and only 31
faulty ciphertexts by using our byte-fault attack (we need 8 faulty ciphertexts to
perform the fault attack described in section 4.1, 19 to perform the one described
in section 4.2 and 4 to perform the one described in section 4.3).

6 In Practice

We implemented the algorithmic part of the second attack on an AES-128 and,
by simulating faults on random bytes of K8, K9 and M9, we found the whole
AES key by using 250 faulty ciphertexts. This was easily done on a computer
but we were yet to discover if our second attack could be successfully put into
practice on a smart card.

By using a microscope, a modified camera flash and a computer, we attacked
an AES-128 on an 8-bit smart card (to make the attack easier, we used a known
AES code). Firstly, we had to find out where the light flash was most efficient
on the surface of the chip and then we had to synchronize the flash with the
operations we wanted to disturb.

We even succeeded in inducing a fault for nearly every execution of the AES,
we needed a lot of tries to obtain a “good” faulty ciphertext. Indeed, most of
the time, the induced fault affected 4 or 8 bytes of the temporary result.

To recover the key, we needed numerous tries: more than 1000 AES executions
were required.
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If we had had a laser we could have shortened the length of the flash and
hence obtained a “good” faulty ciphertext more frequently by disturbing the
chip for a very short time, i.e. during the treatment of only one byte.

This experience demonstrates that AES on smart cards must now be imple-
mented not only with SPA/DPA countermeasures but also with DFA counter-
measures.

7 Conclusion

Although DFA on the DES is a well-known attack, it is impossible to directly
apply Biham and Shamir’s attack to the AES as the latter does not have the
Feistel Structure. This paper extends the operative field of differential fault at-
tacks by describing how to perform two different DFA attacks on the AES. Each
of these attacks allow us to obtain the full AES key in the case of a 128-bit
key length. We note that it is possible to put the second attack into practice on
smart cards. However, it is easy to avoid both attacks. For example, this can be
done by doubling the last two rounds and by checking if the two outputs are
equal.
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A The First Attack in More Details

If a message M is ciphered by using an AES-128 and if a one-bit fault ej is
induced on M9

j , we obtain a faulty ciphertext D. We then have the following
equation:

CShiftRow(j) ⊕ DShiftRow(j) = SubByte(M9
j ) ⊕ SubByte(M9

j ⊕ ej) (31)

For each faulty ciphertext we perform 8.28 tests, i.e. for all values of x between
0 and 255 and for ej ∈ {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}, we test
if the following equality holds :

CShiftRow(j) ⊕ DShiftRow(j) = SubByte(x) ⊕ SubByte(x ⊕ ej) (32)

There is no solution to (32) if CShiftRow(j) ⊕ DShiftRow(j) = 185, so this value
can be excluded right away. By consecutively fixing the left hand side of (32)
with the 254 possible values {1, .., 255}\{185} and by testing all possible pairs
(x, ej), we find that the number of possible values for M9

j varies from 2 to 14;
the average is about 8.

If we assume that we are in the worst case, then we obtain 14 possible values
for M9

j for each faulty ciphertext.

akl@Lucent.com
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If we obtain another faulty ciphertext with an induced fault on M9
j we obtain

another set of possible values for M9
j . In each set we have the correct value of

M9
j , so to identify this value the other 13 values must be different from each

other.
If we denote by A the set of these 13 values obtained with the first faulty

ciphertext and by B the set of the possible values obtained with the second faulty
ciphertext except the correct value of M9

j , we have only one possible value left
for M9

j with probability :

P2 = P (A ∩ B = Ø)
= P (|A ∩ B| = 0)

=

⎛
⎝ 255

13

⎞
⎠∗

⎛
⎝ 255 − 13

13

⎞
⎠

⎛
⎝ 255

13

⎞
⎠2

	 50%

(33)

With a third faulty ciphertext with an induced fault on M9
j we obtain yet another

set of 14 possible values for M9
j . If we denote by C this set without the correct

value of M9
j , we have only one possible value left for M9

j with probability :

P3 = P (A ∩ B ∩ C = Ø)
= P (|A ∩ B ∩ C| = 0)
=

∑min{|A|,|B|}
k=0 P (|A ∩ B| = k, |A ∩ B ∩ C| = 0)

=
∑13

k=0 P (|A ∩ B| = k) ∗ P (|A ∩ B ∩ C| = 0 / |A ∩ B| = k)

=
∑13

k=0

⎛
⎝ 255

13

⎞
⎠∗

⎛
⎝ 13

k

⎞
⎠∗

⎛
⎝ 255 − 13

13 − k

⎞
⎠

⎛
⎝ 255

13

⎞
⎠2 ∗

⎛
⎝ 255

k

⎞
⎠∗

⎛
⎝ 255 − k

13

⎞
⎠

⎛
⎝ 255

k

⎞
⎠∗

⎛
⎝ 255

13

⎞
⎠

	 97%

(34)
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