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Summary. In this paper we deal with the problem of rendering hybrid/nonlinear systems
into convergent closed-loop systems by means of a feedback law or switching rules. We
illustrate our approach to this problem by means of two examples: the anti-windup design
for a marginally stable system with input saturation, and the design of a switching rule for
a piece-wise affine system operating in different modes.

17.1 Introduction

It is well known that any solution of a stable linear time-invariant (LTI) system
with a bounded input converges to a unique limit solution that depends only on the
input. Nonlinear systems with such a property are referred to as convergent systems.
Solutions of the convergent systems “forget” their initial conditions and after some
transient time depend on the system input that can be a command or reference
signal. One of the main objectives of feedback in controller design is to eliminate the
dependency of the system steady-state solutions on initial conditions. This property
should be preserved for an admissible class of the inputs that makes the problem of
the design of convergent systems an important control problem.

The property of convergency can play an important role in the studies related
to the group coordination and cooperative control. Particularly, if each agent from
the whole network is described by a convergent model, and if the input signal is
identical for all agents, after some transient time all the agents will follow the same
trajectory. In other words, the synchronization between the agents from a network
will be achieved if each agent is controlled by a local (dependent only on that agent
state) feedback aimed at making the agent convergent. An advantage of this synchro-
nization scheme is that it can be achieved via decentralized (local) controllers, i.e.
no exchange of information between the agents is required. The main disadvantage,
however, stems from the same origin: if the agents operate in different environment,
they are perturbed by different disturbances and thus eventually will follow differ-
ent paths, that is the group of the agents will stay in an asynchronous mode. To
overcome this difficulty a communication between the agents can be introduced that
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can be considered as a sort of feedback, usually in a form of the mismatch between
the agents states or outputs. In [34, 35] it was demonstrated that for passivity-based
design of synchronizing networks via output feedback the convergency of an agent
subsystem consistent with some algebraic constraint plays almost the same role as
minimumphaseness in the conventional output feedback stabilization problem. This
motivates studies related to design of convergent systems via different sorts of feed-
back.

The property that all solutions of a system “forget” their initial conditions and
converge to some steady-state solution has been addressed in a number of publi-
cations [8, 39, 32, 20, 41, 22, 10, 11, 13, 2]. In this paper we continue the study
originated in [33, 31] on convergency of piece-wise affine (PWA) systems. This class
of systems attracted a lot of attention over the last years, see e.g. [3, 17, 18, 38]
and references therein. In this paper two extensions are given to the convergency
theory as presented in [33, 31]. Each of the extensions is discussed in the context of
a suitable application area. First, we present a convergence based approach to the
anti-windup controller design for marginally stable systems with input saturation.
For such systems one cannot directly use the results on quadratic convergency of
PWA continuous systems presented in [33], since there exists no common quadratic
Lyapunov function for this kind of system. To tackle the problem we developed a
method that allows to establish uniform, but not necessary quadratic convergence.
Secondly, we address the problem of switching control for PWA systems operating
in different modes, that is to find a switching rule as a function of the state and
the input such that the closed loop system demonstrates convergent behavior. This
approach is different from the theory discussed in [31], in which the switching rule
is assumed to be known.

The paper is organized as follows. In Section 17.2 we recall some basic results on
conditions for stability of solutions of nonlinear systems. Section 17.3 gives various
definitions of convergent systems. In Section 17.4 we apply the convergency based
approach to the anti-windup controller design for a marginally stable system with
input saturation. Section 17.5 deals with the design of a switching rule that makes
the closed loop system convergent.

17.2 Stability via First Approximation

The study of convergent systems focusses on the stability of solutions of nonlinear
systems. Two Lyapunov methods are available for analysis of the stability of solu-
tions, i.e. Lyapunov’s indirect and direct method. In this section we present a brief
overview of the problem of stability analysis of solutions of nonlinear time-varying
systems via its first order approximation (i.e., the indirect Lyapunov method) and
at the end we will conclude that the direct Lyapunov method is more promising for
analytical purposes.

Consider a classical question of stability analysis of a particular (or all) solution(s)
of the following nonlinear time-varying system

ẋ = F (x, t), x ∈ R
n, t ∈ R, (17.1)
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where F satisfies some regularity assumptions to guarantee the existence of local
solutions x(t, t0, x0). For the sake of brevity if there are no confusions and if the
meaning is apparent we will omit the dependence of the solutions on some parame-
ters, i.e. initial time and data.

Definition 17.1. A solution x(t, t0, x̄0) of system (17.1), defined for all t ∈ (t∗, +∞),
is said to be

! stable if for any t0 ∈ (t∗, +∞) and ε > 0 there exists δ = δ(ε, t0) > 0 such that
||x0 − x̄0|| < δ implies ||x(t, t0, x0)− x(t, t0, x̄0)|| < ε for all t ≥ t0;

! uniformly stable if it is stable and the number δ in the definition of stability can
be chosen independently of t0;

! asymptotically stable if it is stable and for any t0 > t∗ there exists δ = δ(t0) > 0
such that ||x0−x̄0|| < δ for t0 > t∗ implies limt→∞ ||x(t, t0, x0)−x(t, t0, x̄0)|| = 0;

! uniformly asymptotically stable if it is uniformly stable and there exists δ > 0
(independent of t0) such that for any ε > 0 there exists T = T (ε) > 0 such that
||x0 − x̄0|| < δ implies ||x(t, t0, x0)− x(t, t0, x̄0)|| < ε for all t ≥ t0 + T ;

! exponentially stable if there exist positive δ, C, β such that ||x0− x̄0|| < δ implies

||x(t, t0, x0)− x(t, t0, x̄0)|| ≤ Ce−β(t−t0)||x0 − x̄0||;

! uniformly globally asymptotically stable if it is uniformly asymptotically stable
and attracts all solutions starting in (x0, t0) ∈ Rn × (t∗, +∞) uniformly over
t0, i.e. for any R > 0 and any ε > 0 there is a T = T (ε, R) > 0 such that if
||x0|| < R, then ||x(t, t0, x0)− x(t, t0, x̄0)|| < ε for all t ≥ t0 + T , t0 > t∗.

Suppose F is continuously differentiable in x and continuous in t. Let

A(x, t) =
∂F (x, t)

∂x

be the Jacobi matrix for the function F (x, t) at the point x ∈ Rn. Let us consider
the solutions x(t, t0, x0) of the system (17.1) with initial conditions x(t0, t0, x0) = x0

under the assumption that they are well defined for all t ≥ t∗. Together with system
(17.1) consider its first order approximation governed by the following equation

ξ̇ = A(x(t, t0, x0), t)ξ, ξ ∈ R
n, t ≥ t∗. (17.2)

Let Φ(t, x0) be a fundamental matrix for system (17.2) with Φ(t0, x0) = In. The
following lemma is crucial for stability analysis of solutions of the nonlinear sys-
tem (17.1) via first order approximation (17.2).

Lemma 17.1 ([21]). For any two solutions x(t, t0, x0) and x(t, t0, y0) of system
(17.1) the following estimate

||x(t, t0, x0)− x(t, t0, y0)|| ≤ sup
η∈B

||Φ(t, η)|| ||x0 − y0|| (17.3)

is true, where B = {η ∈ Rn | ||x0 − η|| ≤ ||x0 − y0||}.
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Proof. The system equations can be rewritten in the following form

dx(t, t0, x0)

dt
= F (x(t, t0, x0), t).

The earlier mentioned assumptions imposed on F imply the solution x(t, t0, x0) is
differentiable in x0. From the last equation one gets

d

dt

∂x(t, t0, x0)

∂x0
= A(x(t, t0, x0), t)

∂x(t, t0, x0)

∂x0

and thus
∂x(t, t0, x0)

∂x0
= Φ(t, x0).

The multidimensional variant of Lagrange’s mean value theorem yields

||x(t, t0, x0)− x(t, t0, y0)|| ≤ sup
0<θ<1

∂x

∂x0
(t, t0, x0 + θ(y0 − x0)) ||x0 − y0||.

The previous lemma is a simple tool that allows to analyze stability of a particular
solution x(t, t0, x̄0) of nonlinear system (17.1) via its first order approximation (17.2).
Indeed, Lyapunov stability of this solution is granted if for all x0 from a neighborhood
of x̄0 the corresponding fundamental matrix Φ(t, x0) is bounded as a function of time.
If additionally limt→∞ ||Φ(t, x0)|| = 0 then the solution x(t, t0, x̄0) is asymptotically
stable.

Although this approach can lead to verifiable stability conditions (see [21]) the
first attempts to tackle the problem of stability via first order approximation were
based on analysis of system (17.2) for one given solution x(t, t0, x̄0). The latter
approach however is only applicable if for system (17.1) some shift transformation
z = x− x̄ allows to reduce the problem of stability of the solution x(t, t0, x̄0) to the
problem of stability of the origin of the following nonlinear system

ż = A(t)z + f(t, z), (17.4)

where together with mild assumptions on A(t), the nonlinear term f(t, z) must
satisfy the following assumption

||f(t, z)|| ≤ ψ(t)||z||m, m > 1

for a continuous function ψ with zero Lyapunov exponent (in the original statement
due to Lyapunov ψ(t) = const). Lyapunov proved that if the first approximation
system of (17.4)

ξ̇ = A(t)ξ (17.5)

is regular in the sense of Lyapunov (see e.g. [1]) and has negative Lyapunov exponents
then the origin of (17.4) is asymptotically stable.

The results of this kind stimulated development of numerical methods to analyze
stability via the first Lyapunov method, i.e. the method of Lyapunov exponents.
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Researches based on the Lyapunov exponents are particularly popular in physical
studies of chaotic systems and numerical calculation of those exponents is now a
standard tool, implemented in numerous software packages.

The most difficult assumption to verify in the Lyapunov theorem is the regularity
of system (17.5), that implies that all Lyapunov exponents of (17.5) should be strict.
Later on this condition was relaxed by Malkin, Chetaev and Massera (see e.g. [24,
6, 25, 26]) who showed that the conclusion of the Lyapunov theorem remains true if
the largest Lyapunov exponent of (17.5) is sufficiently negative and strictly bounded
from above by

− α

m− 1
,

where α ≥ 0 is the so-called irregularity coefficient, that is, in turn, quite difficult to
calculate for practical examples.

Another difficulty that should be taken into account for the problem of asymp-
totic stability via first order approximation is that Lyapunov exponents of system
(17.5) are not stable in general (see e.g. [1, 7]). In other words, even an infinitesimal
perturbation of (17.5) can change the sign of its Lyapunov exponents. Particularly,
this means that the asymptotic stability of the solution x(t, t0, x̄0) is not a robust
property. Though necessary and sufficient conditions for stability of the Lyapunov
exponents are known (see e.g. [5, 27, 1]), they are quite difficult to verify in practice.

Another approach to tackle stability via first order approximation is by means
of the general exponent, as originated by Bohl [4]. Particularly, negativity of the
general exponent of the norm of the fundamental matrix ||Φ(t)|| for (17.5) gives
necessary and sufficient conditions for exponential stability of (17.5) [7]. At the
same time exponential stability of the first order approximation (17.5) together with
some mild assumptions on the nonlinear term f(t, z) gives sufficient conditions for
uniform asymptotic stability of the origin of nonlinear system (17.4), see e.g. [37].
Moreover, in contrast to Lyapunov exponents, the general exponents are stable, see
[7]. However, as follows from the definition of the general exponents, its numerical
computation is a challenging problem.

The brief survey presented above illustrates the main difficulties that arise in the
problem of stability via first order approximation if one tries to tackle this problem
via method of characteristic exponents (either Lyapunov or Bohl). It seems that
from an analytical point of view the most promising method to investigate stability
is the direct Lyapunov method. This method also allows to estimate Lyapunov (and
Bohl) exponents and gives verifiable conditions for (uniform asymptotic) stability
of a solution x(t, t0, x0) of nonlinear system (17.1). In the subsequent sections we
present recent developments in this field using the concept of convergent systems
that is closely related to the concept of stability of all solutions of nonlinear system
(17.1).

17.3 Convergent Systems

In this section we give definitions of convergent systems. Those systems are closely
related to systems with uniformly globally asymptotically stable solutions and the
definitions presented here extend those given by Demidovich [8].
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Definition 17.2. System (17.1) is said to be

! uniformly convergent if there is a solution x̄(t) = x(t, t0, x̄0) satisfying the fol-
lowing conditions: (i) x̄(t) is defined and bounded for all t ∈ (−∞, +∞), (ii) x̄(t)
is uniformly globally asymptotically stable;

! exponentially convergent if it is uniformly convergent and x̄(t) is globally expo-
nentially stable.

The solution x̄(t) is called a limit solution. As follows from the definition of
convergence, any solution of a convergent system “forgets” its initial condition and
converges to some limit solution which is independent of the initial conditions. In
general, if there is a globally asymptotically stable limit solution x̄(t) it may be
non-unique, in the sense that there can exist another solution x̃(t) bounded for all
t ∈ (−∞, +∞) that is also globally asymptotically stable. For any two such solutions
it obviously follows that ||x̄(t)− x̃(t)|| → 0 as t→∞. At the same time for uniformly
convergent systems the limit solution is unique, as formulated below.

Property 17.1 ([30, 29]). If system (17.1) is uniformly convergent, then the limit
solution x̄(t) is the only solution defined and bounded for all t ∈ (−∞, +∞).

In systems theory time dependency of the right-hand side of system (17.1) is
usually due to some input. This input may represent, for example, a disturbance or a
feedforward (reference) control signal. Below we will consider convergence properties
for systems with inputs. So, instead of systems of the form (17.1), we consider systems

ẋ = f(x, w), (17.6)

with state x ∈ Rn and input w ∈ Rm. In the sequel we will consider the class
PCm of piecewise continuous inputs w(t) : R → Rm which are bounded for all
t ∈ R. We assume that the function f(x, w) is bounded on any compact set of (x, w)
and the set of discontinuity points of the function f(x, w) has measure zero. Under
these assumptions on f(x, w), for any input w(·) ∈ PCm the differential equation
ẋ = f(x, w(t)) has well-defined solutions in the sense of Filippov. Below we define
the convergence property for systems with inputs.

Definition 17.3. System (17.6) is said to be (uniformly, exponentially) convergent
if it is (uniformly, exponentially) convergent for every input w(·) ∈ PCm.

In this paper we are going to consider the systems of the form (17.1) and (17.6)
with non-smooth right hand sides under quite general regularity assumptions that
guarantee the existence of solutions in some reasonable sense, e.g. in a sense of
Filippov, see e.g. [9, 40]. According to Filippov one can construct a set-valued func-
tion F(x, t) such that an absolutely continuous solution of the differential inclusion
ẋ ∈ F(x, t) is called a solution for system (17.1).

For system (17.1) consider a scalar continuously differentiable function V (x).
Define a time derivative of this function along solutions of system (17.1) as follows

V̇ :=
∂V (x)

∂x
ẋ(t, t0, x0).
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Since V is continuously differentiable and the solution x(t, t0, x0) is an absolutely
continuous function of time, the derivative V̇ (x(t, t0, x0)) exists almost everywhere in
the maximal interval of existence [t0, T̄ ) of the solution x(t, t0, x0). For the function
V we can also define its upper derivative as follows

V̇ ∗(x, t) = sup
ξ∈F(x,t)

∂V (x)

∂x
ξ .

Then for almost all t ∈ [t0, T̄ ) it follows that

V̇ (x(t, t0, x0)) ≤ V̇ ∗(x(t, t0, x0), t).

Remark 17.1. Notice that in the domains of continuity of the function F (x, t) the

derivative of V (x) along solutions of system (17.1) equals V̇ = ∂V (x)
∂x F (x, t). Accord-

ing to [9] p.155, for a continuously differentiable function V (x) it holds that if the
inequality

∂V (x)

∂x
F (x, t) ≤ 0

is satisfied in the domains of continuity of the function F (x, t), then the inequality
V̇ ∗(x, t) ≤ 0 holds for all (x, t) ∈ Rn+1.

Definition 17.4. System (17.6) is called quadratically convergent if there exists a
matrix P = P T > 0 and a number α > 0 such that for any input w ∈ PCm for the
function V (x1, x2) = (x1 − x2)

T P (x1 − x2) it holds that

V̇ ∗(x1, x2, t) ≤ −αV (x1, x2), (17.7)

where V̇ ∗(x1, x2, t) is the upper derivative of the function V (x1, x2) along any two
solutions of the corresponding differential inclusion, i.e.

V̇ ∗(x1, x2, t) = sup
ξ1∈F(x1,w(t))

∂V

∂x1
(x1, x2)ξ1 + sup

ξ2∈F(x2,w(t))

∂V

∂x2
(x1, x2)ξ2 .

Quadratic convergence is a useful tool for establishing the exponential conver-
gence, as follows from the following lemma.

Lemma 17.2 ([30]). If system (17.6) is quadratically convergent, then it is expo-
nentially convergent.

The proof of this lemma is based on the following result, which will be also used
in the remainder of this paper.

Lemma 17.3 ([39]). Consider system (17.6) with a given input w(t) defined for all
t ∈ R. Let D ⊂ Rn be a compact set which is positively invariant with respect to
dynamics (17.6). Then there is at least one solution x̄(t), such that x̄(t) ∈ D for all
t ∈ (−∞, +∞).

Note that for convergent nonlinear systems performance can be evaluated in
almost the same way as for linear systems. Due to the fact that the limit solution
of a convergent system only depends on the input and is independent of the initial
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conditions, performance evaluation of one solution (i.e. one arbitrary initial state)
for a certain input suffices, whereas for general nonlinear systems all initial states
need to be evaluated to obtain a reliable analysis. This means that for convergent
systems simulation becomes a reliable analysis tool and for example ‘Bode-like’ plots
can be drawn to analyse the system performance. An example of simulation based
performance analysis can be found in Sect. 17.5.1.

17.4 Application of Convergent Systems Analysis to the
Anti-windup Problem

The presence of actuator saturation in an otherwise linear closed-loop system can
dramatically degrade the performance of that system. This performance degradation
is caused by the so-called ‘controller windup’.

In the past, several linear and nonlinear anti-windup techniques have been de-
veloped to compensate for this windup effect (see e.g. [15, 14, 36, 19, 12]). However,
not all approaches, e.g. based on finite (incremental) L2 gain, are able to guarantee
global anti-windup for a marginally stable plant. Here we propose another approach,
based on uniform convergency, which is close to that introduced by [12]. The main
difference between this and most other approaches is that whereas the other ap-
proaches focus on guaranteeing L2 stability from input to output, this approach
focusses on ensuring convergency, i.e. a unique limit solution for each input signal,
independent of initial conditions, which is constant (resp. periodic) if the input signal
is constant (resp. periodic). In this section we show that under some mild conditions,
it is possible to guarantee uniform convergency for an anti-windup scheme with a
plant that is an integrator (i.e. marginally stable).

s
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Fig. 17.1. Anti-windup scheme with integrator plant

Consider the system in Fig. 17.1, consisting of an integrator plant with input
saturation, a PI-controller and a static anti-windup block. Assuming input r is dif-
ferentiable, this system can be described as follows

ẋ = Ax + Bu + Ew(t)

z = Cx

u = sat(yc)

(17.8)
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where x = [y yc]
T , w(t) = [r(t) ṙ(t) w3(t)]

T and

A =

 0 0

−kI −kIkA

 , B =

 1

−kP + kIkA

 , E =

 0 0 1

kI kP −kP

 , C = [0 1] ,

with kI , kP , kA > 0 and sat(yc) = sign(yc) max(1, |yc|).
Definition 17.5. A continuous function t → w(t), w(t) = [w1(t) w2(t) w3(t)]

T is
said to belong to the class W if there exist nonnegative constants C1, C2, C3, C4,
C5, with C3 < 1 such that

1. ∀t ∈ R1 |w1(t)| ≤ C1;
2. ∀t ∈ R1 |w2(t)| ≤ C2;
3. w3(t) = w3c(t) + w3i(t) with

3a. ∀t ∈ R1 |w3c(t)| ≤ C3;

3b. ∀t, t0 ∈ R1 t

t0
w3i(τ)dτ ≤ C4;

3c. ∀t ∈ R1 |w3(t)| ≤ C5.

Theorem 17.1. If kAkP > 1 then system (17.8) is uniformly convergent for all
w(·) ∈ W.

First we prove the following lemmata.

Lemma 17.4. If kAkP > 1 then system (17.8) is uniformly ultimately bounded for
all w ∈ W, that is, given input w(·) from W, there is a number R > 0 such that for
any solution x(t, t0, x0) starting from a compact set Ω there is a number T (Ω) such
that for all t ≥ t0 + T (Ω) it follows that ||x(t, t0, x0)|| < R.

Proof. Let yi(t) = y(t)− t

t0
w3i(τ)dτ . Then the system equations can be rewritten

as 
ẏi = ẏ − w3i(t) = sat(yc) + w3c(t)

ẏc = −kIyi − kIkAyc + (kIkA − kP )sat(yc) + ζ(t)

(17.9)

with

ζ(t) = kIr(t) + kP ṙ(t)− kP w3(t)− kI

t

t0

w3i(τ)dτ.

Consider the following Lyapunov function candidate

W (yi, yc) =

 yi

yc


T

P

 yi

yc

 , with P =

 c 1

1 kA

 . (17.10)

This function is positive definite and radially unbounded for kAc > 1.
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Ẇ =

 yi

yc


T

Q

 yi

yc

 + 2

 yi

yc


T

P

 0

1

 ζ(t) + 2

 yi

yc


T

P

 1

0

w3c(t) (17.11)

and the matrix Q is negative definite provided kAkP > 1 and c = kP + kIkA (or lies
in some interval around this value).

In the saturated mode (sat(yc) = sign(yc)) the time derivative of W equals

Ẇ

2
=− kIy

2
i − 2kIkAyiyc − kIk

2
Ay2

c + (c− kP + kIkA)yisign(yc)

+ (1− kAkP + k2
AkI)|yc|+ (yi + kAyc)ζ(t) + (cyi + yc)w3c(t).

Denote µ = yi + kAyc. Then

Ẇ

2
=− kIµ

2 + (c− kP + kIkA)µsign(yc)− (c− kP + kIkA)kA|yc|
+ (1− kAkP + k2

AkI)|yc|+ µζ(t) + (cµ + (1− kAc)yc)w3c(t),

so that
Ẇ

2
≤ −kIµ

2 + |µ|C6 + (1− kAc)(1− C3)|yc|, (17.12)

with
C6 = |c− kP + kIkA|+ kIC1 + kP (C2 + C5) + kIC4 + cC3.

Combining (17.11) and (17.12) one can apply the Yoshizawa theorem on ultimate
boundedness (see e.g. [16]) since kAc > 1, C3 < 1 and kAkP > 1. This completes the
proof.

Consider a system consisting of two copies of (17.8) with identical inputs:

ẋ =

A 0

0 A

x +

B 0

0 B


 sat(yc1)

sat(yc2)

 +

E

E

w(t), (17.13)

with x = [y1 yc1 y2 yc2]
T . Define the function ξ(t) as follows

ξ(t) =



satyc1(t)−satyc2(t)
yc1(t)−yc2(t)

if yc1(t) = yc2(t);

1 if yc1(t) = yc2(t) & |yc1(t)| < 1 & |yc2(t)| < 1;

0 otherwise.

Since the function sat(·) satisfies the incremental sector condition it follows that ∀t
0 ≤ ξ(t) ≤ 1. We need the following result.

In the linear mode (sat(yc) = yc) the time derivative of (17.10) satisfies
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Lemma 17.5. Given w(·) from W, for any solution x(t, t0, x0) of (17.13) starting
from some compact set Ω there exist δ = δ(Ω) > 0, T̄ = T̄ (Ω) > 0, such that for all
t ≥ t0 it follows that

t+T̄

t

ξ(s)ds ≥ δ.

Proof. First consider yc1max
:= lim supt→∞ |yc1(t)| < 1. From the previous lemma

this means that after some finite T (Ω) both subsystems of (17.13) approach the
linear mode and will stay in this mode for all t ≥ T (Ω). If both |yc2| < 1 and
|yc1| < 1 then ξ = 1 and the result follows.

Secondly, consider the opposite: yc1max
≥ 1. From the system equations it follows

that for any t ≥ t0, T > 0

y1(t + T )− y1(t) =
t+T

t

satyc1(s)ds +
t+T

t

w3(s)ds

and therefore

1

T

t+T

t

satyc1(s)ds =
y1(t + T )− y1(t)

T
− 1

T

t+T

t

w3(s)ds. (17.14)

From Lemma 17.4 and the assumption imposed on the signal w3(t) it follows that
by making T sufficiently large one can make the first term of the right hand side
arbitrarily small and the second term strictly smaller than 1 by absolute value.
In other words, for sufficiently large T̄ = T̄ (Ω) there is an α that can be chosen
independently of t0, 0 < α < 1 such that

1

T̄

t+T̄

t

satyc1(s)ds ≤ α.

Due to the mean value theorem there is a η ∈ (t, t+T̄ ] such that |satyc1(η)| ≤ α. From
Lemma 17.4 we know that the time derivative of yc1(t) is bounded and therefore the
function satyc1(t) is uniformly continuous on [t0,∞). Now choose some ε > 0 such
that α + ε < 1. This is always possible since α < 1. Since saty1c(t) is uniformly
continuous there is a number ∆t > 0 such that

|saty1c(τ)| ≤ α + ε < 1, ∀τ ∈ [η −∆t, η + ∆t].

This number ∆t can be chosen independently of t0 since the right hand side of
(17.13) and hence ẏ1c(τ) is uniformly bounded. Among all possible ∆t choose the
largest possible satisfying ∆t ≤ T̄ . Now, integrating nonnegative ξ from t till t + T̄
yields

t+T̄

t

ξ(s)ds ≥
min{t+T̄ ,η+∆t}

max{t,η−∆t}
ξ(s)ds.

Since t ≤ η ≤ t + T̄ it follows that

min{t + T̄ , η + ∆t} −max{t, η −∆t} ≤ min{T̄ , ∆t} = ∆t
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and
min{t+T̄ ,η+∆t}

max{t,η−∆t}
ξ(s)ds ≥ ∆tξmin,

where ξmin is the lowest bound for ξ under restriction that |saty1c| ≤ α + ε < 1. ξ
approaches this bound if |y1c| = α + ε and |y2c| = yc1max

≥ 1. Therefore,

ξmin =
1− α− ε

yc1max
− α− ε

> 0

and hence
t+T̄

t

ξ(s)ds ≥ ∆t
1− α− ε

yc1max
− α− ε

> 0.

The last inequality implies the statement of Lemma (17.5) with δ = ∆t 1−α−ε
yc1max−α−ε .

Proof of Theorem 17.1: For system (17.8) consider the Lyapunov function:

V (x) = xT

 P −P

−P P

x ≥ 0, (17.15)

with x = [y1 yc1 y2 yc2]
T , P as defined in (17.10), c = kP + kIkA and therefore

kAc > 1. Denote e1 = y1 − y2, e2 = yc1 − yc2 and ϕ = sat(yc1)− sat(yc2). Then the
derivative of V satisfies

V̇

2
= −kIe

2
1 − 2kIkAe1e2 − kIk

2
Ae2

2 + 2kIkAe1ϕ + (1 + kIk
2
A − kP kA)e2ϕ

= −kI(e1 + kAe2)
2 + 2kIkAϕ(e1 + kAe2)− kIk

2
Aϕ2

−kIk
2
Ae2ϕ− (kP kA − 1)e2ϕ + kIk

2
Aϕ2

= −kI (e1 + kA(e2 − ϕ))2 − (kP kA − 1)e2ϕ− kIk
2
A(e2ϕ− ϕ2).

Since sat(·) satisfies the [0, 1]-incremental sector condition

e2ϕ− ϕ2 ≥ 0,

it follows that
V̇ ≤ 0

and uniform stability of all solutions y1(t), y1c(t) of (17.8) is proven. The last in-
equality is not sufficient to prove quadratic stability of all solutions. However, the
exponential convergence from a given compact set can be deduced from the previous
lemma. Indeed,

V̇

2
= −kIe

2
1 − 2kIkAe1e2 − kIk

2
Ae2

2 + 2kIkAe1ϕ + (1 + kIk
2
A − kP kA)e2ϕ

= kI(1− ξ(t)) −e2
1 − 2kAe1e2 − k2

Ae2
2 − kIξ(t)e

2
1 − (kP kA − 1)ξ(t)e2

2

≤ −kIξ(t)e
2
1 − (kP kA − 1)ξ(t)e2

2.
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It follows then that V satisfies the following inequality

V̇ ≤ λmaxξ(t)V,

in which λmax < 0 is the largest solution of the following generalized eigenvalue
problem

det

2

−kI 0

0 −(kP kA − 1)

− λP

 = 0.

Hence
t0+T̄

t0
λmaxξ(t) ≤ λmaxδ < 0 with δ from the statement of Lemma 17.5.

Using the Gronwall-Bellman lemma (see e.g. [1]) one can see that V → 0 as t→∞
uniformly in time and uniformly in the initial conditions from Ω. Since Ω is an
arbitrary compact set and due to Lemma 17.4, all solutions are globally uniformly
asymptotically stable. Due to Lemma 17.3 there is a bounded solution x̄(t) defined
on the whole time interval (−∞, +∞) and thus system (17.8) is uniformly convergent
for all w(·) ∈ W . Note that due to Property 17.1 this solution x̄(t) is the unique
solution bounded on (−∞, +∞).

As one can see, our analysis is based on a PE-like (persistency of excitation)
property that follows from Lemma 17.5. More advanced results in this direction can
be found in [28, 23].

17.4.1 Example: Influence of Parameter kA on System Dynamics

Theorem 17.1 states that system (17.8) is uniformly convergent for kA > 1/kP . In
this example, we consider system (17.8) with kP = 10, kI = 20 and w3(t) = 0,
and evaluate the system behavior for several values of kA. Note that the values of
kP and kI are chosen in such a way that the system without the saturation has a
satisfactory performance.
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(a) x0 = (−2, 0)
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(b) x0 = (−3, 0)

Fig. 17.2. System output for input r(t) = sin(t) and different values of kA

In Fig. 17.2 the system output y is plotted for four different values of kA and the
input signal r(t) = sin(t). Figures 2(a) and 2(b) display the results for two different
initial conditions of the system. For kA = 0 (i.e. no anti-windup) the two initial
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conditions result in two different limit solutions. An other observation is that for
the other values of kA (even for kA = 0.05 < 1/kP ) the system seems to have a
unique limit solution for different initial conditions. However, to verify the existence
of a unique limit solution for kA = 0.05 we should be able to evaluate all initial
conditions and input signals, since it is possible that for another initial condition or
input signal the limit solution for kA = 0.05 is not unique, or we should be able to
expand Theorem 17.1 such that it holds for kA < 1/kP as well.

17.5 Quadratic Convergence of Switched Systems

Consider the switched dynamical system

ẋ = Aix + Biw(t), i = 1, . . . , k, (17.16)

where x(t) ∈ Rn is the state, w(·) ∈ PCm is the input. Suppose the collection of ma-
trices {A1, . . . , Ak} and {B1, . . . , Bk} is given, and Ai is Hurwitz for all i = 1, . . . , k.
The general problem is to find a switching rule such that the closed loop system is
uniformly (exponentially) convergent. In this section, we focus on a switching rule
that is based on static state feedback, i.e. i = σ(x). Note that in a similar way dy-
namic state feedback and static/ dynamic output feedback can be considered. These
approaches are subject for future research.

Suppose a common Lyapunov matrix P = P T > 0 exists that satisfies the fol-
lowing inequalities

AT

i P + PAi < 0, i = 1, . . . , k. (17.17)

Consider the following switching rule

σ(x, w) = arg min
i
{xT Zixx + xT Ziww}, (17.18)

in which Ziw = 4PBi and Zix are matrices to be defined.

Theorem 17.2. If there exist a P = P T > 0, α > 0, and Z1x, . . . , Zkx and if

Zix = Zjx and/or Ziw = Zjw ∀i, j ≤ k, i = j, (17.19)

such thatPAi + AT

i P − (Zix − Zjx) −(AT

i P + PAj)

−(AT

j P + PAi) PAj + AT

j P + (Zix − Zjx)

 ≤ −α

 In −In

−In In


(17.20)

for all i, j ≤ k, i = j, then the switching rule (17.18) with matrices Z1x, . . . , Zkx

makes system (17.16) quadratically convergent.

Proof. First, note that condition (17.19) implies that the set of discontinuities of
the right-hand side of the closed loop system has zero measure, which means that a
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Filippov solution exists for the closed loop system. Let P be a common Lyapunov
matrix for the collection {A1, . . . , Ak} and consider the Lyapunov function candidate

V (x1, x2) = (x1 − x2)
T P (x1 − x2). (17.21)

If σ(x1, w) = σ(x2, w) the inequality

V̇ ≤ −εV, ε > 0 (17.22)

is obviously satisfied. Let σ(x1, w) = p and σ(x2, w) = q, such that the derivative
of (17.21) can be written as

V̇ = xT

1 (AT

p P + PAp)x1 + xT

2 (AT

q P + PAq)x2 − xT

1 (AT

p P + PAq)x2 (17.23)

−xT

2 (PAp + AT

q P )x1 + 2xT

1 PBpw + 2xT

2PBqw − 2xT

1 PBqw − 2xT

2 PBpw.

Using the switching rule (17.18) the following constraint functions can be defined

S1(x, w) =
1

2
(xT

1 (Zpx − Zqx)x1 + xT

1 (Zpw − Zqw)w) ≤ 0,

S2(x, w) =
1

2
(xT

2 (Zqx − Zpx)x2 + xT

2 (Zqw − Zpw)w) ≤ 0.

The system is quadratically stable (see Definition 17.4) if

V̇ ≤ −α

x1

x2


T  In −In

−In In


x1

x2


for all (x, w) satisfying S1(x, w) ≤ 0 and S2(x, w) ≤ 0. Using the S-procedure, the
previous condition is satisfied if the following inequality holds

V̇ − S1 − S2 ≤ −α

x1

x2


T  In −In

−In In


x1

x2

 . (17.24)

This inequality is equivalent to (17.20).

Remark 17.2. Note that (17.20) is an LMI with design variables P , Z1x, . . . , Zkx and
α, which can be solved efficiently using available LMI toolboxes.

Remark 17.3. In case Bi = B for all modes, then the switching rule (17.18) is inde-
pendent of the input. This implies that under the conditions stated in Theorem 17.2
the system can be made convergent without regarding the input, even if the input
for example represents a disturbance signal.
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Although Theorem 17.2 gives sufficient conditions for quadratic convergence, it
does not give insight for what collection of matrices {A1, . . . , Ak} a switching law
can be found. In the case that we define in advance both Zix and Ziw

Zix = AT

i P + PAi, Ziw = 4PBi, ∀i = 1, . . . , k, (17.25)

then Theorem 17.2 can be simplified as follows.

Theorem 17.3. If there exist a P = P T > 0 satisfying (17.17) and if

Zix = Zjx and/or Ziw = Zjw ∀i, j ≤ k, i = j (17.26)

and
P (Ai −Aj)− (Ai −Aj)

T P = 0 ∀i, j ≤ k, (17.27)

then the switching rule (17.18) makes system (17.16) quadratically convergent.

Proof. Consider the same notations as in the proof of Theorem 17.2. Note that due
to (17.27),

xT

1 (AT

p P + PAq)x2 + xT

2 (PAp + AT

q P )x1 = (17.28)

1

2
xT

1 (AT

p P + PAp + AT

q P + PAq)x2 +
1

2
xT

2 (AT

p P + PAp + AT

q P + PAq)x1.

Combining (17.23) with (17.28) and using notations (17.25) gives

V̇ =
1

2
xT

1 Zpxx1 +
1

2
xT

1 Zpxx1 +
1

2
xT

1 Zpww

+
1

2
xT

2 Zqxx2 +
1

2
xT

2 Zqxx2 +
1

2
xT

2 Zqww

−1

2
xT

1 (Zpx + Zqx)x2 − 1

2
xT

2 (Zpx + Zqx)x1

−1

2
xT

2 Zpww − 1

2
xT

1 Zqww.

The switching rule (17.18) implies that

1

2
(xT

1 Zpxx1 + xT

1 Zpww) ≤ 1

2
(xT

1 Zqxx1 + xT

1 Zqww)

1

2
(xT

2 Zqxx2 + xT

2 Zqww) ≤ 1

2
(xT

2 Zpxx2 + xT

2 Zpww)

and therefore

V̇ ≤ 1

2
(x1 − x2)

T (Zpx + Zqx)(x1 − x2) ≤ −αV

for some α > 0.

Remark 17.4. Note that condition (17.27) is always satisfied for symmetric matrices
Ai, i = 1, . . . , k.
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Linear
controller 1

Linear
controller 2

Mass-spring-
damper system

SWITCH
w(t) +

-
y(t)

Fig. 17.3. Graphical representation of system (17.29)

17.5.1 Example: Performance of a Convergent Switched System

In this example we show how a simulation-based performance analysis can be realized
for a switched systems that is made convergent by the design of a switching rule.

Consider the switched system

ẋ = Aix + Biw(t), i = 1, 2

y = Cx
(17.29)

which represents for example a mass-spring-damper system with two linear con-
trollers (see Fig. 17.3). Here, x(t) ∈ R3 is the state, w(·) ∈ PC1 is the input,
C = [ 1 0 0 ], and

A1 =


−7 2 −6

−10 −3 −5

7 4 −1

 , B1 =


13

15

−6

 , A2 =


−6 3 −8

−9 0 −8

5 1 −9

 , B2 =


3

9

−6

 .

For the common Lyapunov matrix

P =


0.5163 −0.1655 −0.0038

−0.1655 0.2609 0.0321

−0.0038 0.0321 0.2669

 > 0

and

Z1x − Z2x =


−0.3584 −0.0312 0.5055

−0.0312 −0.5208 0.7083

0.5055 0.7083 2.2239


conditions (17.19) and (17.20) are satisfied, with α = 1. Switching rule (17.18) thus
makes the system (17.29) quadratically convergent,
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˙ V ≤ −(x1 − x2)
2 ≤ −1.6704(x1 − x2)

T P (x1 − x2) = −1.6704V.

Subsequently, the fact that

λmin(P )(x1 − x2)
2 ≤ (x1 − x2)

T P (x1 − x2) ≤ λmax(P )(x1 − x2)
2,

with λmin(P ) and λmax(P ) the minimum and maximum eigenvalue of P respectively,
leads to the following upper bound

|x1(t)− x2(t)| ≤ λmax(P )/λmin(P ) |x1(0)− x2(0)| e
−1.6704

2
t

≤ 1.8671 |x1(0)− x2(0)| e−0.8352t. (17.30)

In order to analyse the performance of this switched system, only one solution of the
system needs to be evaluated, since the limit solution of this (convergent) system is
independent of its initial conditions. In Fig. 17.4 the performance of the switched
system is compared with the performance of the two corresponding linear systems,
i.e., ẋ = A1x + B1w(t) and ẋ = A2x + B2w(t). The performance measure applied
here is the integrated tracking error:

tl+T

tl
(w(t) − y(t))2 dt
tl+T

tl
w(t)2dt

, (17.31)

where T is a time period that is long enough to obtain a good average of the tracking
error and tl is a moment in time for which all considered solutions are close enough to
the limit solution. The time tl is in this example determined visually, but a bound can
be calculated as well using (17.30). The performance is evaluated for the following
input signals:

w(t) = sin(bt), b ∈ [10−2, 103].

From Figure 17.4 it can be concluded that for the considered performance mea-

10−2 10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2
Controller 1
Controller 2
Switched

in
te

g
ra

te
d

tr
a
ck

in
g

er
ro

r

b

Fig. 17.4. Performance of switched system
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sure (17.31) the switched system performs better then the linear systems for the
input range b ∈ [101, 103], i.e. the switched system is less sensitive to high frequen-
cies in the input signal. More important, however, is the fact that the performance of
the switched system can be determined by means of simulation, which is practically
impossible for most nonlinear/switched systems that are not convergent.

17.6 Conclusions

In this paper we considered the following problem definition for piece-wise affine
systems: is it possible to design a feedback law and/or switching rule such that the
resulting closed-loop system is convergent? We have investigated this problem for
two areas of interest, i.e. the anti-windup design for a marginally stable plant with
input saturation and the class of switched linear systems.

For an integrator plant with input saturation, we proved that by a simple static
anti-windup rule a uniformly convergent closed-loop system can be obtained. It is
also noted that within the range of the anti-windup rule for which the system is con-
vergent, performance of the closed-loop system can be optimized using simulation.

Furthermore, we demonstrated the use of convergency in the class of switched
linear systems. It is proved that by definition of the switching rule the switched
system can made convergent if the linear subsystems satisfy certain conditions. For
the convergent switched system, a performance evaluation has been shown feasible
using a Bode-like plot.
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