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Abstract. Automatic multi-modal image registration is central to numerous tasks
in medical imaging today and has a vast range of applications e.g., image guid-
ance, atlas construction, etc. In this paper, we present a novel multi-modal 3D
non-rigid registration algorithm where in 3D images to be registered are repre-
sented by their corresponding local frequency maps efficiently computed using
the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid
registration between these local frequency maps is formulated in a statistically
robust framework involving the minimization of the integral squared error a.k.a.
L2E (L2 error). This error is expressed as the squared difference between the true
density of the residual (which is the squared difference between the non-rigidly
transformed reference and the target local frequency representations) and a Gaus-
sian or mixture of Gaussians density approximation of the same. The non-rigid
transformation is expressed in a B-spline basis to achieve the desired smoothness
in the transformation as well as computational efficiency.

The key contributions of this work are (i) the use of Riesz transform to achieve
better efficiency in computing the local frequency representation in comparison to
Gabor filter-based approaches, (ii) new mathematical model for local-frequency
based non-rigid registration, (iii) analytic computation of the gradient of the ro-
bust non-rigid registration cost function to achieve efficient and accurate registra-
tion. The proposed non-rigid L2E-based registration is a significant extension of
research reported in literature to date. We present experimental results for regis-
tering several real data sets with synthetic and real non-rigid misalignments.

1 Introduction

Image registration is a central algorithm to many image processing tasks and has a
vast range of applications including, but not limited to, medical image analysis, remote
sensing, optical imaging, etc. In this section, we will briefly review existing algorithms
reported in literature for achieving multi-modal registration. We will point out their
limitations and hence motivate the need for a new and efficient computational algorithm
for achieving our goal.
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1.1 Previous Work

Image registration methods in literature to date may be classified into feature-based and
“direct” methods. Most feature-based methods are limited to determining the registra-
tion at the feature locations and require an interpolation at other locations. If however,
the transformation/registration between the images is a global transformation e.g., rigid,
affine etc. then, there is no need for an interpolation step. However, in the case of a non-
rigid transformation, it is necessary to interpolate. Also, the accuracy of the registration
is dependent on the accuracy of the feature detector.

Several feature-based methods involve detecting surfaces landmarks [1], edges,
ridges etc. (see [2] for references). Most of these assume a known correspondence with
the exception of the work in Chui et.al., [1]. Work reported in Irani et.al., [3] uses
the energy (squared magnitude) in the directional derivative image as a representation
scheme for matching achieved using the SSD cost function. Recently, Liu et.al., [4]
reported the use of local frequency in a robust statistical framework using the integral
squared error a.k.a., L2E. The primary advantage of L2E over other robust estimators
in literature is that there are no tuning parameters in it. The idea of using local phase
was also exploited by Mellor et. al., [5], who used mutual information (MI) to match
local-phase representation of images and estimated the non-rigid registration between
them. However, robustness to significant non-overlap in the field of view (FOV) of the
scanners was not addressed. For more on feature-based methods, we refer the reader to
the survey by Maintz et.al., [2].

In the context of “direct” methods, the primary matching techniques for intra-
modality registration involve the use of normalized cross-correlation, modified SSD,
and (normalized) mutual information (MI). Recently, Roche et.al., [6] developed a cor-
relation ratio based algorithm for registering MR scans with ultra-sound images. The
results presented were quite impressive however, the issue of robustness to variations
in the FOVs of the scanners was not adequately addressed. Direct methods such as,
variants of optical flow-based registration that accommodate for varying illumination
maybe used for inter-modality registration and we refer the reader to [7, 8] for such
methods. Guimond et. al., [9] reported a multi-modal brain warping technique that uses
Thirion’s Demons algorithm [10] with an adaptive intensity correction. The technique
however was not tested for robustness with respect to significant non-overlap in the
FOVs.

A popular “direct” approach is based on the concept of maximizing mutual infor-
mation (MI) pioneered by Viola and Wells [11] and Collignon et al., [12] and modified
in Studholme et al., [13]. Reported registration experiments in these works are quite
impressive for the case of rigid motion. In [14], Studholme et.al., presented a normal-
ized MI scheme for matching multi-modal image pairs misaligned by a rigid motion.
Normalized MI was shown to cope with image pairs not having exactly the same FOV,
an important and practical problem. The problem of being able to handle non-rigid
deformations in the MI framework is a very active area of research and some recent
papers reporting results on this problem are [5, 15, 16, 17, 18, 19]. Computational effi-
ciency and accuracy (in the event of significant non-overlaps) are issues of concern in
all the MI-based non-rigid registration methods.
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1.2 Overview of Proposed Registration Method

In this paper, we develop a multi-modal registration technique which is based on a lo-
cal frequency representation of the image data. A local frequency image representation
can be obtained by filtering the image with Gabor filters and then computing the gra-
dient of the phase of the filtered images. As an alternative to the Gabor filter, we use
the Riesz transform (see section (2), which is computationally more efficient. Once,
we compute this local frequency representation for each of the two (source and target)
images to be registered, we are ready to find the registration transformation which will
best match these representations. Several matching criteria may be defined and we de-
veloped a statistically robust measure called the L2E defined as the squared difference
between the true density of the residual – defined as the squared difference between
the transformed source and the target local frequency representations – and a Gaussian
density approximation of the same. This matching criteria is minimized over a class of
smooth transformations expressed in a B-spline basis. The algorithm we have developed
is well suited for situations where the source and target images have FOVs with large
non-overlapping regions (which is quite common in practise). This formulation leads to
a nonlinear cost function whose optimization yields the desired non-rigid registration.
Several experiments with synthetic and real 3D data sets are presented to depict the
performance of our algorithm.

Rest of the paper is organized as follows: in section 2.1, we present the local fre-
quency computation using the Riesz transform and section 2.2 contains the details of
our model for matching the local frequency representations. In section 2.3, we present
the numerical algorithm and section 3 contains the experimental results on 2D/3D med-
ical image data sets. Finally, we conclude in section 4.

2 Proposed Registration Method

2.1 Computing Local Frequency Using Riesz Transform

For multi-modal image registration, the relation between the brightness of the corre-
sponding pixels is usually complicated: multiple intensity values in one modality im-
age may map into single intensity in another modality; image feature existing in one
image may not have correspondence in the other image, etc. However, multi-modal im-
age data, acquired either with different sensors, or with the same sensor, mainly differ
in the low frequency components. High frequency components, on the other hand, nor-
mally correspond to the physical structure of the object being imaged, and thus are good
at expressing the commonality existing within the multi-sensor image pair. In the local
frequency representation on which our algorithm is based, edges and ridges will have
high values (since they are associated with high frequency components) and will be the
dominant features for the matching stage.

In 1-D case, the local (instantaneous) frequency is well defined as the rate of change
in phase of analytical signal obtained by Hilbert transform. However, the estimation of
local frequency for higher dimensional images is still an important and open problem
in the field of signal processing and computer vision. Quadrature filters are widely used
as an approach to computing local phase and frequency in an image.
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In this work, we present a novel formulation for computing the local-frequency
using the Riesz transform which can be regarded as a generalization of the Hilbert
transform in higher dimension. The key feature of this formulation is the fact that unlike
the Gabor filter based technique, we do not need a bank of filters for computing the
local frequency representation. A 3-D generalization of the Hilbert transform may be
obtained by the vector sum of 3 Riesz transforms:

H3(I) = F−1

[(
3∑

k=1

−iuk

|u| ek

)
F [I]

]
(1)

where I(x, y, z) is the given 3D image and u = (u1, u2, u3)
T is the spatial frequency

vector, ek is the unit vector in the direction of the kth coordinate axis, and F is the
Fourier transform operator. This may be rewritten as:

H3(I) = F−1

[F [∇I]

|u|
]

(2)

After some detailed analysis [20], it is possible to show that the righthand side of equa-
tion (2) can be approximated as:

∇I√
ω2

1(x, y, z) + ω2
2(x, y, z) + ω2

3(x, y, z)
=

∇I(x, y, z)

|ω(x, y, z)| (3)

where ωk(x, y, z) is the kth component of the local frequency. The frequency magni-
tude may therefore be estimated as:

|ω(x, y, z)| ≈ |∇I(x, y, z)|
|H3(I)(x, y, z)| (4)

where H3 is computed using (1). In order to make this approximation less sensitive to
noise, we use a smoothing operator on both the computation of the ∇I and H3. It should
be remarked that a precise computation of ∇I is crucial for the correct approximation
of |ω|; the best results are obtained when this computation is performed in the frequency
domain.

In this way, the estimation of |ω| requires one forward 3-D Fourier transform and
6 inverse 3-D Fourier transforms, plus 2 separable 3-D convolutions. This can be done
in O(NlogN) time, where N is the number of voxels in the image. In comparison, the
Gabor filter bank requires O(4Nm3k) time – where, m3 is the convolution kernel size
and k is the number of filters. In our implementation m3 >> logN . Additional ad-
vantages of our approach accrue in the form of storage savings since, there is a large
storage requirement in the Gabor filter-based approach described in Liu et al., [4] to
keep the responses of a large filter bank at each lattice point for computing the max.
local freq. response. No such filterbanks are used in our approach for computing the
local frequency response.

Our current implementation uses FFTW1 package which is a very efficient imple-
mentation. Even for 3D volumes (210 × 210 × 120), the computation can be done in

1 www.fftw.org



508 B. Jian, B.C. Vemuri, and J.L. Marroquin

Fig. 1. Left: a pair of T1 and T2 images; Right: their corresponding local frequency maps

1 minute, under a Linux system running on a PC equipped with a 2.6GHZ Pentium4.
Figure (1) illustrates two examples of computed local frequency in 2D for two T1 and
T2 slices obtained from BrainWeb [21]. Note the richness of the structure in the repre-
sentation.

2.2 Matching Local Frequency Representations

Let I1 and I2 be two images to be registered, and assume the deformation field from I1

to I2 is u = u(x), i.e. the point x in I1 corresponds to the x + u(x) in I2. Denote by
F1 and F2 the local frequency representations corresponding to I1 and I2 respectively.
The corresponding local frequency constraint is given by

(I + J(u)T)F1(x + u(x)) = F2(x) + ε(x) (5)

where J(u) is the Jacobian matrix of deformation field.
Note the above equation holds for the vector-valued frequency representation. How-

ever, experiments show that the vector-valued representation is much more sensitive to
the noise than the magnitude of frequency and the Jacobian matrix term makes the nu-
merical optimization computationally expensive. Applying Mirsky’s theorem from ma-
trix perturbation theory [22] which states

√∑
i (σ̃i − σi)2 ≤ ‖J(u)T‖F where σ̃i−σi

is the difference in the singular values between the perturbed matrix (I + J(u)T) and
I, and imposing the regularization condition that J(u) is small, we can approximate the
‖(I + J(u)T)F(x)‖ by ‖F(x)‖ to get the following simplified form:

‖F1(x + u(x))‖ = ‖F2(x)‖ + ε(x) (6)

where ‖ · ‖ gives the magnitude of local frequency.
Instead of the popular SSD approach, we develop a statistical robust matching cri-

terion based on the minimization of the integral squared error(ISE) or simply L2E

between a Gaussian model and the true density function of the residual. Traditionally,
the L2E criterion originates in the derivation of the nonparametric least squares Cross-
validation algorithm for choosing the bandwidth h for the kernel estimate of a density
and has been employed as the goodness-of-fit criterion in nonparametric density esti-
mation. Recently, Scott [23] exploited the applicability of L2E to parametric problems
and demonstrated its robustness behavior and nice properties of practical importance.
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In the parametric case, given the r.v. ε from (6) with unknown density g(ε), for
which we introduce the Gaussian model f(ε|θ), we may write the L2E estimator as

θ̂L2E = arg min
θ

∫
[f(ε|θ) − g(ε)]2dx (7)

Simply expand above equation and notice the fact that
∫

g(ε)2dx does not depend on θ

and
∫

f(ε|θ)g(ε)dx = Eg[f(ε|θ)] is the so called expected height of the density which
can be approximated by the estimator 1

n

∑n

i=1 f(εi|θ), hence the proposed estimator
minimizing the L2 distance will be

θ̂L2E = arg min
θ

[

∫
f(ε|θ)2dx − 2

n

n∑
i=1

f(εi|θ)]. (8)

For Gaussian distributions, we have closed form for the integral in the bracketed quan-
tity in (8) and hence can avoid numerical integration which is a practical limitation
not only in computation time but also in accuracy. Thus, we get the following criterion
L2E(u, σ) from (8) for our case,

1

2
√

πσ
− 2

N

N∑
i=1

exp

{
− (‖F1(x + u(x))‖ − ‖F2(x)‖)2

2σ2

}
(9)

Equation (9) differs from the standard SSD approach in that the quadratic error terms
are replaced by robust potentials (in this case, inverted Gaussians), so that the large
errors are not unduly overweighed, but rather are treated as outliers and given small
weight.

Generally, a regularization term is needed for nonrigid registration problem to im-
pose the local consistency or smoothness on the deformation field u. In case u is as-
sumed to be differentiable, this regularization term could be defined as a certain norm of
its Jacobian J(u). For simplicity, the Frobenius norm of Jacobian of deformation field
‖J(u)‖2

F
is used here. Altogether, the proposed non-rigid image registration method is

expressed by the following optimization problem:

θ̂ = arg min
θ=[u,σ]

L2E(u, σ) + λ‖J(u)‖2
F

(10)

where λ is the Lagrange multiplier and σ is the parameter controlling the shape of
the residual distribution modelled by a zero mean Gaussian φ(x|0, σ). Unlike other
robust estimators, this shape parameter σ need not be set by the user, but rather it is
automatically adjusted during the numerical optimization. Deformation field u, in this
work, is expressed for computational efficiency, by a B-Spline model controlled by a
small number of displacement estimates which lie on a coarser control grid.

2.3 Numerical Implementation

The numerical implementation is achieved using nonlinear optimization techniques to
solve equation (10). In our current implementation, we handle the minimization over σ
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and u separately. At each step, the σ is the minimizer of the L2 distance between the
true density and model density of residual distribution given fixed u. A zero vector is
used as the initial guess for u. In each iteration, we evaluate the gradient of E(u) =
L2E(u, σ) + λ‖J(u)‖2

F
with respect to each of the parameters in u using analytical

formulae which can be computed in laboratory frame:

∇uL2E =
2

N ∗ σ2

N∑
i=1

{
exp

{
− D

2
i

2σ2

}
DiGi

}
(11)

∇σL2E = − 1

2
√

πσ2
− 2

N

N∑
i=1

{
exp

{
− D

2
i

2σ2

}
D

2
i

σ3

}
(12)

where
Di = ‖F1(xi + u(xi))‖ − ‖F2(xi)‖

is the frequency magnitude error at pixel i,

Gi = (∇‖F1‖)(xi + u(xi))

is the spatial gradient of (‖F1‖). Then, a block diagonal matrix is computed as approxi-
mation of Hessian matrix by leaving out the second-derivative terms and observing that
the overall Hessian matrix is sparse multi-banded block-diagonal. Finally, a precondi-
tioned gradient descent technique is used to update the parameter estimates. In this step,
an accurate line search derived by Taylor approximation is performed.

The numerical optimization approach is outlined as follows:

– Set i = 0 and give an initial guess for deformation field u0;
– Gaussian fitting: σi = arg minL2E(ui, σ), this step involves a quasi-Newton non-

linear optimization;
– Update deformation estimates: ui+1 = ui+∆u, this step involves a preconditioned

gradient descent method close to that used by [7];
– Iterate: i = i + 1
– Stopping criteria: ‖∆u‖ ≈ 0

3 Experimental Results

In this section we present three sets of experiments. The first set constitutes of a 2-D
example to depict the robustness of L2E. The second set contains experiments with
2-D MR T1- and T2- weighted data obtained from the Montreal Neurological Institute
database [21]. The data sets were artificially misaligned by known non-rigid transfor-
mations and our algorithm was used to estimate the transformation. The third set of
experiments was conducted with 3-D real data for which no ground truth was available.

3.1 Robustness Property of the L2E Measure

In this section, we demonstrate the robustness property of L2E and, hence, justify the
use of the L2E measure in the registration context.
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(a) (b) (c) (d)

Fig. 2. Depiction of the robustness property of the L2E measure. From left to right: (a): a 2-D
MR slice of size 257 × 221; (b): the source image obtained from (a) by cutting the top third
of image; (c): transformed (a) serving as the target; (d) warped source image with the estimated
deformation

In order to depict the robustness property of L2E, we designed a series of experi-
ments as follows: with a 2-D MR slice as the source image, the target image is obtained
by applying a known nonrigid transformation to the source image. Instead of matching
the original source image and transformed image, we cut more than 1/3 of the source
image (to simulate the affect of significant non-overlap in the FOVs), and use it and
the transformed image as the input to the registration algorithms. Figure 2 depicts an
example of this experiment. In spite of missing more than 33% of one of the two im-
ages being registered, our algorithm yields a low average error of 1.32 and a standard
deviation of 0.97 in the estimated deformation field over the uncut region. The error
here is defined by the magnitude of the vector difference between ground truth and es-
timated deformation fields. For comparison purposes, we also tested the MI and the
SSD method on the same data set in this experimental setup. The nonrigid mutual in-
formation registration algorithm was implemented following the approach presented in
[24]. And in both the MI and SSD method, the nonrigid deformations are modeled by
B-Splines with the same configuration as in our method. However, both the MI and the
SSD method fail to give acceptable results due to the significant non-overlap between
the data sets.

3.2 Inter-modality Registration

For problem of inter-modality registration, we tested our algorithm on two MR-T1 and
-T2 2D image slices from the BrainWeb site [21] of size 181 × 217. These 2 images
are originally aligned with each other and are shown in Figure (1) as well as their cor-
responding local frequency maps computed via the application of the Riesz transform
described earlier. In this experiment, a set of synthetic nonrigid deformation fields were
generated using four kinds of kernerl-based spline representations: cubic B-spline, elas-
tic body spline, thin-plate spline and volume spline. In each case, we produced 15 ran-
domized deformations where the possible values of each direction in deformation vary
from -15 to 15 in pixels. The left half of Table 1 shows the statistics of the difference
between the ground truth and estimated deformation fields. For purpose of compari-
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Table 1. Statistics of the errors between ground truth displacement fields and estimated deforma-
tion fields obtained using our method and the MI method on pairs of T1-T2 MR images

Our Method MI Method
Statistics (in pixels) mean std. dev. median mean std. dev. median
Thin Plate Spline 2.03 1.83 1.33 2.02 1.81 1.31
Elastic Body Spline 1.98 1.87 1.28 1.99 1.87 1.27
Volume Spline 2.13 2.03 1.53 2.12 2.04 1.52
Cubic B-Spline 1.29 1.18 0.79 1.27 1.17 0.79
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Fig. 3. From left to right: the ground truth deformation field; the estimated deformation field; the
cumulative distribution of the estimated error in pixels

son, in this setup we also tested the nonrigid mutual information registration algorithm
which was used in the previous experiment. As shown in the right half of Table 1, MI-
based nonrigid registration produces almost same accuracy in the results as our method
for this fully overlapped data sets. However, the strength of our technique does not lie
in registering image pairs that are full overlapped. Instead, it lies in registering data
pairs with significant non-overlap, as shown in Figure 2. Figure 3 shows plots of the
estimated B-Spline deformation along with the ground truth as well as the cumulative
distribution of the estimated error. Note that the error distribution is mostly concentrated
in the small error range indicating the accuracy of our method.

3.3 3D Data Example

To conclude our experimental section, we show results on a 3D example for which no
ground truth deformations are available. The data we used in our experiments is a pair
of MR images of brains from different rats. The source image is (46.875 × 46.875 ×
46.875) micron resolution with the field of view (2.4×1.2×1.2cm), while the target is
3D diffusion-weighted image with (52.734× 52.734× 52.734) micron resolution with
the field of view (2.7 × 1.35 × 1.35cm). Both the images have the same acquisition
matrix (256 × 512 × 256).
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Fig. 4. Nonrigid registration of an MR-T1 & MR-DWI mouse brain scan. Left to Right: an ar-
bitrary slice from the source image, a slice of the transformed source overlayed with the corre-
sponding slice of the edge map of the target image and the target image slice

Figure 4 shows the registration results for the dataset. As is visually evident, the
misalignment has been fully compensated for after the application of the estimated de-
formation. The registration was performed on reduced volumes (128×128×180) which
took around 10 minutes to obtain the results illustrated in figure 4 with the control knots
placed every 16 × 16 × 16 voxels by running our C++ program on a 2.6GHZ Pentium
PC. Validation of non-rigid registration on real data with the aid of segmentations and
landmarks obtained manually from a group of trained anatomists are the goals of our
ongoing work.

4 Conclusions

In this paper, we presented a novel algorithm for non-rigid 3D multi-modal registration.
The algorithm used the local frequency representation of the input data and applied a
robust matching criteria to estimate the non-rigid deformation between the data. The
key contributions of this paper lie in, (i) efficient computation of the local frequency
representations using the Riesz transform, (ii) a new mathematical model for local-
frequency based non-rigid registration, and (iii) the efficient estimation of 3D non-rigid
registration between multi-modal data sets possibly in the presence of significant non-
overlapping between the data. To the best of our knowledge, these features are unique
to our method. Also the robust framework used here namely, the L2E measure, has the
advantage of providing an automatic dynamic adjustment of the control parameter of
the estimator’s influence function. This makes the L2E estimator robust with respect to
initializations. Finally, we presented several real data (with synthetic and real non-rigid
misalignments) experiments depicting the performance of our algorithm.
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