
3

Cross-Track Formation Control of Underactuated
Autonomous Underwater Vehicles

E. Børhaug, A. Pavlov, and K.Y. Pettersen

Department of Engineering Cybernetics, Norwegian University of Science and Technology,
N-7491, Trondheim, Norway
Even.Borhaug@itk.ntnu.no, Alexey.Pavlov@itk.ntnu.no,
Kristin.Y.Pettersen@itk.ntnu.no

Summary. The problem of 3D cross-track control for underactuated 5-degrees-of-freedom
(5-DOF) autonomous underwater vehicles (AUV) is considered. The proposed decentralized
controllers make the AUVs asymptotically constitute a desired formation that follows a
given straight-line path with a given forward speed profile. The proposed controllers consist
of two blocks. The first block, which is based on a Line of Sight guidance law, makes
every AUV asymptotically follow straight line paths corresponding to the desired formation
motion. The second block manipulates the forward speed of every AUV in such a way that
they asymptotically converge to the desired formation and move with a desired forward
speed profile. The results are illustrated with simulations.

3.1 Introduction

Formation control of marine vessels is an enabling technology for a number of in-
teresting applications. A fleet of multiple autonomous underwater vehicles (AUVs)
moving together in a prescribed pattern can form an efficient data acquisition net-
work for surveying at depths where neither divers nor tethered vehicles can be used,
and in environments too risky for manned vehicles. This includes for instance oceano-
graphic surveying at deep sea, operations under ice for exploration of Arctic areas
and efficient monitoring sub-sea oil installations.

In this paper we study the problem of 3D cross-track formation control for under-
actuated 5-DOF AUVs that are independently controlled in surge, pitch and yaw.
Roughly speaking, this problem can be formulated as follows: given a straight line
path, a desired formation pattern, and a desired speed profile, control the AUVs
such that asymptotically they constitute the desired formation which then moves
along the given path with the desired speed. The relevance of such a formation con-
trol problem is justified by the fact that a desired path for autonomous vehicles is
usually given by straight lines interconnecting way-points, see, e.g., [9]. At the same
time, the speed profile of an autonomous vehicle is often specified independently of
the desired path. This makes it possible to decouple the mission planning into two
stages: a geometric path planning stage and a dynamic speed assignment stage.
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The cross-track control problem or, more generally, the path following control
problem has been investigated in a number of publications. In [10, 3] this prob-
lem is considered for a single underactuated 3-DOF surface vessel and the proposed
controllers are validated in experiments. In [11], the straight line cross-track control
problem is considered for a single 3-DOF underactuated surface vessel. In that paper
a nonlinear control law based on so-called Line of Sight (LOS) guidance is proposed
and global κ-exponential stability of the cross-track error to a desired straight line
path is proven. In [2] the straight line cross-track control problem for 5-DOF under-
actuated underwater vehicles is solved using an LOS guidance law and a nonlinear
feedback controller rendering global κ-exponential stability of the cross-track error.
A general path following problem for 6-DOF underactuated underwater vehicles is
considered in [7]. The proposed nonlinear control strategy guarantees asymptotic
convergence to a desired reference path.

Formation control and cooperative control of various systems have been studied in
a large number of recent publications. For a necessarily incomplete list of publications
on this subject, see, e.g., [15, 17, 1, 19, 18, 8, 5, 4] and the references therein. Most of
the existing works on formation control focus on the high level analysis of achieving
a formation. In this case the systems to be controlled are often assumed to have
simple dynamics (like fully actuated point masses), which makes controlling every
individual system an easy task and allows one to focus on the dynamics of the whole
group of controlled systems rather than on the dynamics of individual systems.
However, in marine applications the dynamics of individual systems (e.g., ships or
AUVs) can be rather complicated to control, especially for underactuated systems.
In this case the problem can not be considered only at the level of formation control
alone, but must be analyzed both at the levels of individual systems and the whole
group. This makes the problem more challenging.

For marine vehicles the formation control problem is considered in [21, 12, 13].
In [21] formation control for a fleet of fully actuated surface ships is considered.
The proposed maneuvering-based controllers make each vehicle follow a given pa-
rameterized path with an assigned speed. The speed assignment, which depends on
the states of all vehicles in the formation, guarantees exponential convergence to
the desired formation. Similar ideas are used in [12] for the case of fully actuated
AUVs. The control scheme proposed in [12] consists of a feedback controller that
stabilizes each vehicle to a given path and a coordination controller that coordinates
the motion of the vehicles along the paths. Graph theory is used to allow for differ-
ent communication topologies in the formation. The problem of formation control
for fully actuated marine surface vessels is also considered in [13]. The proposed
exponentially stabilizing formation control laws are derived by imposing holonomic
inter-vessel constraints and using tools from analytical mechanics.

The main contribution of this paper is the development of a cross-track control
scheme for formation control of underactuated AUVs. This control problem can be
decomposed into two sub-problems: a) a cross-track control problem and b) a coor-
dination control problem. Given a desired formation pattern and a desired straight
line path to be followed by the formation, we can define parallel desired straight
line paths for each individual AUV, see Fig. 3.1. Then for every AUV we design
LOS-based cross-track controllers that make the AUVs converge to the correspond-
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ing paths. However, without controlling the forward speed of the vehicles in some
coordinated manner, the desired formation pattern will not be achieved. To asymp-
totically achieve the formation pattern, each vehicle must adapt its forward speed
in such a way that asymptotically all vehicles constitute the desired formation and
move with the desired speed. This is the coordination control problem. The low band-
width of underwater communication links form a serious constraint for cooperative
control. To overcome this problem the proposed control scheme requires communi-
cation of only one position variable of each AUV among the vehicles. Moreover, it
does not require communication links between all vehicles, thus significantly reduc-
ing the inter-vehicle communication. Similar ideas for 2D formation control of fully
actuated marine vehicles are considered in [21] and [12]. In this work, we consider
the case of 3D formation control for underactuated underwater vehicles with full
dynamic models.

The paper is organized as follows. In Section 3.2 we present the AUV model and
control problem statement. In Section 3.3 we recall a result on cascaded systems
that will be used throughout the paper. Section 3.4 contains a solution of the cross-
track control problem for one AUV. In Section 3.5 we solve the coordination control
problem for AUV formations. Simulation results are presented in Section 3.6 and
conclusions are presented in Section 3.7.

Fig. 3.1. Formation of AUVs.

3.2 Vehicle Model and Control Objective

In this section we present the kinematic and dynamic model describing the motion
of the class of AUVs studied in this paper. Moreover, we define the notation used
throughout the paper and state the control problem to be solved.

3.2.1 AUV Model

We consider an autonomous underwater vehicle (AUV) described by the 5-DOF
model [9]

η̇ = J(η)ν (3.1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = Bτ , (3.2)

where η � col(pi, Θ) ∈ R
5 and ν � col(vb, ωb

ib) ∈ R
5. Here pi = [x y z]T is

the inertial position of the AUV in Cartesian coordinates and Θ = [θ ψ]T is the
Euler-angle representation of the orientation of the AUV relative to the inertial
frame, where θ and ψ are the pitch and yaw angles, respectively. The roll is assumed
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to be zero. Vector vb = [u v w]T is the linear velocity of the AUV in the body-
fixed coordinate frame, where u, v and w are the surge, sway and heave velocities
respectively, and ωb

ib = [q r]T is the angular velocity of the AUV in the body-fixed
coordinate frame, where q and r are the pitch and yaw velocities respectively.

The matrix J(η) ∈ R
5×5 is the transformation matrix from the body-fixed co-

ordinate frame b to the inertial coordinate frame i. Moreover, M = MT > 0 is the
mass and inertia matrix, C(ν) is the Coriolis and centripetal matrix, D(ν) is the
damping matrix and g(η) are the restoring forces and moments due to gravity and
buoyancy. The vector τ = [τu τq τr]

T is the control input, where τu is the surge
control, τq is the pitch control and τr is the yaw control. The matrix B ∈ R

5×3 is
the actuator matrix. Note that the AUV is underactuated, as only 3 independent
controls are available to control 5 degrees of freedom.

By elaborating the differential kinematic equations in (3.1), we obtain ([9]):

ẋ = u cosψ cos θ − v sin ψ + w cosψ sin θ (3.3a)

ẏ = u sinψ cos θ + v cosψ + w sin θ sin ψ (3.3b)

ż = −u sin θ + w cos θ (3.3c)

θ̇ = q (3.3d)

ψ̇ =
1

cos θ
r. (3.3e)

Due to the Euler angle singularity, Eq. (3.3e) is not defined for |θ| = π
2 . However,

the normal operating conditions for AUVs are θ ∈ '−π
2 , π

2

.
(for π

2 < |θ| < π the
AUV is upside-down and, moreover, for conventional AUVs the vertical dive corre-
sponding to θ = −π

2 is physically impossible). Therefore, our state space for θ will
be considered to be θ ∈ '−π

2 , π
2

.
.

In this paper we will use the dynamics model (3.2) in a modified form:

ν̇ = −M−1(C(ν)ν + D(ν)ν + g(η)) + M−1Bτ � f(ν, η) + τ̄ , (3.4)

where f = [fu, fv, fw, fq, fr]
T and τ̄ � M−1Bτ = [τ̄u, τ̄v, τ̄w, τ̄q, τ̄r]

T .
Notice that for a large class of underwater vehicles, the body-fixed coordinate

system can be chosen such that τ̄v = τ̄w = 0. This is possible for AUVs having
port/starboard symmetry, under the assumption of zero roll. For the corresponding
technique applied to surface vessels, see, e.g., [11] and [6]. Moreover, we assume
that det

'
[e1 e4 e5]M

−1B
. /= 0, such that the mapping (τu, τq, τr) +→ (τ̄u, τ̄q, τ̄r) is

invertible. Therefore instead of designing controllers for (τu, τq, τr), we will design
controllers for (τ̄u, τ̄q, τ̄r).

We assume that for |u| ≤ Umax, where Umax > 0 is the maximal surge velocity,
the sway and heave velocities v and w satisfy the following assumptions

|v| ≤ CvUmax|r|, |w| ≤ CwUmax|q|, (3.5)

for some Cv > 0, Cw > 0, and

|v| ≤ Umax, |w| ≤ Umax. (3.6)
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These assumptions can be justified for a slender AUV (with its length much larger
than the width/height). In this case, the damping for sway and heave directions
(v and w) will be much larger compared to the surge direction (u). Therefore, the
forward velocity (satisfying |u| ≤ Umax) becomes dominant, see (3.6). Assumption
(3.5) means that for the case of the angular velocities q and r converging to zero
(i.e., the heading of the AUV has almost no change), the speeds v and w are damped
out because of the hydrodynamical drag in the sway and heave direction and also
converge to zero.

3.2.2 Control Objective

In this paper we deal with cross-track control for formations of AUVs. We will
design decentralized control laws for n AUVs such that, after transients, the AUVs
form a desired formation and move along a desired straight-line path with a given
velocity profile, as illustrated in Fig. 3.2. The desired formation is characterized by

L

ud

ud

udu1

u2

u3

x

y

z

rp1

rp2

rp3

p(t)

Fig. 3.2. Formation control of AUVs.

a formation reference point p(t) and a set of vectors rpj
, j = 1, . . . , n giving the

desired relative positions of the AUVs with respect to the point p(t). The desired
path of the formation is given by a straight line L. The desired velocity profile is
given by a differentiable function ud(t). The control objective is to guarantee that
asymptotically, i.e., in the limit for t→ +∞,

a) the AUVs constitute the formation, i.e.,

r1(t)− rp1
= . . . = rn(t)− rpn

=: p(t),

where rj , j = 1, . . . , n, are the position vectors of the AUVs;

b) p(t) follows the desired path L with the desired velocity profile ud(t), i.e., p(t) ∈
L and |ṗ(t)| = ud(t), and the orientation of the AUVs are aligned with the
desired straight line paths.

By choosing an inertial coordinate system with the x-axis coinciding with the desired
straight-line path, i.e., L = {(x, y, z) : x ∈ R, y = 0, z = 0} (see Fig. 3.2), the control
objective can be formalized as follows

3 Cross-Track Formation Control of Underactuated AUVs
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lim
t→+∞ yj(t)−Dyj

= 0, j = 1, . . . , n,

lim
t→+∞ zj(t)−Dzj

= 0, j = 1, . . . , n,
(3.7)

lim
t→+∞ θj(t) = 0, j = 1, . . . , n,

lim
t→+∞ψj(t) = 0, j = 1, . . . , n,

(3.8)

lim
t→+∞ x1(t)−Dx1

= · · · = lim
t→+∞xn(t)−Dxn

= Const +

# t

0

ud(s)ds, (3.9)

where [xj , yj , zj]
T and [Dxj

, Dyj
, Dzj

]T are the coordinates of the AUV position
vectors rj and relative position vectors rpj

, respectively, in the chosen inertial coor-
dinate system.

The above stated control problem will be solved in two steps. First, for each
AUV we design independent cross-track controllers guaranteeing that the cross-track
control goal (3.7) is achieved, the orientation of the AUVs satisfy (3.8), and that the
remaining dynamics in the x direction track certain speed reference commands ucj

(j corresponds to the jth AUV). At the second stage, we specify control laws for ucj

that coordinate the AUVs in the x-direction to asymptotically constitute the desired
formation and make the speed of the formation track the desired speed profile ud(t),
as specified in the coordination control goal (3.9).
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3.3 Preliminaries

In this section we recall some results on cascaded systems of the form

ẋ1 = f1(x1, t) + g(x1, x2, t)x2 (3.10)

ẋ2 = f2(x2, t). (3.11)

Prior to formulating the results we give the following definition.

Definition 3.1 ([16]). System ẋ = f(x, t) is called exponentially stable in any ball
if for any r > 0 there exist k = k(r) > 0 and α = α(r) > 0 such that |x(t)| ≤
k|x(t0)|e−α(t−t0).

Theorem 3.1 ([16]). System ẋ = f(x, t) is exponentially stable in any ball if and
only if it is globally uniformly asymptotically stable and locally exponentially stable.

The next result directly follows from [20] (Theorem 7 and Lemma 8). It will be
used throughout this paper.

Theorem 3.2. System (3.10), (3.11) is exponentially stable in any ball if the fol-
lowing conditions are satisfied: a) systems ẋ1 = f1(x1, t) and (3.11) are both expo-
nentially stable in any ball; b) there exists a quadratic positively definite function
V : Rn → R satisfying

∂V

∂x1
f1(x1, t) ≤ 0, ∀ x1, t ≥ t0; (3.12)

c) the interconnection term g(x1, x2, t) satisfies ∀t ≥ t0

|g(x1, x2, t)| ≤ ρ1(|x2|) + ρ2(|x2|)|x1|, (3.13)

where ρ1, ρ2 : R≥0 → R≥0 are some continuous functions.

3.4 Cross-Track Control of One AUV

In this section, we develop a cross-track controller for one AUV based on a line of
sight (LOS) guidance algorithm and nonlinear controller design. Since we are dealing
with only one AUV, the index j referring to the AUV’s number is omitted.

3.4.1 Line of Sight Guidance

Line of sight (LOS) guidance is often used in practice for path control of marine
vehicles. In this section we propose to use an LOS guidance law to meet the cross-
track control goal (3.7) and the orientation control goal (3.8). First, following (3.7),
we define the cross-track error as�

ey

ez

�
�

�
y −Dy

z −Dz

�
. (3.14)

3 Cross-Track Formation Control of Underactuated AUVs
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To study the cross-track error dynamics, we differentiate (3.14) with respect to time
and use (3.1) to obtain:�

ėy

ėz

�
=

�
u sinψ cos θ + v cosψ + w sin θ sin ψ

−u sin θ + w cos θ

�
. (3.15)

The right-hand side of system (3.15) contains no control inputs. To regulate the
cross-track error to zero, we will control the surge speed u, the pitch angle θ and the
yaw angle ψ in such a way that the cross-track error converges to zero. This will be
done with the help of LOS guidance. For LOS guidance, we pick a point that lies a
distance ∆ > 0 ahead of the vehicle, along the desired path. The angles describing
the orientation of the xz- and xy-projection of the line of sight are referred to as the
LOS angles. With reference to Fig. 3.3, the LOS angles are given by the following
two expressions:

θLOS(t) = tan−1

(
ez(t)

∆

/
, ψLOS(t) = tan−1

(−ey(t)

∆

/
. (3.16)

x

y

z

L

∆

Dy

Dz

ey

ez

θLOS ψLOS

Fig. 3.3. Illustration of the LOS angles.

In the next subsections we will propose three controllers. The first controller
regulates the surge speed u to asymptotically track some commanded speed signal
uc(t). The second controller makes the pitch angle θ track θLOS . We will show that
this will result in the cross-track error ez and pitch angle θ exponentially converging
to zero. The third controller makes the yaw angle ψ asymptotically track ψLOS . This
will make the cross-track error ey and the yaw angle ψ exponentially converge to
zero.

3.4.2 Surge Control

The AUV considered in this work is underactuated. It can be actuated only in surge,
pitch and yaw. In order to make the system controllable in other degrees of freedom
(sway and heave), we need to ensure that the surge speed u(t) is separated from zero.
This will be achieved by a controller that makes u(t) asymptotically track a speed
reference command uc(t) that lies strictly within the bounds uc(t) ∈ (Umin, Umax),
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t ≥ t0, for some Umax > Umin > 0. The speed reference command uc satisfying the
above mentioned condition will be specified and used at a later stage to achieve the
coordination control goal (3.9).

The controller for tracking the commanded signal uc is given by

τ̄u := −fu(ν, η) + u̇c − ku(u − uc), (3.17)

where ku > 0 is the controller gain. As follows from (3.4), this yields the linear GES
tracking error dynamics ˙̃u = −kuũ, where ũ := u− uc.

Notice that since uc(t) lies strictly within (Umin, Umax), ∀t ≥ 0, and u(t) →
uc(t) exponentially and without overshoot, there exists a t0 ≥ 0 such that u(t) ∈
[Umin, Umax], ∀t ≥ t0. Therefore, in the following sections we assume that u(t) ∈
[Umin, Umax], ∀t ≥ t0.

3.4.3 Pitch Control

In this section, we propose a control law for the pitch control τ̄q that guarantees
θ(t) → θLOS(t). We derive the pitch tracking error dynamics by differentiating
θ̃ := θ − θLOS with respect to time and using (3.3d), (3.16):

˙̃
θ = θ̇ − θ̇LOS = q − ∆

e2
z + ∆2

ėz = q − ∆

e2
z + ∆2

(−u sin θ + w cos θ). (3.18)

We choose q as a virtual control input with the desired trajectory for q given by

qd =
∆

e2
z + ∆2

(−u sin θ + w cos θ)− kθ θ̃, (3.19)

where kθ > 0. Inserting q = qd + q̃ into (3.18), where q̃ := q − qd, then gives:

˙̃
θ = −kθ θ̃ + q̃. (3.20)

The pitch rate error dynamics is obtained by differentiating q̃ with respect to time
and using (3.4):

˙̃q = q̇ − q̇d = fq(ν, η) + τ̄q − q̇d (3.21)

We choose the feedback linearizing control law

τ̄q = q̇d − fq(ν, η)− kq q̃, (3.22)

where kq > 0. This results in
˙̃q = −kq q̃. (3.23)

Notice that the closed-loop dynamics (3.20), (3.23) is a linear system with eigenvalues
−kθ < 0 and −kq < 0. Therefore, (3.20) and (3.23) is GES. The controller (3.22),
with qd given by (3.19), requires the measurement of u̇ and ẇ. For AUVs equipped
with inertial navigation systems, these accelerations are measured.

Next, we derive an estimate of |w|, which will be used in the next section. Notice
that qd = θ̇LOS−kθθ̃. Thus, |q| ≤ |qd|+|q−qd| ≤ |θ̇LOS |+kθ|θ̃|+|q̃|. One can compute
θ̇LOS from (3.16) and obtain the estimate |θ̇LOS | ≤ ∆|ėz|/(e2

z + ∆2) ≤ |ėz|/∆.
Substitution of this estimate into the obtained estimate of |q| and then into (3.5)
gives

|w| ≤ CwUmax(|ėz |/∆ + kθ|θ̃|+ |q̃|). (3.24)

3 Cross-Track Formation Control of Underactuated AUVs
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3.4.4 Analysis of the ez Dynamics

In this section we analyze the ez-dynamics of the AUV and show that the con-
troller (3.22) by making θ(t) → θLOS(t) also makes ez(t) converge exponentially to
zero. Subsequently this implies that θLOS(t) and therefore θ(t) converge to zero (see
(3.16)). The differential equation for ez given in (3.15) can be written as

ėz = −u sin θLOS + w cos θLOS + δ(θ, θLOS , u, w)θ̃, (3.25)

where δ(θ, θLOS , u, w) := (u(sin θLOS − sin θ) + w(cos θ − cos θLOS))/θ̃. Notice that
by the mean value theorem and by assumption (3.6) we have

|δ(θ, θLOS , u, w)| ≤ |u|+ |w| ≤ 2Umax, (3.26)

provided |u| ≤ Umax. Notice that this condition holds because u(t) ∈ [Umin, Umax],
∀t ≥ t0, as discussed in Section 3.4.2. In the sequel we will write δ without its
arguments. Substituting the expressions of θLOS from (3.16) into (3.25), we obtain

ėz = −u
ez5

e2
z + ∆2

+ w
∆5

e2
z + ∆2

+ δθ̃. (3.27)

System (3.27) can be considered as a nominal system perturbed through the term δθ̃
by the GES dynamics (3.20), (3.23). The next theorem provides a result on stability
of these systems.

Theorem 3.3. Consider system (3.27) in cascade with (3.20), (3.23). Let w satisfy
assumptions (3.5) and (3.6) and suppose u(t) ∈ [Umin, Umax] for all t ≥ t0 with
Umin > 0 and Umax < ∆/Cw. Then system (3.27), (3.20), (3.23) is exponentially
stable in any ball.

Proof: Consider the Lyapunov function candidate V := 1/2|ez|2. Its derivative along
solutions of (3.27) satisfies

V̇ =
−u|ez|2 + ∆ezw5

e2
z + ∆2

+ ezδθ̃ ≤ −u|ez|2 + ∆|ez ||w|5
e2

z + ∆2
+ |ez||δ||θ̃|

≤ − u|ez|25
e2

z + ∆2
+ |ez||w|+ |ez|2Umax|θ̃|. (3.28)

In the last inequality we have used inequality (3.26) and the upper bound on u.
Substituting inequality (3.24), which holds since w satisfies assumption (3.5), into
(3.28) and using the upper bound on u, we obtain

V̇ ≤ − u|ez|25
e2

z + ∆2
+ |ez|CwUmax(|ėz|/∆ + kθ|θ̃|+ |q̃|) + |ez|2Umax|θ̃|. (3.29)

Notice that |V̇ | = |ez||ėz|. Therefore,

V̇ ≤ − Umin|ez|25
e2

z + ∆2
+

CwUmax

∆
|V̇ |+ |ez|(αq|q̃|+ αθ|θ̃|), (3.30)
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where αq := CwUmax and αθ := (Cwkθ + 2)Umax. Hence,

V̇

(
1− signV̇

CwUmax

∆

/
≤ − Umin|ez|25

e2
z + ∆2

+ |ez|(αq|q̃|+ αθ|θ̃|). (3.31)

Denote β+ := (1 + CwUmax/∆)−1 and β− := (1 − CwUmax/∆)−1. Since Umax <
∆/Cw, we have β+ > 0 and β− > 0. Hence

V̇ ≤ −β+ Umin|ez|25
e2

z + ∆2
+ β−|ez|(αq|q̃|+ αθ|θ̃|). (3.32)

Next we consider the comparison system

V̇ = −β+ Umin2V√
2V + ∆2

+ β−√2V (αq|q̃|+ αθ|θ̃|). (3.33)

If we show that system (3.33), (3.20), (3.23) is exponentially stable in any ball
provided V (t0) ≥ 0, then by the comparison lemma [14] we conclude that system
(3.27), (3.20), (3.23) is exponentially stable in any ball. Notice that system (3.33),
(3.20), (3.23) can be considered as a cascaded connection of the nominal system

V̇ = − 2β+Umin√
2V + ∆2

V, (3.34)

with GES system (3.20), (3.23) through the interconnection term g := β−√2V (αq|q̃|+
αθ|θ̃|). One can easily see that system (3.34) is exponentially stable in any set
V (t0) ∈ [0, R], R ≥ 0 with the quadratic Lyapunov function V 2. The intercon-
nection term g can be estimated by |g| ≤ (1 + 2V )β−(αq|q̃| + αθ|θ̃|). Therefore by
Theorem 3.2 the cascade (3.33) and (3.20), (3.23) is exponentially stable in any
ball. By the comparison lemma [14] the system (3.27), (3.20), (3.23) is exponentially
stable in any ball.This concludes the proof of the theorem. ';

3.4.5 Yaw Control

In this section, we propose a control law for the yaw control τ̄r that guarantees that
ψ → ψLOS exponentially. We derive the yaw tracking error dynamics by differenti-
ating ψ̃ := ψ − ψLOS with respect to time and using (3.3e):

˙̃
ψ = ψ̇ − ψ̇LOS =

1

cos θ
r +

∆

e2
y + ∆2

ėy (3.35)

=
1

cos θ
r +

∆

e2
y + ∆2

(u sinψ cos θ + v cosψ + w sin θ sin ψ). (3.36)

We choose r as a virtual control input and choose the desired trajectory for r as

rd = − cos θ
∆

e2
y + ∆2

(u sin ψ cos θ + v cosψ + w sin θ sin ψ)− kψψ̃ cos θ, (3.37)

3 Cross-Track Formation Control of Underactuated AUVs
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where kψ > 0. Inserting r = rd + r̃ into (3.36), where r̃ := r − rd, then gives

˙̃
ψ = −kψψ̃ +

1

cos θ
r̃. (3.38)

We derive the yaw rate error dynamics by differentiating r̃ with respect to time and
using (3.4):

˙̃r = ṙ − ṙd = fr(ν, η) + τ̄r − ṙd. (3.39)

We choose the feedback linearizing control law

τ̄r = ṙd − fr(ν, η)− kr r̃, (3.40)

where kr > 0. This results in the GES linear dynamics

˙̃r = −kr r̃. (3.41)

System (3.38), (3.41) can be viewed as a cascade of two GES linear systems inter-
connected through the term r̃/ cos θ(t). If θ(t) lies in a compact subset of (−π

2 , π
2 )

for all t ≥ t0, then 1/ cos θ(t) is bounded and the interconnection term satisfies
|r̃/ cos θ(t)| ≤ Cr̃ for some constant C > 0. Therefore system (3.38), (3.41) is GES.

Just like in the case of pitch control, here we give an estimate of |v|, which will
be used in the next section. Notice that r = cos θψ̇ = cos θψ̇LOS + cos θ(ψ̇ − ψ̇LOS).
As follows from (3.36) and (3.37), cos θ(ψ̇ − ψ̇LOS) = r̃ − kψ cos θψ̃. Therefore,

|r| ≤ |ψ̇LOS | + |r̃| + kψ |ψ̃|. One can compute ψ̇LOS from (3.16) and obtain the

estimate |ψ̇LOS | ≤ ∆|ėy|/(e2
y + ∆2) ≤ |ėy|/∆. Substitution of this estimate into the

obtained estimate of |r| and then into (3.5) gives

|v| ≤ CvUmax(|ėy|/∆ + kψ|ψ̃|+ |r̃|). (3.42)

3.4.6 Analysis of the ey Dynamics

In this section we consider the ey-dynamics of the AUV and show that the con-
troller (3.40) by making ψ(t) → ψLOS(t) also makes ey(t) converge exponentially to
zero. This, in turn, implies that ψLOS(t) and ψ(t) converge to zero. The differential
equation for ey given in (3.15) can be written as

ėy = u sinψLOS + v cosψLOS + δψ(u, v, ψ, ψLOS)ψ̃ + δy(u, w, ψ, θ)θ (3.43)

where, δψ(u, v, ψ, ψLOS) := u(sin ψ − sin ψLOS)/ψ̃ + v(cosψ − cosψLOS)/ψ̃ and
δy(u, w, ψ, θ) := (u sin ψ(cos θ − 1) + w sin θ sinψ)/θ. Notice that by the mean value
theorem and by assumption (3.6) we have

|δy(u, w, ψ, θ)| ≤ |u|+ |w| ≤ 2Umax (3.44)

|δψ(u, v, ψ, ψLOS)| ≤ |u|+ |v| ≤ 2Umax (3.45)

provided |u| ≤ Umax. The pitch angle θ can be written as

θ = θ̃ + θLOS = θ̃ + δz(ez)ez ,
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where δz(ez) := tan−1(ez/∆)/ez is a globally bounded function. In the sequel we
will write δz, δy and δψ without their arguments. Substituting the expression for θ
into (3.43) together with the expression of ψLOS from (3.16) gives

ėy = −u
ey3

e2
y + ∆2

+ v
∆3

e2
y + ∆2

+ δψψ̃ + δy θ̃ + δyδzez. (3.46)

System (3.46) can be viewed as a nominal system perturbed through the terms
δψψ̃, δyθ̃ and δyδzez by the (ψ̃, r̃)-dynamics (3.38), (3.41), which is GES provided

θ(t) lies in a compact subset of (−π
2 , π

2 ) for all t ≥ t0, and by the ez and (θ̃, q̃)-
dynamics (3.27), (3.20), (3.23), which is exponentially stable in any ball by virtue
of Theorem 3.3. Notice that the nominal dynamics of system (3.46) is identical to
the nominal dynamics of system (3.27) and the estimate (3.42) is identical to the
estimate (3.24). Therefore, using the same arguments as in the proof of Theorem 3.3
we can formulate the following result for the ey-dynamics.

Theorem 3.4. Consider the ey-dynamics (3.46) in cascade with the (ψ̃, r̃)-dynamics

(3.38), (3.41) and with the ez and (θ̃, q̃)-dynamics (3.27), (3.20), (3.23). Let w and
v satisfy assumptions (3.5) and (3.6) and suppose u(t) ∈ [Umin, Umax] for all t ≥ t0
with Umin > 0 and Umax < min{∆/Cw, ∆/Cv}. Then the overall closed-loop system
system (3.46), (3.38), (3.41), (3.27), (3.20), (3.23) is exponentially stable in any
ball provided θ(t) lies in a compact subset of (−π

2 , π
2 ) for all t ≥ t0.

Under the conditions of this theorem, we obtain that the cross-track errors ey(t)
and ez(t) and the orientation angles θ(t) and ψ(t) converge to zero exponentially, i.e.,
the cross-track control goal (3.7) and the orientation control goal (3.8) are achieved.
The remaining dynamics is in the x-direction. These dynamics are analyzed in the
next section.

3.4.7 Analysis of the x Dynamics

The x-dynamics can be written as

ẋ = u + u(1− cosψ cos θ)− v sin ψ + w cosψ sin θ

= uc + ũ + u
(1− cosψ)

ψ
ψ + u cosψ

(1 − cos θ)

θ
θ − v

sin ψ

ψ
ψ + w cosψ

sin θ

θ
θ.

(3.47)

Recall that ψ = ψLOS+ψ̃ =
tan−1(−ey/∆)

ey
ey+ψ̃ and θ = θLOS+θ̃ = tan−1(ez/∆)

ez
ez+θ̃.

Substituting these expressions into (3.47), we obtain

ẋ = uc + h(ez , ey, θ, ψ, u, w, v)χ, (3.48)

where χ := (ũ, ez, ey, θ̃, ψ̃)T . The interconnection matrix h can easily be obtained
from the expressions given above. Notice that since the functions sinα/α, (1 −
cosα)/α and tan−1(α)/α are globally bounded, and because of assumption (3.6) |v|
and |w| are bounded by Umax, we conclude that h is globally bounded. As follows
from the previous sections, the variable χ exponentially converges to zero provided
that u(t) and θ(t) satisfy the conditions in Theorem 3.4. Therefore, the speed in the
x-direction asymptotically tracks the speed reference command uc(t).

3 Cross-Track Formation Control of Underactuated AUVs
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3.5 Coordination Control of Multiple AUVs

In the previous sections we have designed a cross-track controller that guarantees
that every AUV in closed loop with this controller achieves the cross-track control
goal (3.7) with the remaining dynamics in the x-direction given by (3.48). In order
to achieve the coordination control goal (3.9), for each AUV we will use the freedom
we have in choosing the commanded speed signal ucj, j = 1, . . . , n. Since in this
section we are dealing with multiple AUVs, we will use the subscript j to denote the
AUV’s number.

Recall that the cross-track control goal (3.7) is achieved provided that the com-
manded speed for each AUV lies inside the set (Umin, Umax), i.e.,

ucj(t) ∈ (Umin, Umax) , ∀ t ≥ 0, j = 1, . . . , n. (3.49)

In this section we must therefore design control laws for ucj , j = 1, . . . , n, that
satisfy these constraints at the same time as they guarantee that all AUVs achieve
the coordination control goal (3.9). To satisfy (3.9) the AUVs have to adjust their
forward speed to asymptotically converge to the desired formation pattern and move
with the desired speed profile ud(t). This means that they may either have to speed
up or wait for other AUVs to obtain the desired formation before they collectively
reach the desired speed ud(t).

Here, we make a natural assumption that the desired speed profile lies within
(Umin, Umax), i.e., there exists a > 0 such that

ud(t) ∈ [Umin + a, Umax − a], ∀t ≥ 0. (3.50)

To solve the coordination problem (3.9), we propose the following control law for
ucj:

ucj = ud(t)− g

&
n:

i=1

γji(xj − xi − dji)

-
, j = 1, . . . , n. (3.51)

Here dji � Dxj
− Dxi

correspond to the distances along the x-axis between the
jth and ith AUVs in the formation. The linkage parameters γji are nonnegative
and satisfy γij = γji, γii = 0. The function g(x) is a continuously differentiable
non-decreasing function with a bounded derivative satisfying g�(0) > 0, g(0) = 0
and g(x) ∈ (−a, a), where a is the parameter defined in (3.50). Notice that under
these assumptions on g and under the assumption on the desired speed profile ud(t)
(3.50), the proposed ucj satisfy the condition (3.49) for all values of its arguments.

The function g can be chosen, for example, equal to g(x) � 2a/πtan−1(x).
The dynamics of (3.48) in closed loop with (3.51) are given by the equations

ẋj = ud(t)− g

&
n:

i=1

γji(xj − xi − dji)

-
+ hjχj, j = 1, . . . , n. (3.52)

It can be easily verified that after the change of coordinates x̄j � xj − Dxj
−$ t

0
ud(s)ds, j = 1, . . . , n, system (3.52) is equivalent to
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˙̄xj = −g

&
n:

i=1

γji(x̄j − x̄i)

-
+ hjχj , j = 1, . . . , n. (3.53)

To simplify this system, we will rewrite it in the vector form. To this end, let us
introduce the following notations x̄ := (x̄1, . . . , x̄n)T , the function g(x̄) and the
matrix Γ given by

g(x̄) :=

 g(x̄1)
...

g(x̄n)

 , Γ :=


;n

j=1 γ1j −γ12 · · · −γ1n

−γ21

;n
j=1 γ2j · · · −γ2n

...
...

. . .
...

−γn1 −γn2 · · · ;n
j=1 γnj

 .

Then, system (3.53) can be written in the vector form

˙̄x = −g(Γ x̄) + Hε, (3.54)

Where ε := [χT
1 , . . . , χT

n ]T and the matrix H is a block-diagonal matrix with hj ,
j = 1, . . . , n, on its diagonal. Since hj , is a globally bounded function of the states
of the jth AUV, j = 1, . . . , n, the matrix H is a globally bounded function of the
states of all n AUVs. Notice that matrix Γ has the property Γv1 = 0, where v1 :=
(1, 1 . . . , 1)T . Therefore, Γ has a zero eigenvalue with v1 being the corresponding
eigenvector.

For system (3.54) the control goal (3.9) can be stated in the equivalent form

x̄(t)→ ηv1, as t→ +∞ (3.55)

for some η ∈ R. Now we can formulate the main result of this section.

Theorem 3.5. Consider system (3.54) coupled with the cross-track dynamics of ev-
ery AUV through Hε. Suppose the conditions of Theorem (3.4) hold for every AUV
and the zero eigenvalue of matrix Γ has multiplicity one. Then control goal (3.55)
is achieved.

Proof: Consider the matrix Γ . From the structure of Γ , by Gershgorin’s theorem [22]
we obtain that all eigenvalues of Γ lie in the closed right half of the complex plane.
Since Γ is symmetric, all its eigenvalues are real and, by the condition of the theorem,
only one of them is zero. Therefore, all the other eigenvalues are positive. Since Γ

is symmetric, one can choose an orthogonal matrix S, i.e., such that S−1 = ST ,
satisfying Γ = SΛST , where

Λ =

(
0 0
0 I(n−1)

/
,

with I(n−1) being the (n−1)-dimensional identity matrix. The corresponding matrix
S equals S := [v1,v2, . . . ,vn], where v1 is the eigenvector corresponding to the
zero eigenvalue and v2, . . . ,vn are the orthogonal eigenvectors corresponding to the
remaining positive eigenvalues λj , j = 2, . . . , n, and normalized according to |vj |2 =
1/λj. Substituting this factorization of Γ into (3.54), we obtain, after the change of
coordinates x̂ := ST x̄,

3 Cross-Track Formation Control of Underactuated AUVs
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˙̂x = −ST g (SΛx̂) + ST Hε. (3.56)

Denote Ξ := [v2,v3, . . . ,vn]. Then ST = [v1, Ξ]T . Denote the first component of
x̂ by ζ and the (n − 1)-dimensional vector of the remaining components by ξ, i.e.,
x̂ = [ζ, ξT ]T . By the structure of Λ we have SΛx̂ = Ξξ. With this new notation we
can write system (3.56) in the following form:

ζ̇ = −vT
1 g (Ξξ) + vT

1 Hε (3.57)

ξ̇ = −ΞT g (Ξξ) + ΞT Hε. (3.58)

From these equations we see that the ξ-dynamics are decoupled from ζ. The ξ-
dynamics can be considered as the nominal dynamics

ξ̇ = −ΞT g (Ξξ) (3.59)

coupled through ΞT Hε with the cross-track dynamics of the variables eyj , vj , ezj ,
wj , θj , qj , ψj , rj , ũj of every AUV. These cross-track dynamics are exponentially
stable in any ball provided that uj(t) ∈ [Umin, Umax] and θj(t) lies in a compact
subset of (−π

2 , π
2 ), for j = 1, . . . , n. We will show that system (3.58) in cascade with

the cross-track dynamics of all AUVs is exponentially stable in any ball provided
that the above mentioned conditions on uj(t) and θj(t) are satisfied. This will be
shown using Theorem 3.2. Since the coupling matrix ΞT H is globally bounded and
the cross-track dynamics of all AUVs is exponentially stable in any ball (under the
conditions on uj(t) and θj(t) stated above), we only need to show that the nomi-
nal system is exponentially stable in any ball with a quadratic Lyapunov function
satisfying (3.12).

Consider the Lyapunov function V (ξ) = 1/2|ξ|2. It’s derivative along solutions
of (3.59) equals

V̇ = −ξT ΞT g (Ξξ) . (3.60)

Denote ϑ := Ξξ. Then V̇ = −ϑT g(ϑ). By elaborating this expression we obtain
V̇ = −;n

i=1 ϑig(ϑi). Notice that by the conditions imposed on the function g we

have xg(x) > 0 for all x ∈ R satisfying x /= 0. Therefore V̇ = 0 if and only if
ϑ = 0. At the same time, since rankΞ = (n − 1), it holds that ϑ = Ξξ = 0 if and
only if ξ = 0. Hence, V̇ as a function of ξ is negative definite. This implies that
system (3.59) is GAS. In fact, since system (3.59) is autonomous, it is GUAS. Let
us show that system (3.59) is locally exponentially stable (LES). The system matrix
A of system (3.59) being linearized at the origin equals A = −ΞT ∂g

∂x̄
(0)Ξ. By the

construction of g(x̄), we obtain ∂g
∂x̄

(0) = g�(0)In. Since Ξ consists of orthogonal
eigenvectors vi normalized by |vi|2 = 1/λi, where λi > 0, i = 2, . . . , n, we obtain
A = −g�(0)diag(1/λ2, . . . , 1/λn), which is Hurwitz, because g�(0) > 0 by the def-
inition of g(x). Therefore, the linearized system (3.59) is GES, which implies that
system (3.59) itself is LES. By Theorem 3.1 system (3.59) is exponentially stable in
any ball.

Applying Theorem 3.2, we conclude that system (3.58) in cascade with the
cross-track dynamics of all AUVs is exponentially stable in any ball provided that
uj(t) ∈ [Umin, Umax] and θj(t) lies in a compact subset of (−π

2 , π
2 ), for j = 1, . . . , n.

This, in turn, implies that the right-hand side of (3.57) exponentially tends to zero.
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By integrating (3.57), we obtain that ζ(t) → η, where η ∈ R is some constant. Recall
that x̄ = Sx̂ = v1ζ + Ξξ. Since ξ(t) → 0 and ζ(t) → η, we obtain x̄(t) → ηv1. ';

Remark 1. Note that for the jth AUV, the overall controller, which consists of the
cross-track controller and the coordination controller (3.51), requires only the com-
munication of the x positions from those AUVs that correspond to non-zero entries
in the jth row of the interconnection matrix Γ . At the same time, the condition on
Γ imposed in Theorem 3.5 allows for many zero entries in Γ , meaning that all-to-all
communication is not required. These properties of the proposed controllers are very
important in low bandwidth and unreliable underwater communication.

Remark 2. The proposed controllers (3.17), (3.22) and (3.40) are based on feed-
back linearization. In practice, however, exact cancelation is not possible due to
inevitable model uncertainties. This can lead to steady-state errors. Partly this prob-
lem can be solved by omitting the cancelation of the dissipative damping terms.

3.6 Simulations

The proposed formation control scheme has been implemented in Simulink! and
simulated using a 6-DOF model of the HUGIN AUV from FFI and Kongsberg
Maritime. The control scheme is simulated for the case of three AUVs.

The desired formation is chosen to be given by (Dx1, Dy1, Dz1) = (0, 10, 0),
(Dx2, Dy2, Dz2) = (20,−10, 0), (Dx3, Dy3, Dz3) = (20, 0, 0), see Section 3.2.2. The
desired straight-line path coincides with the x-axis. The desired formation speed is
chosen as ud = 2.0 m/s. The initial cross-track errors are chosen as (ey1(0), ez1(0)) =
(20, 20), (ey2(0), ez2(0)) = (−25,−25) and (ey3(0), ez3(0)) = (20, 20). The initial
surge speed is chosen as uj(0) = 0.5 m/s, j = 1, 2, 3, while the initial sway and
heave velocities are chosen as vj(0) = wj(0) = 0, j = 1, 2, 3. All vehicles are given
zero initial pitch and yaw angle, i.e., θj(0) = ψj(0) = 0, j = 1, 2, 3.

The controller gain ku in (3.17) is chosen as ku = 10, kθ and kq in (3.22) are
chosen as kθ = 3 and kq = 50 and the controller gains kψ and kr in (3.40) are chosen
as kψ = 3.5 and kr = 50. The linkage parameters γij are set to γ12 = γ13 = γ23 = 4
and the function g(x) is chosen as g(x) = 2

π tan−1(x) ∈ [−1, 1].
The simulation results are shown in Fig. 3.4(a)-3.4(c). Figure 3.4(a) shows the

cross-track error norm of each vehicle, Fig. 3.4(b) shows the inertial velocity in the
x-direction, i.e., ẋj , of each vehicle and Fig. 3.4(c) shows the xy-trajectory of each
vehicle. The presented simulation results clearly show that the control goals (3.7)-
(3.9) are achieved. The AUVs asymptotically constitute the desired formation that
moves along the desired path with the prescribed velocity profile.

3.7 Conclusions

In this paper we have considered the problem of 3D cross-track formation control
for underactuated AUVs. The proposed decentralized control laws guarantee con-
vergence of the underwater vehicles to a desired formation moving with a desired

3 Cross-Track Formation Control of Underactuated AUVs
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(b) Forward velocity ẋj(t), j = 1, 2, 3.
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Fig. 3.4. Simulation results

formation speed along a desired straight-line path. This control problem has been
solved in two steps. The first step is the design of a cross-track controller. For each
AUV such a controller, which is based on the Line of Sight guidance law, guaran-
tees convergence to the desired path for this AUV in the formation. It has been
proved that for any initial condition of an AUV, the convergence to the desired path
is exponential (yet depending on the initial conditions). Moreover, this controller
guarantees that the forward velocity of the AUV tracks some speed reference com-
mand, which is designed at the second step. Control laws for the speed reference
command are designed for each AUV. These controllers asymptotically align the
AUVs in the direction of the desired path in such a way that they constitute the
desired formation and move synchronously with the desired speed profile.

The performance of the proposed formation control scheme has been investigated
for the case of three AUVs through numerical simulations in Simulink!with a model
of the HUGIN AUV. The simulations have demonstrated the validity of the obtained
theoretical results.
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