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Abstract. It is sometimes argued that finding meaningful hash colli-
sions might prove difficult. We show that for several common public key
systems it is easy to construct pairs of meaningful and secure public key
data that either collide or share other characteristics with the hash col-
lisions as quickly constructed by Wang et al. We present some simple
results, investigate what we can and cannot (yet) achieve, and formulate
some open problems of independent interest. We are not yet aware of
truly interesting practical implications. Nevertheless, our results may be
relevant for the practical assessment of the recent hash collision results.
For instance, we show how to construct two different X.509 certificates
that contain identical signatures.

1 Introduction

Based on the birthday paradox a random collision for any n-bit hash function
can be constructed after an effort proportional to 2n/2 hash applications, no
matter how good the hash function is. From the results presented at the Crypto
2004 rump session (cf. [14]), and since then described in more detail in [15],
[16], [17], and [18], it follows that for many well known hash functions the effort
required to find random collisions is considerably lower. Indeed, in some cases
the ease with which collisions can be found is disconcerting. Their application
for integrity protection of binary data and in digital certificates, however, is still
rather common. In particular MD5, one of the affected hash functions, is still
being used by Certification Authorities to generate new certificates.

We sketch the commonly used arguments why such applications are not af-
fected by the lack of random collision resistance. In this note we concentrate on
applications in the area of public key cryptography, see [4] and [9] for interesting
ideas about the application of hash collisions in other areas.

A successful attack on an existing certificate requires second preimage re-
sistance of one message: given a pre-specified value and its hash, it must be
practically infeasible to find another value with the same hash. As far as we are
aware, the results announced in [14] do not imply that second preimages are
essentially easier to find than they should, namely with an effort proportional
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to 2n for an n-bit hash function. Therefore certificates that existed well before
the results from [14] were obtained should be fine.

For newly to be constructed certificates the argument goes that random
collisions do not suffice because the values to be hashed are meaningful (cf. [3]
and [11]). Dobbertin’s cryptanalytic work on MD4 was so strong that meaningful
collisions could be found easily, cf. [2]. The recent results of [14] seem not (yet) to
have similar strength, so revisiting the concept of meaningfulness is of interest.

A certificate, such as an X.509 or PGP certificate, is a highly structured
document. Nevertheless, it contains pieces of data that look random, and may
have been constructed to fit a hash collision. In particular there will be random
looking binary data related to public keys. Also the Diffie-Hellman group size
may be related to a random-looking large prime, which is a system parameter
that could be hard-coded into a binary executable. As was shown in [5], given
any hash collision it is trivial to construct a ‘real’ Diffie-Hellman prime and a
‘fake’ one that hash to the same value. One may ask whether the mathematical
requirements that lie behind public key constructions enforce so much mean-
ingful structure that it may be expected to be incompatible with the collision
requirement. We show that this is not the case.

The collisions found by [14] all have a special structure: two inputs are found
that hash to the same value, and that differ in a few spread-out and precisely
specified bit positions only. This leads us to the following question. Suppose the
value to be hashed contains an RSA modulus, i.e., a hard to factor composite
integer, or an element gv for a (sub)group generator g and secret exponent v.
How would one come up with two different RSA moduli or two different powers
of g that have the subtle differences that seem to be required in [14]?

Having the right type of difference structure does not, as far as we know, im-
ply a hash collision. Presently, specially crafted data blocks seem to be required
for collisions. But colliding data blocks can be used to generate more collisions as
follows. All affected hash functions are based on the Merkle-Damg̊ard construc-
tion, where a compression function is iteratively applied to a changing chaining
variable. New collisions can therefore be constructed by appending arbitrary,
but identical, data to any existing pair of colliding data consisting of the same
number of blocks. We show how this may be used to construct well-formed and
secure public keys with identical hash values.

Apparently, colliding data blocks can be found for the compression function
with an arbitrary value of the chaining variable. This implies that identical data
can also be prepended to colliding pairs if the resulting data have the same
length and the colliding pairs have been specifically crafted to work with the
chaining variable value that results from the prepended data.

In this paper we investigate the various problems and possibilities. We show
how we can generate public keys with prescribed differences but with a priori
unknown most significant parts. Even though the resulting public keys will, in
general, not collide, it cannot be excluded, and it can indeed be expected, that
in the future new collision methods will be found that have different, less severe
restrictions. Therefore it is relevant to know if the two requirements—being
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meaningful and having the proper difference structure—are mutually exclusive
or not, and if not if examples can be constructed in a reasonable amount of time.
We address this question both for RSA and for discrete logarithm systems. We
explicitly restrict ourselves to known and secure private keys as the construction
of unknown or non-secure private keys is hardly challenging (cf. [12]).

Furthermore, using the appending trick, we show how we can generate actu-
ally colliding pairs consisting of proper public RSA keys. Combining this con-
struction with the prepending idea, we show how different X.509 certificates
can be constructed that have identical signatures. It is conceivable that such
certificate ‘pairs’ may be used for ulterior purposes.

We are not aware yet of real life practical implications of our results. Our
sole goal is to point out that the ‘meaningful message’ argument against hash
collisions in certification applications may be weaker than it appears at first
sight.

A summary of our results is as follows. It is straightforward to generate
secure pairs of RSA moduli with any small difference structure. Furthermore, in
Section 2 it is shown how any actual Merkle-Damg̊ard based hash collision can
be used to construct colliding pairs consisting of two hard to factor moduli, and
how such moduli can be embedded in X.509 certificates with identical signatures.
For discrete logarithm systems there is a much greater variety of results, and
even some interesting open questions. Briefly, one can do almost anything one
desires if one may pick any generator of the full multiplicative group, but if a
prescribed generator, or a subgroup generator, has to be used, then we cannot
say much yet. Our observations are presented in Section 3. Some attack scenarios
and applications that use our constructions are sketched in Section 4. The full
version [7] of this paper contains some more detail, an additional section on
the practicality of generating colliding DL system parameters, à la Kelsey and
Laurie [5], and an appendix giving full details of our construction of colliding
X.509 certificates.

2 Generating Pairs of Hard to Factor Moduli

The first problem we address in this section is constructing pairs of RSA public
key values that differ in a prescribed small number of bit positions. The sec-
ond problem is constructing pairs of colliding hard to factor moduli, with an
application to the construction of pairs of X.509 certificates.

An RSA public key value ordinarily consists of an RSA modulus and a public
exponent. A single RSA modulus with two different public exponents that differ
in the prescribed way is in principle a solution to the first problem. But in
practice one often fixes the public exponent, and selecting two proper public
exponents that differ in the right way is trivial.
The first problem: RSA moduli with prescribed difference. We address
the more interesting problem where the public exponent is fixed and where the
two RSA moduli differ in the prescribed bit positions. The latter is the case
if the XOR of the regular binary representations of the moduli consists of the
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prescribed bits. Unfortunately, the XOR of two integers is not a convenient
representation-independent mathematical operation. This slightly complicates
matters. If the hamming weight of the prescribed XOR is small, however, the
XOR corresponds often enough to the regular, representation-independent in-
teger difference. Therefore a probabilistic method to generate moduli with a
prescribed difference may be expected to eventually produce a pair with the
right XOR.
Algorithm to generate moduli with prescribed difference. Let N ∈ Z>0

be an integer indicating the bitlength of the RSA moduli we wish to construct,
and let δ be a positive even integer of at most N bits containing the desired
difference. We describe a fast probabilistic method to construct two secure N -
bit RSA moduli m and n such that m − n = δ. Informally, pick primes p and q
at random, use the Chinese Remainder Theorem to find m with m ≡ 0 mod p
and m ≡ δ mod q, and add pq to m until both cofactors m/p and (m− δ)/q are
prime. More formally:

– Let � be a small positive integer that is about 2 log2(N).
– Pick distinct primes p and q of bitlength N/2 − �, calculate integers r =

δ/p mod q and s = (rp − δ)/q, then for any k

p(r + kq) − q(s + kp) = δ.

– Search for the smallest integer k such that r + kq and s + kp are both prime
and such that p(r + kq) and q(s + kp) both have bitlength N .

– For the resulting k let m = p(r + kq) and n = q(s + kp).
– If k cannot be found, pick another random p or q (or both), recalculate r

and s, and repeat the search for k.

Runtime analysis. Because the more or less independent (N/2 + �)-bit num-
bers r + kq and s + kp have to be simultaneously prime, one may expect that
the number of k’s to be searched is close to (N/2)2. Thus, a single choice of p
and q should suffice if 2� is somewhat bigger than (N/2)2, which is the case if
� ≈ 2 log2(N). The algorithm can be expected to require O(N2) tests for pri-
mality. Depending on the underlying arithmetic and how the primality tests are
implemented – usually by means of trial division combined with a probabilistic
compositeness test – the overall runtime should be between O(N4) and O(N5).

A larger � leads to fewer choices for p and q and thus a faster algorithm, but
it also leads to larger size differences in the factors of the resulting RSA moduli
m and n. The algorithm can be forced to produce balanced primes (i.e., having
the same bitlength) by taking � = 0, and for instance allowing only k = 0, but
then it can also be expected to run O(N) times slower.
From prescribed difference to prescribed XOR. If required, and as dis-
cussed above, the method presented above may be repeated until the resulting
m and n satisfy m XOR n = δ (where, strictly speaking, m and n in the last
equation should be replaced by one’s favorite binary representation of m and n).
The number of executions may be expected to increase exponentially with the
hamming weight H(δ) of δ. If H(δ) is small, as apparently required for the type
of collisions constructed in [14], this works satisfactorily.
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It is much faster, however, to include the test for the XOR condition directly
in the algorithm before r + kq and s + kp are subjected to a primality test. In
that case � may be chosen about H(δ) larger to minimize the number of p and q
choices, but that also leads to an even larger size difference between the factors.
It turns out that the overhead caused by the XOR condition compared to the
difference is quite small.

Security considerations. Given two regular RSA moduli m and n, their
difference δ = |m − n| can obviously be calculated. But knowledge of δ and the
factorization of one of the moduli, does, with the present state of the art in
integer factorization, not make it easier to factor the other modulus, irrespective
of any special properties that δ may have. Indeed, if the other modulus could be
factored, the RSA cryptosystem would not be worth much. If m is the product
of randomly selected primes p and r of the same size, as is the case in regular
RSA, then r = δ/p mod q for any other RSA modulus n with prime factor q and
δ = m−n. Thus, the randomly selected prime factor r satisfies the same identity
that was used to determine r in our algorithm above (given p, q, and δ), but as
argued that does not make r easier to calculate given just q and δ (but not p).
This shows that the ‘� = 0 and allow only k = 0’ case of our algorithm produces
RSA moduli pairs that are as hard to factor as regular RSA moduli, and that
knowledge of the factorization of one of them does not reveal any information
about the factors of the other.

The same argument and conclusion applies in the case of regular RSA moduli
with unbalanced factors: with the present state of the art such factors are not
easier to find than others (avoiding factors that are so small that the elliptic
curve factoring method would become applicable), also not if the difference with
another similarly unbalanced RSA modulus is known. If an N -bit RSA modulus
m has an (N/2 − �)-bit factor p with (N/2 + �)-bit cofactor r̃, both randomly
selected, then r̃ mod q = δ/p mod q for any other RSA modulus n with (N/2−�)-
bit prime factor q and δ = m − n. The randomly selected prime factor r̃ when
taken modulo q satisfies the same identity that was used to determine r in
our algorithm and the cofactor s̃ of q in n, when taken modulo p, satisfies the
same identity, with r replaced by r̃ mod q, that was used to determine s in our
algorithm. Because m − n = δ the integers r̃, r, s̃, and s satisfy r̃ − r = kq and
s̃− s = kp for the same integer valued k. This means that the allegedly hard to
find r̃ equals the prime factor r + kq as determined by our algorithm.

Remark on simultaneous versus consecutive construction. The method
presented in this section simultaneously constructs two moduli with a prescribed
difference. One may wonder if the moduli have to be constructed simultaneously
and whether consecutive construction is possible: given a difference δ and an
RSA modulus m (either with known or unknown factorization), efficiently find
a secure RSA modulus n (and its factorization) such that m XOR n = δ. But
if this were possible, any modulus could be efficiently factored given its (easy
to calculate) difference δ with m. Thus, it is highly unlikely that moduli with
prescribed differences can be constructed both efficiently and consecutively.
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The second problem: actually colliding hard to factor moduli. The
object of our investigation so far has been to find out if the requirement to be
meaningful (i.e., proper RSA moduli) excludes the apparent requirement of a
prescribed difference structure. As shown above, that is not the case: proper
RSA moduli with any prescribed difference can easily be constructed. A much
stronger result would be to construct RSA moduli that actually do have the
same hash value. We don’t know yet how to do this if the two moduli must have
factors of approximately equal size, a customary property of RSA moduli. We
can, however, construct actually colliding composite moduli that are, with the
proper parameter choices, as hard to factor as regular RSA moduli but for which,
in a typical application, the largest prime factor is about three times longer than
the smallest factor. Unbalanced moduli for instance occur in [13]. Our method
combines the ideas mentioned in the introduction and earlier in this section with
the construction from [6].

Algorithm to generate actually colliding hard to factor moduli. Let
b1 and b2 be two bitstrings of equal bitlength B that collide under a Merkle-
Damg̊ard based hash function. Following [14], B could be 512 if b1 and b2 collide
under MD4, or 1024 if they collide under MD5. It is a consequence of the Merkle-
Damg̊ard construction that for any bitstring b the concatenations b1||b and b2||b
also collide. Denoting by N > B the desired bitlength of the resulting moduli, we
are thus looking for a bitstring b of length N −B such that the integers m1 and
m2 represented by b1||b and b2||b, respectively, are hard to factor composites.
Assuming that N − B is sufficiently large, let p1 and p2 be two independently
chosen random primes such that p1p2 has bitlength somewhat smaller than N −
B. Two primes of bitlength (N − B)/2 − log2(B) should do in practice. Using
the Chinese Remainder Theorem, find an integer b0, 0 ≤ b0 < p1p2 such that pi

divides bi2N−B + b0 for i = 1, 2. Finally, look for the smallest integer k ≥ 0 with
b0 + kp1p2 < 2N−B and such that the integers qi = (bi2N−B + b0 + kp1p2)/pi

are prime for i = 1, 2. If such an integer k does not exist, select new p1 and p2

and try again. The resulting moduli are mi = piqi = bi||b for i = 1, 2, where
b = b0 + kp1p2 is to be interpreted as (N − B)-bit integer. The security of each
modulus constructed in this fashion, though unproven, is argued in [6]; since
then no weaknesses in this construction have been published. Since p1 and p2

are independent, knowledge of the factorization of one of the moduli does not
reveal information about the factorization of the other one. The argument follows
the lines of the security argument presented earlier in this section. We do not
elaborate.

Remark. Given the restrictions of the MD5-collisions as found by the methods
from [14] and [15], our method does not allow us to target 1024-bit moduli
that collide under MD5, only substantially larger ones. Asymptotically, with
growing modulus size but fixed collision size, the prime factors in the moduli
ultimately become balanced. The above method can easily be changed to produce
a colliding pair of balanced N -bit RSA modulus and N -bit prime. A variation of
our construction leads to moduli b||b1 and b||b2, which may be useful for collision
purposes if moduli are represented from least to most significant bit.
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Colliding X.509 Certificates. Based on the ideas presented above we have
constructed a pair of X.509 certificates that are different only in the hard to factor
RSA moduli, but that have the same CA signature. A detailed description of our
approach is given in the full version of this note, cf. [7]. Briefly, it works as follows.
Based on the initial part of the data to be certified, a value of the MD5 chaining
variable is determined. Using this value as initialization vector, a pair of 1024-bit
values that collide under MD5 is calculated using the methods from [15]. This
collision is used as described above to produce two colliding hard to factor 2048-
bit moduli, which then enables the construction of two X.509 certificates with
identical signatures. Given the current limitations of the MD5-collision methods
from [14] and [15], new MD5-based X.509 certificates for 2048-bit RSA moduli
should be regarded with more suspicion than X.509 certificates for 1024-bit RSA
moduli.

3 Generating DL Public Keys with Prescribed Difference

The problem. In the previous section RSA moduli were constructed with a
prescribed XOR of small hamming weight by looking for sufficiently many pairs
of moduli with a particular integer difference. Thus, the XOR-requirement was
translated into a regular integer difference because the latter is something that
makes arithmetic sense. In this section we want to generate discrete logarithm
related public key values with a prescribed small XOR: for a generator g of some
multiplicatively written group of known finite order, we want integers a1 and
a2 (the secret keys) such that ga1 and ga2 (the public values) have a prescribed
small XOR. Obviously, ga1 XOR ga2 depends on the way group elements are
represented. For most common representations that we are aware of the XOR
operation does not correspond to a mathematical operation that we can work
with. Elements of binary fields are an exception: there XOR is the same as
addition.
Representation of elements of multiplicative groups of finite fields. If
〈g〉 lives in a multiplicative group of a prime field of characteristic p, the group
elements can be represented as non-zero integers modulo p, and the XOR can,
probabilistically if p > 2 and deterministically if p = 2, be replaced by the
regular integer difference modulo p, similar to what was done in Section 2. In
this case the resulting requirement ga1 − ga2 = δ even has the advantage that
it makes sense mathematically speaking, since the underlying field allows both
multiplication and addition. Because of this convenience, multiplicative groups
of prime fields is the case we concentrate on in this section. Multiplicative groups
of extension fields have the same advantage, and most of what is presented below
applies to that case as well.
Representation issues for elements of other types of groups. Other
cryptographically popular groups are groups of elliptic curves over finite fields.
In this case the group element ga1 to be hashed3 is represented as some number
3 Note that we keep using multiplicative notation for the group operation, and that

our “ga1” would more commonly be denoted “a1g” in the elliptic curve cryptoworld.
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of finite field elements that represent the coordinates of certain ‘points’, either
projectively or affinely represented, or in some cases even trickier as just a single
coordinate, possibly with an additional sign bit. Given such a representation, it is
not always immediately clear how the XOR operation should be translated into
an integer subtraction that is meaningful in elliptic curve groups. It is conceivable
that, for instance, the integer difference of the x-coordinates allows a meaningful
interpretation, again with characteristic 2 fields as a possibly more convenient
special case. We leave this topic, and the possibility of yet other groups, for
future research.
Restriction to multiplicative groups of prime fields. Unless specified
otherwise, in the remainder of this section we are working in the finite field Z/pZ
with, as usual, multiplication and addition the same as integer multiplication and
addition modulo p. The problem we are mostly interested in is: given δ ∈ Z/pZ
find non-trivial solutions to ga1 − ga2 = δ with g ∈ (Z/pZ)∗ and integers a1

and a2. Several different cases and variants can be distinguished, depending on
the assumptions one is willing to make.
Variant I: Prescribed generator g of (Z/pZ)∗ and δ �= 0. Assume that
g is a fixed prescribed generator of (Z/pZ)∗ and that δ �= 0. Obviously, if the
discrete logarithm problem in 〈g〉 = (Z/pZ)∗ can be solved, ga1 − ga2 = δ can
be solved as well: a solution with any desired non-zero value z = a1 − a2 can
be targeted by finding the discrete logarithm a2 with respect to g of δ/(gz − 1),
i.e., a2 such that ga2 = δ/(gz − 1). It follows that there are about p different
solutions to ga1 − ga2 = δ.

The other way around, however, is unclear: if ga1 − ga2 = δ can be solved
for a1 and a2, can the discrete logarithm problem in 〈g〉 = (Z/pZ)∗ be solved?
Annoyingly, we don’t know. Intuitively, the sheer number of solutions to ga1 −
ga2 = δ for fixed δ and g seems to obstruct all attempts to reduce the discrete
logarithm problem to it. This is illustrated by the fact that if the ga1 − ga2 = δ
oracle would produce solutions a1, a2 with fixed z = a1 − a2, the reduction to
the discrete logarithm problem becomes straightforward: to solve gy = x for y
(i.e., given g and x), apply the ga1 − ga2 = δ oracle to δ = (gz − 1)x and set y
equal to the resulting a2.

Lacking a reduction for the general case (i.e., non-fixed a1 − a2) from the
discrete logarithm problem, neither do we know if, given δ and g, solving ga1 −
ga2 = δ for a1 and a2 is easy. We conjecture that the problem is hard, and pose
the reduction from the regular discrete logarithm problem to it as an interesting
open question.

Summarizing, if δ �= 0 and g is a given generator of the full multiplicative
group modulo p, the problem of finding a1, a2 with ga1 − ga2 = δ is equivalent
to the discrete logarithm problem in 〈g〉 if a1 − a2 is fixed, and the problem is
open (but at most as hard as the discrete logarithm problem) if a1 − a2 is not
pre-specified.
Variant II: Prescribed generator g of a true subgroup of (Z/pZ)∗ and
δ �= 0. Let again δ �= 0, but now let g be a fixed prescribed generator of a true
subgroup of (Z/pZ)∗. For instance, g could have order q for a sufficiently large
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prime divisor q of p − 1, in our opinion the most interesting case for the hash
collision application that we have in mind. If z = a1 − a2 is pre-specified, not
much is different: a solution to ga1 − ga2 = δ exists if δ/(gz − 1) ∈ 〈g〉 and if so,
it can be found by solving a discrete logarithm problem in 〈g〉, and the discrete
logarithm problem gy = x given an x ∈ 〈g〉 can be solved by finding a fixed
z = a1 − a2 solution to ga1 − ga2 = (gz − 1)x.

But the situation is unclear if a1 and a2 may vary independently: we do not
even know how to establish whether or not a solution exists. We observe that for
the cryptographically reasonable case where g has prime order q, with q a 160-bit
prime dividing a 1024-bit p − 1, the element ga1 − ga2 of Z/pZ can assume at
most q2 ≈ 2320 different values. This means that the vast majority of unrestricted
choices for δ is infeasible and that a δ for which a solution would exist would
have to be constructed with care. However, the δ’s that we are interested in have
low hamming weight. This makes it exceedingly unlikely that a solution exists
at all. For instance, for H(δ) = 6 there are fewer than 251 different δ’s. For each
of these δ we may assume that it is of the form ga1 − ga2 with probability at
most ≈ 2320/21024. Thus, with overwhelming probability, none of the δ’s will be
of the form ga1 − ga2 . And, even if one of them has the proper form, we don’t
know how to find out.
Variant III: Free choice of generator of (Z/pZ)∗ and δ �= 0. Now suppose
that just δ �= 0 is given, but that one is free to determine a generator g of
(Z/pZ)∗, with p either given or to be determined to one’s liking. Thus, the
problem is solving ga1 − ga2 = δ for integers a1 and a2 and a generator g of
the multiplicative group (Z/pZ)∗ of a prime field Z/pZ. Not surprisingly, this
makes finding solutions much easier. For instance, one could look for a prime p
and small integers u and v such that the polynomial Xu −Xv − δ ∈ (Z/pZ)[X ]
has a root h ∈ (Z/pZ)∗ (for instance, by fixing u = 2 and v = 1 and varying p
until a root exists). Next, one picks a random integer w coprime to p − 1 and
calculates g = h1/w, a1 = uw mod (p− 1), and a2 = vw mod (p− 1). As a result
ga1 − ga2 = δ. With appropriately chosen p it can quickly be verified if g is
indeed a generator; if not, one tries again with a different w or p, whatever is
appropriate.

Obviously, this works extremely quickly, and solutions to ga1−ga2 = δ can be
generated on the fly. The disadvantage of the solution is, however, that any party
that knows a1 (or a2) can easily derive a2 (or a1) because va1 = ua2 mod (p−1)
for small u and v. In our ‘application’ this is not a problem if one wants to spoof
one’s own certificate. Also, suspicious parties that do not know either a1 or a2

may nevertheless find out that ga1 and ga2 have matching small powers. It would
be much nicer if the secrets (a1 and a2) are truly independent, as is the case
for our RSA solution. We don’t know how to do this. Similarly, we do not know
how to efficiently force g into a sufficiently large but relatively small (compared
to p) subgroup.
Variant IV: Two different generators, any δ. In our final variant we take
g again as a generator of (Z/pZ)∗, take any δ ∈ Z/pZ including δ = 0, and ask
for a solution h, a1, a2 to ga1 − ha2 = δ. Obviously, this is trivial, even if a1
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is fixed or kept secret by hiding it in ga1 : for an appropriate a2 of one’s choice
compute h as the a2th root of ga1 − δ. For subgroups the case δ �= 0 cannot be
expected to work, as argued above.

The most interesting application of this simple method is the case δ = 0. Not
only does δ = 0 guarantee a hash collision, it can be made to work in any group or
subgroup, not just the simple case (Z/pZ)∗ we are mostly considering here, and g
and h may generate entirely different (sub)groups, as long as the representations
of the group elements is sufficiently ‘similar’: for instance, an element of (Z/pZ)∗

can be interpreted as an element of (Z/p′Z)∗ for any p′ > p, and most of the
time vice versa as long as p′ − p is relatively small. Because, furthermore, just
ga1 but not a1 itself is required, coming up with one’s own secret exponent
and generator (possibly of another group) seems to be the perfect way to spoof
someone else’s certificate on ga1 . It follows that in practical cases of discrete
logarithm related public keys, information about the generator and (sub)group
(the system parameters) must be included in the certificate or that the system
parameters must be properly authenticated in some other way.

This illustrates once more that one should never trust a generator whose
construction method is not specified, since it may have been concocted to collide,
for some exponents, with a ‘standard’ or otherwise prescribed generator. This
has been known for a long time, cf. [10] and [1], and, according to [19], this issue
came up in the P1363 standards group from time to time. Nevertheless it still
seems to escape the attention of many implementors and practitioners.
Remark on actually colliding powers of a fixed g. As shown above,
δ = 0 and the freedom to select a generator makes it trivial to generate actually
colliding powers. One may wonder if less straightforward examples with a fixed
generator g can be constructed in a way similar to the construction shown at the
end of Section 2. Let N be such that the elements of 〈g〉 can be represented as
bitstrings of length N , and let (b1, b2) be a pair of B-bit values that collide under
a Merkle-Damg̊ard hash. The question is if an (N−B)-bit value b and integers a1

and a2 can be found such that the colliding values b1||b and b2||b satisfy b1||b =
ga1 and b2||b = ga2 . We don’t know how to do this – except that it can be done
in any number of ways if discrete logarithms with respect to g can be computed.
The ability to solve Variant I, however, makes it possible to solve the related
problem of finding b such that b12N−B + b = ga1 and b22N−B + b = ga2 : simply
take δ = (b1 − b2)2N−B, apply Variant I to find a1 and a2 with ga1 − ga2 = δ
and define b = ga1 − b12N−B, which equals ga2 − b22N−B. Unfortunately, the
resulting b will in general not be an (N − B)-bit value, so that the ‘+’ cannot
be interpreted as ‘||’, and the resulting pair (ga1 , ga2) will most likely no longer
collide.

4 Attack Scenarios and Applications

We describe some possible (ab)uses of colliding public keys. None of our examples
is truly convincing, and we welcome more realistic scenarios.

One possible scenario is that Alice generates colliding public keys for her
own use. We assume that it is possible to manufacture certificates for these
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public keys in such a way that the parts of the certificates that are signed by
a Certification Authority (CA) also collide, so that the signatures are in fact
identical. For RSA we have shown how this goal can actually be achieved for
X.509 certificates. Then Alice can ask the CA for certification of one of her public
keys, and obtain a valid certificate. By replacing the public key with the other
one, she can craft a second certificate that is equally valid as the first one. If so
desired this can be done without any involvement of the CA, in which case she
obtains two valid certificates for the price of only one. The resulting certificates
differ in only a few bit positions in random looking data, and are therefore hard
to distinguish by a cursory glance of the human eye. For standard certificate
validating software both certificates will be acceptable, as the signature can be
verified with the CA’s public key.

A ‘positive’ application of the pairs of X.509 certificates would be that it
enables Alice to distribute two RSA certificates, one for encryption and the
other for signature purposes, for the transmission cost of just one certificate plus
the few positions where the RSA moduli differ (similar ideas will be worked out
in [8]). Indeed, the CA may knowingly participate in this application and verify
that Alice knows both factorizations. However, if that is not done and the CA
is tricked into signing one of the keys without being aware of the other one, the
principle underlying Public Key Infrastructure that a CA guarantees the binding
between an identity and a public key, has been violated. A CA usually requires
its customers to provide proof of possession of the corresponding private key,
to prevent key substitution attacks in which somebody tries to certify another
person’s public key in his own name. Although the way our certificates have
been constructed makes it highly improbable that somebody could come up
with either of them independent of Alice, it should be clear that the proof of
possession principle has been violated. It would be more interesting to be able to
produce two colliding certificates that have differences in the subject name, but
at present this seems infeasible because it requires finding a second preimage.

Alice can also, maliciously, spread her two certificates in different user groups
(different in space or time). When Bob sends Alice an encrypted message that
has been encrypted by means of the wrong certificate, Alice may deny to be able
to read it. When however the dispute is seriously investigated, it will be revealed
that Alice has two colliding certificates. Alice may claim that she does not know
how this is possible, but as finding second preimages still is prohibitively expen-
sive, it is clear that either Alice is lying, or she has been misled by the key pair
generating software.

Alice can produce digital signatures with one key pair, that are considered
perfectly valid in one user group, and invalid in the other. This may be convenient
for Alice, when she wants to convince one person of something, and to deny it
to another person. Again, on serious investigation the colliding certificates will
be revealed.

Another possible scenario is that Alice does not generate key pairs herself,
but obtains her key pair(s) from a Key Generation Centre (KGC). This KGC
may maliciously produce colliding public keys, of which one is sold to Alice, and
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the other one kept for the KGC’s own use, without Alice’s consent. The KGC
can distribute Alice’s false certificate to Bob, and then Bob, when he thinks he
is sending a message that only Alice can decrypt, ends up sending a message
that only the KGC or a party collaborating with it can decrypt. Furthermore,
when Alice sends a signed message to Bob, Bob will not accept her signature. So
this constitutes a small denial of service attack. Note that a KGC in principle
always has the possibility to eavesdrop on encrypted messages to Alice, and to
spoof her signature. Our ability to construct colliding certificate does not add
much value to this malicious application.

In all the above cases, when the colliding public keys are both secure keys,
it cannot be detected from one key (or one certificate) that it has a twin sister.
When e.g. one of the colliding public keys is intentionally weak, e.g. a prime as
opposed to a composite modulus, this can be in principle detected by compos-
iteness testing. Unless there is a concrete suspicion such tests are not carried
out in practice, since they would make the public operation substantially more
costly.

In conclusion it seems that possibilities for abuse seem not abundant, as
the two public keys are very much related, and generated at the same time by
the same person. Nevertheless, the principle of Public Key Infrastructure, being
a certified binding between an identity and a public key, is violated by some
of the scenarios we have described, based on random collisions for (a.o.) the
hash function MD5, which is still popular and in use by certificate generating
institutions. Particularly worrying is that any person, including the certificate
owner, the Certification Authority, and any other party trusting a certificate,
cannot tell from the information in one certificate whether or not there exists
a second public key or certificate with the same hash or digital signature on
it. In particular, the relying party (the one that does the public key operation
with somebody else’s public key) cannot be sure anymore of the Certification
Authority’s guarantee that the certificate owner indeed is in possession of the
corresponding private key.

5 Conclusion

We demonstrated that on the basis of the existence of random hash collisions, in
particular those for MD5 as shown by Wang et al. in [14], one can craft public
keys and even valid certificates that violate one of the principles underlying
Public Key Infrastructures. We feel that this is an important reason why hash
functions that have been subject to collision attacks should no longer be allowed
in certificate generation.
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