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Abstract. We propose a new group signature scheme which is secure if
we assume the Decision Diffie-Hellman assumption, the q-Strong Diffie-
Hellman assumption, and the existence of random oracles. The proposed
scheme is the most efficient among the all previous group signature
schemes in signature length and in computational complexity.

1 Introduction

A group signature scheme, first proposed by Chaum and van Heyst [13] and
followed by [1,2,6,8,10,11,12,27], allows each member of a group to sign messages
on behalf of the group without revealing his own identity. The scheme also
realizes a special authority that can identify actual signers in case of dispute.
Group signatures have many applications in which user anonymity is required
such as in anonymous credential systems [2], identity escrow [21,20], voting and
bidding [1], and electronic cash systems.

Although earlier group signature schemes required large computational cost
and long signatures, recently proposed schemes, such as the one proposed by
Ateniese et al. in [1], are very efficient. In particular, Boneh, Boyen, and Shacham
[7], Nguyen and Safavi-Naini [27], and Camenisch and Lysyanskaya [10] proposed
very efficient group signature schemes based on bilinear maps. Currently, the
most efficient construction is the one proposed in [7]. The signature length of
the scheme in [7] is 42% and 38% of those of [27] and [10] respectively. The
computational cost for the scheme in [7] is also smaller than those of [27] and
[10]3.

This paper proposes a novel group signature scheme based on bilinear maps.
Our scheme is more efficient than any of the previous schemes. Moreover, our
scheme requires fewer assumptions than the scheme in [7], which is the most
efficient among the previous schemes.

3 The heaviest computation in these schemes is computation of a bilinear map such
as Tate pairing. As shown in Table 10 in [17], its computational cost is smaller than
that of computation of full-exponent RSA.
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Our approach to the construction of a group signature scheme is similar to
that adopted by Boneh et al. in [7]. They used a set of three groups G1,G2, and
GT of the same prime order p such that there exists a bilinear map from G1×G2

to GT . Each group member has a pair comprising a membership certificate and a
membership secret with which he signs on behalf of the group. The membership
certificate and membership secret are elements of G1 and Z/pZ. For a special
authority to identify actual signers from group signatures in their scheme, signers
are required to attach an encryption of a part of the membership certificate which
is an element of G1. Because of the existence of the bilinear map, their scheme
is not able to simply use ElGamal encryption scheme for this purpose. Hence,
they introduced a new encryption scheme called “linear encryption scheme”
based on a new assumption called the Decision Linear Diffie-Hellman (DLDH)
assumption. This encryption scheme is more complex than the ordinary ElGamal
type encryption scheme.

The main difference between our approach and that in [7] is that we use
a group G of the same order p in addition to the three groups G1,G2, and GT

such that the Decision Diffie-Hellman (DDH) problem on G is difficult to solve.
For a special authority to identify actual signers from group signatures in our
scheme, signers are required to attach an encryption of the exponentiation of the
membership secret in G. Because this exponentiation to be encrypted is in G,
we can apply a simple ElGamal type encryption scheme. This makes our scheme
more efficient and requires fewer assumptions than the scheme in [7].

For the groups G1,G2, and GT and their associated bilinear map, we can use,
for example, the elliptic curve proposed by [26] (MNT curve) and Tate pairing.
The choice of such a curve makes it possible to express elements in G1 by a short
string. Although the number of such curves are found in [26] is small, more MNT
curves are found in [30]. Therefore, since we can easily find an elliptic curve of
the same given order p as G with practically high probability by using a complex
multiplication method, finding a desired set of (G1,G2,G) is practical.

As a result, our signature lengths are, respectively, 83%, 36%, and 32% of
those of signatures in [7], [27], and [10] if we choose groups so that elements of
G1, GT , and G can be expressed in 171, 1020, and 171 bit strings respectively.
Although we cannot a present precise estimation of the computational cost since
it depends on the choice of groups, our scheme requires less computational cost
than any of the schemes in [7,27,10]. The security of our scheme depends on
the DDH assumption, the Strong Diffie-Hellman (SDH) assumption, and the
existence of random oracles. We do not present how to revoke group members.
However, the revocation mechanisms described in [7] can be also applied to our
system. In our scheme, group members are able to determine their secret key
when they join the group, which enables them to join many groups using the
same secret key. This property may reduce operational cost when there are many
groups. The scheme in [27] does not have such a property. (The scheme in [10]
does.)

Our paper is organized as follows. Section 2 describes the model and secu-
rity requirements of the group signature scheme and notation and complexity
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assumptions. Section 3 proposes our group signature scheme, and Section 4 dis-
cusses its security. Section 5 compares our scheme with the previous schemes.

2 Background

2.1 Model of Group Signature Scheme

Let b ← AL(a) denote an algorithm AL, where its input is a and its output is
b. Let 〈c, d〉 ← IPA,B〈a, b〉 denote an interactive protocol IP between A and B,
where private inputs to A and B are, respectively, a and b, and outputs of A
and B are, respectively, c and d.

The model of the group signature scheme is defined as follows. In this model,
we do not consider revocation for the sake of simplicity.

Definition 1. Players in the group signature scheme are a membership manager
MM , a tracing manager TM , a group member U and a verifier V . k ∈ N is a
security parameter.

A group signature scheme GS consists of the following five algorithms and
one interactive protocol. (M-KeyGen, T-KeyGen, Join, Sign, Verify, Open),

– A probabilistic key generation algorithm for MM that, given a security pa-
rameter 1k, outputs a membership public key mpk and a membership secret
key msk.

(msk,mpk)← M-KeyGen(1k)

– A probabilistic key generation algorithm for TM that, given mpk, outputs a
tracing public key tpk and a tracing secret key tsk.

(tsk, tpk)← T-KeyGen(mpk)

– An interactive member registration protocol for the MM and a user U . MM
is given mpk,msk, the user’s identity U4, and a list of all group members L.
U is given mpk. If the interaction was successful, U outputs a membership
certificate certU , a membership secret skU , and an identifier iderU and MM
adds a pair (U, iderU ) to L and outputs this revised L.

〈(L), (certU , skU , iderU )〉 ← JoinMM,U 〈(L, U,mpk,msk), (mpk)〉

– A probabilistic signature generation algorithm for a U that, given mpk, tpk,
certU , skU , and a message m, outputs a group signature gs on the message
m.

gs← Sign(mpk, tpk, certU , skU ,m)

4 We use the same notation U for a user and the identity of this user U .
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– A deterministic signature verification algorithm for any V that, given mpk,
tpk, m, and gs, returns either acc or rej. Here, acc and rej represent, re-
spectively, an acceptance and a rejection of the signature.

acc/rej← Verify(mpk, tpk,m, gs)

We say that a group signature gs on m is valid if acc ←
Verify(mpk, tpk,m, gs).

– A deterministic signer tracing algorithm for the TM that, given mpk, tpk,
tsk, m, and gs, outputs ⊥ if gs on m is not valid. Otherwise, it outputs
(U, proof ), where proof assures the validity of the result U . If the algorithm
cannot find the actual signer in L, the algorithm outputs ⊥′ instead of U .

⊥/(U/⊥′, proof )← Open(mpk, tpk, tsk,m, gs,L)

2.2 Security Requirements

Security requirements for group signature schemes that includes a dynamically
changing membership and separation of group manager into membership man-
ager and tracing manager are proposed in [4,16,18]. In [4], Bellare et al. called
these requirements Traceability, Anonymity, and Non-frameability. Requirements
in [16,18] are basically the same.

Roughly, Traceability guarantees that no one except the MM is able to
successfully add a new member to the group. Anonymity guarantees that no one
except the TM is able to successfully identify actual signers of signatures. Non-
Frameability guarantees that no one except each member is able to successfully
create a signature which will be linked to his own identity when opened by the
TM .

We give short description of these requirements with minor modifications,
which do not consider revocation for the sake of simplicity.

Definition 2. (Traceability) Let GS be a group signature scheme, and let A
be an algorithm. We consider the following experiment that returns 0/1. Here,
we assume that Join protocols are executed only sequentially.

Experiment ExpTr
GS,A(k)

(mpk,msk)← M-KeyGen(1k)
(tpk, State)← A(mpk)
Cont← true
While Cont = true do
〈(L), (State)〉 ← JoinMM,A〈(L, U,mpk,msk), (mpk, State)〉

EndWhile
(m, gs)← A(State)
If rej← Verify(mpk, tpk,m, gs) then return 0
If (⊥′, proof)← Open(mpk, tpk, tsk,m, gs,L) then return 1
Return 0
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A group signature scheme GS has traceability property if for all probabilistic,
polynomial-time machines A,

Pr[ExpTr
GS,A(k) = 1]

is negligible in k.

Definition 3. (Anonymity) Let GS be a group signature scheme, let b ∈
{0, 1}, and let A be an algorithm. We consider the following experiment that
returns 0/1.

Experiment ExpAn
GS,A(k, b)

(mpk, State)← A(1k)
(tpk, tsk)← T-KeyGen(mpk)
(State, (cert0, sk0), (cert1, sk1),m)← AOpen(mpk,tpk,tsk,·,·,·)(State, tpk)
gs← Sign(mpk, tpk, certb, skb,m)
(b′ ∈ {0, 1} ← AOpen(mpk,tpk,tsk,·,·,·)(State, gs)
If A did not query Open oracle with (m, gs) after gs is given, then return b′

Return 0

A group signature scheme GS has anonymity property if for all probabilistic
polynomial-time machines A,

Pr[ExpAn
GS,A(k, 0) = 1]− Pr[ExpAn

GS,A(k, 1) = 1]

is negligible in k.

Definition 4. (Non-Frameability) Let GS be a group signature scheme, and
let A be an algorithm. We consider the following experiment that returns 0/1.

Experiment ExpNF
GS,A(k)

(mpk, tpk, State)← A(1k)
〈State, (certU , skU , iderU )〉 ← JoinA,U 〈State,mpk〉
If the tuple (certU , skU , iderU ) is not valid then return 0
(m, gs,L)← ASign(mpk,tpk,certU ,skU ,·)(State)
L ← L ∪ {(U, iderU )}
If rej← Verify(mpk, tpk,m, gs)0 then return 0
If (U, proof)← Open(mpk, tpk, tsk,m, gs,L) and m was not queried by A

to the signing oracle Sign then return 1
Else return 0

A group signature scheme GS has Non-frameability property if for all prob-
abilistic polynomial-time machines A,

Pr[ExpNF
GS,A(k) = 1]

is negligible in k.
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2.3 Notation and Complexity Assumption

Let G1k,G2k, and Gk be a cyclic group of length k prime order p. We omit index
k if not confusing. Let G1, G2, and G be, respectively, generators of G1, G2, and
G. Let ψ be an isomorphism from G2 to G1, with ψ(G2) = G1. Let e be a bilinear
map e : G1 × G2 → GT . Let H be a hash function that maps string to Z/pZ.

Definition 5. (Decision Diffie-Hellman assumption) Let the Deci-
sion Diffie-Hellman problem in Gk be defined as follows: given 4-tuple
(G, [a]G, [b]G, [c]G) ∈ (Gk)4 as input, output 1 if c = ab and 0 otherwise. An
algorithm A has advantage ε(k) in solving the Decision Diffie-Hellman problem
in Gk if

|Pr[A(G, [a]G, [b]G, [ab]G) = 1]− Pr[A(G, [a]G, [b]G, [c]G) = 1]| ≥ ε(k)
where the probability is taken over the random choice of generator G in Gk, of
(a, b, c) ∈ (Z/pZ)3, and of the random tape of A.

We say that the Decision Diffie-Hellman assumption holds in {Gk}k∈N if no
polynomial-time algorithm has advantage ε(k) non-negligible in k in solving the
Decision Diffie-Hellman problem in Gk.

Definition 6. (Strong Diffie-Hellman Assumption) Let the q-Strong
Diffie-Hellman Problem (q-SDH) in (G1k,G2k) be defined as follows: given a
(q+2)-tuple (G1, G2, [γ]G2, [γ2]G2, . . . , [γq]G2) ∈ G1k×(G2k)q+1 as input, output
a pair ([1/(x + γ)]G1, x) where x ∈ Z/pZ. An algorithm A has advantage ε(k)
in solving the q-SDH problem in (G1k,G2k) if

Pr[A(G1, G2, [γ]G2, . . . , [γq]G2) = ([1/(x+ γ)]G1, x)] ≥ ε(k),
where the probability is taken over the random choice of generator G2 in G2k

(with G1 = ψ(G2)), of γ ∈ Z/pZ, and of the random tape of A.
We say that the Strong Diffie-Hellman (SDH) assumption holds in

{(G1k,G2k)}k∈N if no polynomial-time algorithm has advantage ε(k) non-
negligible in k in solving the q-SDH problem in (G1k,G2k) for q polynomial of k.

The SDH assumption is proposed and proved to hold in generic bilinear
groups in [6]. This assumption is a variant of an assumption proposed by Mit-
sunari et al. in [25].

3 Proposed Group Signature Scheme

Now we will present our efficient group signature scheme.

M-KeyGen

Given 1k, M-KeyGen chooses G1,G2,GT such that its order p is of length k and
then randomly chooses w ∈R Z/pZ and (H,K) ∈R (G1)2 and generates Y =
[w]G2. Then, M-KeyGen outputs

(msk,mpk) := (w, (p,G1,G2,GT , e,G, G1, G2, G, ψ,H, Y,H,K))
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Here, some of the symbols are interpreted as binary strings that describe
those symbols. For example, G expresses the string of the document that specifies
group G.

T-KeyGen

Given mpk, T-KeyGen first randomly chooses (s, t) ∈R (Z/pZ)2. Next, T-KeyGen
generates (S, T ) = ([s]G, [t]G). Finally, T-KeyGen outputs

(tsk, tpk) := ((s, t), (S, T )) .

JoinMM,U

1. – MM is given group member list L, an identity of a user U , mpk, and
msk.

– A user U is given mpk.
2. U randomly chooses skU := xU ∈R Z/pZ and z′U ∈R Z/pZ and generates

iderU := QU = [xU ]G , HU = [xU ]H + [z′U ]K

and sends (QU , HU )to MM5.
Then, U proves in zero-knowledge to MM the knowledge of xU and z′U
as follows. Although the protocol given here is only honest verifier zero-
knowledge, from this we can construct a black-box zero-knowledge protocol
using the technique presented in [24]. We still assume that Join protocols are
executed in a sequential manner (or concurrently but with an appropriate
timing-constraint [14]).
(i) U randomly chooses (x′U , z

′) ∈R (Z/pZ)2 and generates

Q′
U = [x′U ]G , H ′

U = [x′U ]H + [z′]K

and sends them to MM .
(ii) MM sends U randomly chosen cU ∈R Z/pZ.
(iii) U generates

rU = cUxU + x′U , sU = cUz
′
U + z′

and sends (rU , sU ) to MM .
(iv) MM checks that the following equations hold:

[rU ]G = [cU ]QU +Q′
U , [rU ]H + [sU ]K = [cU ]HU +H ′

U

3. The MM randomly chooses (yU , z
′′
U ) ∈R (Z/pZ)2 and generates

AU = [1/(w + yU )](G1 −HU − [z′′U ]K)

and sends (AU , yU , z
′′
U ) to U . The MM adds an entry (U, iderU ) = (U,QU )

to its group member list L.
5 U needs to sign on QU to prove that U agreed to be a group member; we omit this

process for the sake of simplicity.
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4. U generates its membership certificate as

certU := (AU , yU , zU ) = (AU , yU , z
′
U + z′′U ).

U checks that the following equation holds:

e(AU , Y + [yU ]G2) · e([xU ]H,G2) · e([zU ]K,G2) = e(G1, G2).

5. – MM outputs the revised L.
– U outputs (certU , skU , iderU ) = ((AU , yU , zU ), xU , QU ).

Remark 1. Publishing (certU , iderU ) which MM is able to obtain does not com-
promise the security of the system.

Sign

1. Sign is given mpk, tpk, certU , skU , and m.
2. Sign randomly chooses (r, q) ∈R (Z/pZ)2 and generates

B = AU + [q]K , U = [xU + r]G , V = [r]S , W = [r]T (1)

Here, the following equation holds.

e(G1, G2)
= e(B, Y ) · e(H,G2)xU · e(B,G2)yU · e(K,G2)zU−q yU · e(K,Y )−q (2)

The data generated hereafter is a Fiat-Shamir transformation of a zero-
knowledge proof of knowledge of xU , yU , zU , and q, r that satisfies Eqs. (1)
and (2). Since B is a perfect hiding commitment of AU , the only knowledge
that the receiver of the signature can obtain is (U, V,W ) which is an ElGamal
type double encryption of [xU ]G
(i) Sign randomly chooses (t, u, v, f, o) ∈R (Z/pZ)5 and generates

X ′ = e(H,G2)t · e(B,G2)u · e(K,G2)v · e(K,Y )f

U ′ = [t+ o]G , V ′ = [o]S , W ′ = [o]T

(ii) Sign generates

c = H(p,G1, G2, GT , G, ψ, Y, S, T,H,K,B,U, V,W,X
′, V ′,W ′, U ′,m)

(iii) Sign generates

x′ = cxU + t , y′ = cyU + u , z′ = c(zU − qyU ) + v

q′ = −cq + f , r′ = cr + o

3. Sign outputs

gs := (B,U, V,W, c, x′, y′, z′, q′, r′)

as a signature on message m.
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Verify

1. Verify is given mpk, tpk,m, and gs.
2. Verify generates

X ′ = e(H,G2)x′
e(B,G2)y′

e(K,G2)z′
e(K,Y )q′

(
e(G1, G2)
e(B, Y )

)−c

U ′ = [x′ + r′]G− [c]U , V ′ = [r′]S − [c]V , W ′ = [r′]T − [c]W.

3. Verify outputs acc if equation

c = H(p,G1, G2, GT , G, ψ, Y, S, T,H,K,B,U, V,W,X
′, V ′,W ′, U ′,m)

holds. Otherwise, it outputs rej.

Open

1. Open is given mpk, tpk, tsk,m, gs, and L.
2. If Verify(mpk, tpk,m, gs) = rej, it outputs ⊥ and stops.
3. Open generates and outputs

Q = U − [1/s]V (= U − [1/t]W )

Then, Open generates and outputs a non-interactive proof of knowledge of
either s or t that satisfies either of the above equations and Q as a proof .

4. Open searches QU that coincides with the Q in L. If there is such a QU , it
outputs the corresponding U . Otherwise, it outputs ⊥′.

4 Security

Theorem 1. The proposed scheme has Traceability property if the SDH assump-
tion holds.

Theorem 2. The proposed scheme has Anonymity property if the DDH assump-
tion holds.

Theorem 3. The proposed scheme has Non-Frameability property if we assume
the discrete logarithm problem is difficult to solve.

Proofs of the theorems are given in the full paper [15].
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5 Comparison with Previous Schemes

We compare the signature length and computational complexity of the proposed
scheme to those of the previous schemes [27,10] and those of a variant of the
scheme in [7]. This variant protocol is given in the full paper [15].

The variant scheme of [7] differs from the original one in two points. The
first point is that it provides a joining protocol, whose construction is already
presented in Section 7 of [6]. The second point is that it uses a double encryption
scheme [28] variant of the linear encryption scheme instead of the simple linear
encryption scheme used in the original scheme. Since the Open oracle in group
signature plays a role similar to that of the role of the decryption oracle in the
IND-CCA2 game of public key cryptosystems, the encryption scheme used in
group signature needs to be IND-CCA2 secure. However, the signed ElGamal
encryption is IND-CCA2 secure only in the generic model [31], in the same way
that the linear encryption scheme adopted in [7] is. Hence, the use of a double
encryption variant is a legitimate solution to avoid dependence on the generic
group model.

Although the above variant scheme is less efficient than the original scheme,
comparing our scheme with this variant scheme is appropriate. This is because
our scheme and the schemes in [27] and [10] all provide a Join protocol and their
security is proved in a non-generic group model.

We compare the group signature lengths of our scheme and those of the
previous schemes. We assume that G1 	= G2 such that the representation of
G1 can be a 172 bit string when |p| = 171 by using the elliptic curve defined
by [26]. The choice of such a curve makes it possible to express B by a short
string. When such a curve is not available, the signature length of our scheme is
much shorter than those of the other previous schemes. We also assume that the
representations of GT and G are 1020 bits and 172 bits. A group signature of
the variant of the scheme in [7] is composed of seven Z/pZ and five G1 elements.
That of the scheme in [27] is composed of ten Z/pZ, six G1, and two GT elements,
and that of the scheme in [10] is composed of four Z/pZ, three G1, and four GT

elements. In contrast, that of the proposed scheme is composed of six Z/pZ, one
G1, and three G elements, and thus its signature length is the shortest among
the other previous schemes.

We also estimate the computational cost of our scheme and that of the pre-
vious schemes by the number of scalar multiplications/modular exponentiations
in G,G1,G2, and GT and the number of pairing operations e required for Sign
and Verify, since these are the most costly computations. Although we cannot
present a precise estimation of the computational cost of each operation since it
depends on the choice of the groups G,G1,G2, and GT , these computations can be
done quite efficiently if we choose Tate pairing for e and adopt the computation
tools described in [23].

We also list the assumptions required in our scheme and the previous schemes
[27,10], and the variant of the scheme in [7]. From Theorems 1, 2, and 3, our
scheme requires the SDH assumption, the Decision Diffie-Hellman assumption,
and the existence of random oracles. The scheme in [7] requires the SDH as-
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sumption, the DLDH assumption, and the existence of random oracles. That in
[27] requires the SDH assumption, the Decision Bilinear Diffie-Hellman (DBDH)
assumption, and the existence of random oracles. That in [10] requires the
Lysyanskaya-Rivest-Sahai-Wolf (LRSW) assumption, the Decision Diffie-Hellman
assumption, and the existence of random oracles. The DLDH assumption is pro-
posed in [7] which is proved to hold in generic bilinear groups. The LRSW as-
sumption is proposed in [22] and is proved to hold in generic groups. The LRSW
assumption is also proved to hold in generic bilinear groups in [10]. The SDH
assumption and the LRSW assumption cannot be compares to each other.

These results of estimation and required assumptions are given in Table 1,
where “# of SMul” , “# of MExp”, “# of pairings”, and “Sig. Len.” are ab-
breviations of “the number of scalar multiplications” , “the number of modular
exponentiations”, “the number of pairings”, and “signature length”. Installing
the revocation mechanism proposed in [7] has no effect on this estimation6.

A variant of [7] Scheme in [27] Scheme in [10] Our Scheme
Sign/Verify Sign/Verify Sign/Verify Sign/Verify

# of SMul in G - - - 7/6

# of SMul in G2 13/12 20/13 3/0 -

# of MExp in GT 4/5 6/2 14/16 4/5

# of pairings 0/2 0/3 0/3 0/2

Sig. Len. (bits) 2057 4782 5296 1711

Assumptions SDH,DLDH SDH,DBDH LRSW,DDH SDH,DDH

Table 1. Complexity & Assumptions
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ĀU = [1/(yŪ − yU )](AU − Ḡ1 − [xU ]H̄ − [zU ]K̄).



466 Jun Furukawa and Hideki Imai

6. Dan Boneh, Xavier Boyen: Short Signatures Without Random Oracles. EURO-
CRYPT 2004: 56-73.

7. Dan Boneh, Xavier Boyen, Hovav Shacham: Short Group Signature. CRYPTO
2004, Lecture Notes in Computer Science 3152, pp. 41-55, 2004, Springer.

8. Jan Camenisch, Jens Groth: Group Signatures: Better Efficiency and New Theo-
retical Aspects. Security in Communication Networks - SCN 2004, LNCS series.

9. Jan Camenisch, Anna Lysyanskaya: A Signature Scheme with Efficient Protocols.
SCN 2002: 268-289.

10. Jan Camenisch, Anna Lysyanskaya: Signature Schemes and Anonymous Creden-
tials from Bilinear Maps. Crypto 2004, Springer Verlag, 2004.

11. J. Camenisch, M. Michels: A group signature scheme based on an RSA-variant.
Technical Report RS-98-27, BRICS, University of Aarhus, November 1998. An
earlier version appears in ASIACRYPT ’98.

12. J. Camenisch, M. Stadler: Efficient Group Signature Schemes for Large Groups.
CRYPTO ’97, LNCS 1296, pp. 410–424.

13. D. Chaum, E. van Heyst: Group Signatures. EUROCRYPT ’91, LNCS 547, pp.
257–265.

14. Cynthia Dwork, Moni Naor, Amit Sahai: Concurrent Zero-Knowledge. STOC 1998:
409-418.

15. Jun Furukawa, Hideki Imai: Efficient Group Signature Scheme from Bilinear Maps
(with appendixes). Available from the first author via e-mail.

16. Jun Furukawa, Shoko Yonezawa: Group Signatures with Separate and Distributed
Authorities. Fourth Conference on Security in Communication Networks ’04
(SCN04), 2004.

17. Tetsuya Izu, Tsuyoshi Takagi: Efficient Computations of the Tate Pairingfor the
Large MOV Degrees. ICISC 2002: 283-297.

18. Aggelos Kiayias, Moti Yung: Group Signatures: Provable Security, Efficient Con-
structions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archieve,
Report 2004/076.

19. A. Kiayias, Y. Tsiounis, M. Yung: Traceable Signatures. EUROCRYPT 2004,
LNCS 3027, pp. 571–589.

20. Joe Kilian, Erez Petrank: Identity Escrow. CRYPTO 1998: 169-185.
21. Seungjoo Kim, Sung Jun Park, Dongho Won: Convertible Group Signatures. ASI-

ACRYPT 1996: 311-321.
22. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, Stefan Wolf: Pseudonym Sys-

tems. Selected Areas in Cryptography 1999: 184-199.
23. A. Menezes, C. van Oorschot, S. Vanstone: Handbook of Applied Cryptography,

CRC Press, pp. 617-627, (1997).
24. Daniele Micciancio, Erez Petrank: Efficient and Concurrent Zero-Knowledge from

any public coin HVZK protocol. Electronic Colloquium on Computational Com-
plexity (ECCC)(045):(2002).

25. S. Mitsunari, R. Sakai, M. Kasahara: A new Traitor tracing. IEICE Trans. Funda-
mentals, E85-A(2), pp.481-484, Feb. 2002.

26. Atsuko Miyaji, Masaki Nakabayashi, Shunzou Takano: New explicit conditions of
elliptic curve traces for FR-reduction. IEICE Trans. E85-A(2), pp. 481-484, 2002.

27. Lan Nguyen, Rei Safavi-Naini: Efficient and Provably Secure Trapdoor-free Group
Signature Schemes from Bilinear Pairings. Asiacrypt 2004. pp. 372-386.

28. Moni Naor, Moti Yung: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. STOC 1990: 427-437.

29. D. Pointcheval, J. Stern: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology 13(3): 361-396 (2000).



An Efficient Group Signature Scheme from Bilinear Maps 467

30. Michael Scott, Paulo S.L.M Barreto: Generating more MNT elliptic curves. Cryp-
tology ePrint Archieve, Report 2004/058.

31. Claus-Peter Schnorr, Markus Jakobsson: Security of Signed ElGamal Encryption.
ASIACRYPT 2000: 73-89.


	Introduction
	Background
	Proposed Group Signature Scheme
	Security
	Comparison with Previous Schemes



