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Abstract. We address the problem of the segmentation of cerebral
white matter structures from diffusion tensor images. Our approach is
grounded on the theoretically well-founded differential geometrical prop-
erties of the space of multivariate normal distributions. We introduce a
variational formulation, in the level set framework, to estimate the opti-
mal segmentation according to the following hypothesis: Diffusion tensors
exhibit a Gaussian distribution in the different partitions. Moreover, we
must respect the geometric constraints imposed by the interfaces exist-
ing among the cerebral structures and detected by the gradient of the
diffusion tensor image. We validate our algorithm on synthetic data and
report interesting results on real datasets. We focus on two structures of
the white matter with different properties and respectively known as the
corpus callosum and the corticospinal tract.

1 Introduction

Diffusion magnetic resonance imaging is a relatively new modality [1] able to
quantify the anisotropic diffusion of water molecules in highly structured bio-
logical tissues. As of today, it is the only non-invasive method that allows us to
distinguish the anatomical structures of the cerebral white matter. Diffusion ten-
sor imaging [2] models the probability density function of the three-dimensional
molecular motion, at each voxel of a diffusion MR image, by a normal distri-
bution of 0-mean and whose covariance matrix is given by the diffusion tensor.
Numerous algorithms have been proposed to perform a robust estimation of this
tensor field (see [3] and references therein). Among other applications, DTI is ex-
tremely useful in order to identify the neural connectivity patterns of the human
brain [4], [5], [6]. Most of the existing techniques addressing this last issue work
on a fiber-wise basis. In other words, they do not take into account the global
coherence that exists among fibers of a given tract. Recent work by Corouge et
al. [7] has proposed to cluster and align fibers by local shape parameterization
so that a statistical analysis of the tract geometrical and physiological properties
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can be carried out. This work relies on the extraction of a set of streamlines by
the method proposed in [4] which is known to be sensible to noise and unreliable
in areas of fiber crossings. For these reasons, we propose to directly perform the
segmentation of diffusion tensor images in order to extract neural fiber bundles.
To our knowledge, the only approaches addressing the issue of white matter
internal structures segmentation are [8], [9], [10], [11], [12], [13], [14] and [15]

We hereafter draw a quick state of the art of these techniques. Zhukov et
al. [8] define an invariant anisotropy measure in order to drive the evolution of
a level set and isolate strongly anisotropic regions of the brain. Alternatively,
Wiegell et al. [9], Feddern et al. [10], Rousson et al. [11], Wang et al. [12] and
[13], Lenglet et al. [14], and Jonasson et al. [15] use or propose different measures
of dissimilarity between full diffusion tensors. In [9], [12] and [11], the authors
use the Frobenius norm of the difference of tensors. A spatial coherence or a
regularity term was used in the first two methods, respectively in a k-means
algorithm or an active contour model to perform the segmentation of different
cerebral structures such as the thalamus nuclei or the corpus callosum. The third
method used a region-based surface propagation. In [12], a generalization of the
region-based active contours to matrix-valued images is proposed. It is conse-
quently restricted to the 2D case. In [10], partial differential equations based
on mean curvature motion, self-snakes and geodesic active contour models are
extended to two-dimensional and three-dimensional tensor-valued images. This
method still relies on the Euclidean metric between tensors. The authors apply
this framework to the regularization and segmentation of diffusion tensor images.
In [15], the authors introduce a geometric measure of dissimilarity by computing
the normalized tensor scalar product of two tensors, which can be interpreted as
a measure of overlap. Finally, the methods exposed in [13] and [14] rely on the
symmetrized Kullback-Leibler divergence to derive an affine invariant dissimi-
larity measure between diffusion tensors.

Contribution: Our main contributions are threefold: First, the major differ-
ence with all the existing approaches is the rigorous differential geometrical
framework, strongly rooted in the information geometry and used to express
a Gaussian law between diffusion tensors. We overcome the classical hypothe-
sis considering covariance matrices as a linear space. Hence, we define relevant
statistics to model the distribution of diffusion tensors. We also use a consis-
tent gradient of the tensor field to detect the boundaries of various structures in
the white matter. We then propose a variational formulation of the segmentation
problem, in the level set framework, to evolve a surface toward the optimal parti-
tion of the data. We finally validate our approach on synthetic and real datasets.

Organization of the Paper: Section 2 first reviews necessary material re-
lated to the Riemannian geometry of the multivariate normal model. It then
introduces the numerical schemes used to approximate a Gaussian law for diffu-
sion tensors. We finally describe how to compute the gradient of a tensor field.
Section 3 sets up the Bayesian formulation of the segmentation problem that we
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use throughout this paper. Section 4 presents and discusses experimental results
on synthetic and real DTI datasets.

2 Statistics and Geometry of Diffusion Tensors Fields

As in [16], we can consider the family of three-dimensional normal distributions
with 0-mean as the 6-dimensional parameter space of variances-covariances M =
{θ : θ = (θ1, ..., θ6) ∈ R

6}. This simply translates the fact that, for diffusion MRI,
the average displacement of spins in a voxel is zero. We identify M with S+(3, R),
the set of 3×3 real symmetric positive-definite matrices, e.g. covariance matrices
whose independent components are denoted by θi.

Following the work by Rao [17] and Burbea-Rao [18], where a Riemannian
metric was introduced in term of the Fisher information matrix, it is possible
to define notions such as the geodesic distance, the curvature, the mean, and
the covariance matrix. The basis of the tangent space TΣS+(3, R) = SΣ(3, R)
at Σ ∈ S+(3, R) is taken to be as in [19] and denoted by Ei, i = 1, ..., 6.

We now detail the geometry of S+(3, R) and propose an original formulation
for a generalized Gaussian law on this manifold. Relying on the explicit, and
very simple, expression of the squared geodesic distance gradient, we show how
to compute the spatial gradient of a diffusion tensor image.

2.1 Differential Geometry of Multivariate Normal Distributions

The fundamental mathematical tools needed to derive our numerical schemes
were detailed in [19], [20], [21], [22], [23] and [24]. Without employing the in-
formation geometry associated to the Fisher information matrix but instead,
identifying S+(3, R) with the quotient space GL+(3, R)/SO(3, R), other works
such as [25] and [26] recently used similar ideas to derive statistical or filtering
tools on tensors fields.

Metric Tensor, Geodesics and Geodesic Distance: The metric tensor for
S+(3, R), derived from the Fisher information matrix is given by the following
theorem:

Theorem 1. The Riemannian metric for the space S+(3, R) of multivariate
normal distributions with zero mean is given, ∀Σ ∈ S+(3, R) by:

gij = g(Ei, Ej) = 〈Ei, Ej〉Σ =
1

2
tr(Σ−1EiΣ

−1Ej) i, j = 1, ..., 6 (1)

In practice, this means that for any tangent vectors A,B, their inner product
relative to Σ is 〈A,B〉Σ = 1

2 tr(Σ−1AΣ−1B).
We recall that, if Σ : t 7→ Σ(t) ∈ S+(3, R), ∀t ∈ [t1, t2] ⊂ R denotes a curve

segment in S+(3, R) between two normal distributions parameterized by Σ1 and

Σ2, its length is expressed as: LΣ(Σ1,Σ2)=
∫ t2

t1

(

∑6
i,j=1 gij(Σ(t))dθi(t)

dt
dθj(t)

dt

)1/2

dt

As stated for example in [24], the geodesic starting from Σ(t1) ∈ S+(3, R) in the
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direction V = Σ̇(t1) ∈ S(3, R) is given by:

Σ(t) = Σ(t1)
1/2 exp (tΣ(t1)

−1/2V Σ(t1)
−1/2)Σ(t1)

1/2 ∀t ∈ [t1, t2] (2)

We recall that the geodesic distance D between any two element Σ1 and Σ2 is
the length of the minimizing geodesic between Σ1 and Σ2:

D(Σ1, Σ2) = inf
Σ
{LΣ(Σ1, Σ2) : Σ1 = Σ(t1), Σ2 = Σ(t2)}

It is given by the following theorem, whose original proof is available in an
appendix of [27] but different versions can also be found in [19] and [23].

Theorem 2. (S.T. Jensen, 1976)
Consider the family of multivariate normal distributions with common mean vec-
tor but different covariance matrices. The geodesic distance between two members
of the family with covariance matrices Σ1 and Σ2 is given by

D(Σ1, Σ2) =

√

1

2
tr(log2(Σ

−1/2
1 Σ2Σ

−1/2
1 )) =

√

√

√

√

1

2

m
∑

i=1

log2(ηi)

where ηi denote the m eigenvalues of the matrix Σ
−1/2
1 Σ2Σ

−1/2
1 .

2.2 A Gaussian Distribution for Diffusion Tensors

We now show how to compute the empirical mean [28], [29] and the empirical
covariance matrix on S+(3, R) to define a Gaussian law on that manifold.

Intrinsic Mean:

Definition 1. The normal distribution parameterized by Σ ∈ S+(3, R) and de-
fined as the empirical mean of N distributions Σk, k = 1, ..., N , achieves the
minimum of the sum of squared distances µ : S+(3, R) → R

+ defined by

µ(Σ,Σ1, ..., ΣN ) =
1

N

N
∑

k=1

D2(Σk, Σ)

Karcher proved in [28] that such a mean, known as the Riemannian barycenter,
exists and is unique for manifolds of non-positive sectional curvature. This was
shown to be the case for S+(3, R) in [19]. A closed-form expression of the mean
cannot be obtained [24] but a gradient descent algorithm was proposed in [16]. A
flow is derived from an initial guess Σ0 toward the mean of a subset of S+(3, R):

Σt+1 = Σ
1/2

t exp

(

−
dt

N
Σ

1/2

t

(

N
∑

k=1

log
(

Σ−1
k Σt

)

)

Σ
−1/2

t

)

Σ
1/2

t (3)

Intrinsic Covariance Matrix: Based on the explicit solution of the geodesic
distance, we can compute Λ ∈ S+(6, R), the empirical covariance matrix relative
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to the mean Σ of N elements of S+(3, R). As in [30], we associate to Σk the
unique tangent vector βk ∈ S(3, R), seen as an element of R

6 and identified with
the gradient of the squared geodesic distance function βk = ∇D2

(

Σk, Σ
)

=

Σ log
(

Σ−1
k Σ

)

[24]. It follows:

Definition 2. Given N elements of S+(3, R) and their mean value Σ, the em-

pirical covariance matrix relative to Σ is defined as: Λ = 1
N−1

∑N
k=1 βkβT

k

Generalized Gaussian Distribution on S+(3, R): The notion of Gaussian
law was generalized to random samples of primitives belonging to a Riemannian
manifold in [29]. Following theorem 4 therein:

Theorem 3. The generalized Gaussian distribution in S+(3, R) for a covariance
matrix Λ of small variance σ2 = tr(Λ) is of the form:

p(Σ|Σ,Λ) =
1 + O(σ3) + ǫ(σ

ξ )
√

(2π)6|Λ|
exp

−βT γβ

2
∀Σ ∈ S+(3, R)

β is defined as ∇D2(Σ,Σ) and expressed in vector form. The concentration
matrix is γ = Λ−1 −R/3+O(σ)+ ǫ(σ

ξ ), with R the Ricci tensor at the mean Σ.

ξ is the injectivity radius at Σ and ǫ is such that lim0+ r−ωǫ(r) = 0 ∀ω ∈ R
+.

In section 3, we will use our estimates of Σ and Λ together with the above
theorem to evaluate the probability of a diffusion tensor to belong to a given
subset of the diffusion tensor image. The computation of R is performed on the
basis of closed-form expressions for the metric and the Riemann tensor [19],[16].

2.3 Gradient of a Diffusion Tensor Image

We end this section with the definition of the gradient of a tensor field. From now
on Σ : Ω ⊂ R

3 7→ S+(3, R) denotes the diffusion tensor image such that Σ(x)
is a diffusion tensor for all x ∈ Ω. The spatial gradient of Σ can be estimated
from the intrinsic gradient of the squared geodesic distance:

∇±
k=1,2,3Σ(x) ≃

1

|ek|
∇D2 (Σ(x ± ek), Σ(x)) =

1

|ek|
Σ(x) log

(

Σ(x ± ek)−1Σ(x)
)

where the ek are the elements of the canonical basis of R
3 and are used to access

the neighbors of Σ(x) on the discrete grid. The + and − respectively denote the
forward and backward finite differences. We make use of central finite differences
so that the gradient in the direction ek (we recall that it is a symmetric matrix)
is given by: ∇kΣ(x) ≃ 1

2

(

∇+
k Σ(x) −∇−

k Σ(x)
)

. It is then straightforward to
obtain the norm of the gradient as:

|∇Σ(x)|2 =
3

∑

k=1

|∇kΣ(x)|2Σ(x) =
1

2

3
∑

k=1

tr
(

(

Σ(x)−1∇kΣ(x)
)2

)

We will use this information in section 3 to localize the boundaries between
structures of the brain white matter.



596 C. Lenglet et al.

3 Segmentation by Surface Evolution

Our goal is to compute the optimal 3D surface separating an anatomical struc-
ture of interest from the rest of a diffusion MRI dataset. The statistical surface
evolution, as developed in [31], is a well-suited framework for our segmentation
problem. We hereafter summarize the basic notions of this technique.

3.1 Bayesian Formulation for Image Partitioning

Following general works on image segmentation [32],[33], [34], we seek the op-
timal partition of the image domain Ω by maximizing the a posteriori frame
partition probability p(P(Ω) |Σ) for the observed diffusion tensor image Σ. The
Bayes rule allows to express this probability as:

p(P(Ω) |Σ) ∝ p(Σ | P(Ω))p(P(Ω)). (4)

This formulation yields a separation of the image-based cues from the geometric
properties of the boundary given by P(Ω). While being valid for any number of
regions, we restrict this formulation to binary partitions: the structure of interest
and the background. The image partition can be represented as the zero-crossing
of a level set function φ [35],[36]. Noting B the interface between the two regions
Ωin and Ωout, φ is constructed as the signed distance function to B:







φ(x) = 0, if x ∈ B
φ(x) = DEucl(x,B), if x ∈ Ωin

φ(x) = −DEucl(x,B), if x ∈ Ωout,

where DEucl(x,B) stands for the Euclidean distance between x and B. Hence, the
optimal partition is obtained by maximizing: p(φ|Σ) ∝ p(Σ|φ)p(φ). At this stage,
these two terms still need to be defined. For this purpose, several assumptions
on the structure of interest need to be introduced. In the following, a smoothness
constraint is imposed with the term p(φ) while p(Σ|φ) expresses the likelihood
of the diffusion tensors to be inside, outside or on the boundary of the structure.
This yields an optimization criterion similar to the Geodesic Active Regions
presented in [34].

3.2 Smoothness Constraint

The second term of (4) expresses the probability of the interface to represent the
structure of interest and can be used to introduce prior shape knowledge. For the
segmentation of diffusion tensor images, we have no high level prior information
but we can use this term to impose shape regularity. Such a constraint can be ob-
tained by favoring structures with a smaller surface |B| with p(φ) ∝ exp (−ν|B|).
This can be expressed with φ by introducing the Dirac function [37]:

p(φ) ∝ exp

(

−ν

∫

Ω

δ(φ)|∇φ(x)| dx

)

. (5)
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3.3 Data Term

To further specify the image term p(Σ|φ), we introduce several hypothesis. First,
for a given level set φ, we can classify the voxels into three classes: inside, outside
or on the boundary. Then, we can define the probability density functions of a
diffusion tensor for each class: pin, pout and pb. Assuming the diffusion tensors
to be independent and identically distributed realizations of the corresponding
random process, the data term is given by:

p(Σ|φ) =
∏

x∈Ωin

pin(Σ(x)) .
∏

x∈Ωout

pout(Σ(x)) .
∏

x∈B

pb(Σ(x)) (6)

This gives two types of probability distributions: region-based with pin/out and
boundary-based with pb. pin and pout are given by the generalized Gaussian dis-
tribution of Theorem 3. The parameters of these laws may be known a priori but
in the absence of such information, they are introduced as unknown parameters.
Regarding pb, the probability should be close to one for high gradients of the
diffusion tensors field and around zero for small variations. This leads to:

pb (Σ(x)) ∝ exp (−gα (|∇Σ(x)|)) ,

with gα(u) = 1/(ǫ+uα). This boundary term is the basis of several works referred
to as active contours [38] and, often, α = 1 or 2 is chosen while ǫ is set to a small
constant. For the sake of readability, we will use the notation gα(Σ(x)).

3.4 Energy Formulation

Maximizing the a posteriori segmentation probability is equivalent to minimizing
its negative logarithm. Integrating the regularity constraint (5) and the image
term (6), we end up with the following energy:

E(φ,Σin/out,Λin/out) = ν

∫

Ω

δ(φ)|∇φ| dx +

∫

Ω

δ(φ)|∇φ|gα(Σ(x)) dx

−

∫

Ωin

log p(Σ(x)|Σin, Λin)dx −

∫

Ωout

log p(Σ(x)|Σout, Λout)dx.

The boundary term of this energy corresponds to the Geodesic Active Contours
[38] and naturally includes a regularization1 on the interface. Following [39],
[40], an alternate minimization is employed to perform the optimization for the
two types of unknown parameters. For given statistical parameters, the Euler-
Lagrange equations are computed to derive the implicit front evolution:

∂φ

∂t
= δ(φ)

(

(ν + gα(Σ)) div

(

∇φ

|∇φ|

)

+
∇φ

|∇φ|
· ∇gα(Σ) + log

p(Σ|Σin, Λin)

p(Σ|Σout, Λout)

)

,

(7)
while the statistics can be updated after each evolution of φ from their empirical
estimates, as described in section 2. More details on this optimization can be
found in [36], [40].

1 The regularity term (5) could be included in pb by replacing gα by gα,ν = ν + gα.



598 C. Lenglet et al.

4 Results and Validation

4.1 Experimental Setup

In practice, there is a few important points that must be carefully taken care
of when implementing and running our segmentation algorithm: When dealing
with real DTI data, we use a mask of the brain so that the tensors statis-
tics of Ωout are not corrupted by the signal from the outside of the brain.
With regard to the initialization of the algorithm, we always take one to three
small spheres of radius 2 voxels placed inside the structure that we seek to
segment.

Next, there are two parameters that have to be chosen: The first one is
the value of ν in equation 5. It constrains the smoothness of the surface and is
usually set in the range 5 to 10. The second parameter arises from the hypothesis
of theorem 3 regarding the trace of the covariance matrix Λ. This quantity must
be small for the generalized Gaussian law to hold. In other words, this means
that we restrict ourselves to concentrated distributions. Hence, we set a threshold
for the variance which, whenever reached, induces the end of the update for the
statistical parameters. We let the surface evolve while using a fixed mean and
covariance matrix to model the distribution of the tensors in Ωin/out.

Finally, we were able to improve the computational efficiency of the method
by noticing and verifying that, within the limits of theorem 3, the term involving
the Ricci tensor R/3 can be neglected. We found a difference of at least 2 orders
of magnitude between Λ−1 and R/3.

Fig. 1. Segmentation of 2 tori in a noisy synthetic tensor field: [Top Left] Initial data
[Top Right] Final segmentation [Bottom] Surface evolution
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Fig. 2. Segmentation of the corpus callosum (A: anterior, P: posterior)

Fig. 3. Segmentation of the left corticospinal tract (I: inferior, S: superior)
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4.2 Synthetic Data

In order to validate the algorithm on data for which ground truth is available,
we have generated a 50×50×50 synthetic tensor field composed of a background
with a privileged orientation and 2 tori whose internal tensors are oriented ac-
cording to the tangential direction of the principal circle of the tori. Eigenvectors
and eigenvalues of the tensors are independently corrupted by Gaussian noise
(figure 1). Despite the large orientational variation and the fairly high level of
noise, our method is able to correctly extract the structures for different initial-
izations.

4.3 Real Data

Diffusion weighted images were acquired on a 3 Tesla Siemens Magnetom
Trio whole-body scanner. We used 12 gradients directions with a b-factor of
1000s/mm2, TR = 9.2s and TE = 92ms. Voxel size is 2 × 2 × 2mm.

The corpus callosum is a very important part of the brain that connects areas
of each hemisphere together. By initializing our segmentation with only 2 small
spheres within this structure, we managed to extract the volume presented on
figure 2. Finally, we focused on a different part of the white matter, known as the
internal capsule. Mainly oriented in the inferior-superior direction, the posterior
part of this fiber bundle includes the corticospinal tract for which we present, on
figure 3, the result of the segmentation obtained with our method. We also tested,
on this particular example, the overall influence of the boundary term pb. It
turns out that, as expected, if we do not use this term in the energy, the resulting
segmentation incorporates undesired regions of the brain such as the anterior and
posterior parts of the corona radiata. This shows that the interface detection part
of our method does play an important role to discriminate relevant structures.
Visual inspection of the results obtained on several datasets and comparison
with neuroanatomical knowledge validated the proposed segmentations.

5 Conclusion

We have presented a novel statistical and geometric approach to the segmenta-
tion of diffusion tensor images seen as fields of multivariate normal distributions.
We focused on the differential geometrical properties of the space of normal dis-
tributions to derive a generalized Gaussian law on that manifold. This allowed
us to model the distribution of a subset of diffusion tensors. Together with a con-
straint on the variations of the tensor field, we have embedded this information
in a statistical surface evolution framework to perform the segmentation of inner
structures of the cerebral white matter. This method achieved very good results
on synthetic data and was able to capture fine details in real DTI datasets.

Acknowledgments. This work was supported by grants NSF-0404617 US-
France (INRIA) Cooperative Research, NIH-R21-RR019771, NIH-RR08079, the
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