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Abstract. Extreme Learning Machine, ELM, is a recently available learning al-
gorithm for single layer feedforward neural network. Compared with classical
learning algorithms in neural network, e.g. Back Propagation, ELM can achieve
better performance with much shorter learning time. In the existing literature,
its better performance and comparison with Support Vector Machine, SVM,
over regression and general classification problems catch the attention of many
researchers. In this paper, the comparison between ELM and SVM over a par-
ticular area of classification, i.e. text classification, is conducted. The results of
benchmarking experiments with SVM show that for many categories SVM still
outperforms ELM. It also suggests that other than accuracy, the indicator com-
bining precision and recall, i.e. F; value, is a better performance indicator.

1 Introduction

Automated text classification aims to classify text documents into a set of predefined
categories without human intervention. It has generated interests among researchers in
the last decade partly due to the dramatically increased availability of digital docu-
ments on the World Wide Web, digital libraries and documents warehouses [20].

Text classification (TC) is an area with roots in the disciplines of machine learning
(ML) and information retrieval (IR) [1], [15]. Text mining has become a terminology
very frequently used to describe tasks whose major concerns are to analyze high vol-
umes of texts, detect interesting patterns and reveal useful information. TC has be-
come one of the most important pillars of text mining.

In order to accomplish the TC tasks, one or more classifiers are needed. Most of
current popular classifiers, i.e. support vector machine (SVM), neural network (NN),
kNN, decision tree and decision rule, Naive Bayes and so on, are built in an inductive
learning way. Among them, SVM is acclaimed by many researchers for its leading
performance [20]. Therefore, it has been widely used for TC purpose.

Most recently, a new learning algorithm, extreme learning machine (ELM), is
available for the training of single layer feedforward neural network. The inventors of
ELM have done a set of comprehensive experiments in regression and general classi-
fication to compare its performance with SVM [7]. The experimental results show
that compared with classical learning algorithms in neural network, e.g. Back Propa-
gation, ELM can achieve better performance with much shorter learning time [7].
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Compared with SVM, ELM is sometimes better than SVM in terms of accuracy,
though not always. But as the number of neurons available for each ELM machine is
the only parameter to be determined, ELM is much simpler for parameter tuning com-
pared with SVMs whose kernel functions are nonlinear, e.g. RBF functions, thus
saving tremendous time in searching for optimal parameters. Currently, SVMs, even
for those with linear kernel function only, have gained wide acceptance by researchers
as the leading performer for TC tasks. Our interest in this research is to benchmark
ELM and SVM with linear kernel function for TC tasks and see whether ELM can
serve as an alternative to SVM in TC tasks.

Having described the motivation of comparison between ELM and SVM, the rest
of this paper is organized as follows. Some previous work in TC field by using neural
network and SVM is reviewed in section 2. A brief introduction to ELM is given in
section 3. We explain the experiment details and discuss the results in section 4. Fi-
nally, conclusions are drawn in section 5.

2 Related Work

Since several years ago, Neural network (NN) has been applied to TC tasks as a clas-
sifier. A NN is composed of many computing units (neurons) interconnected with
each other with different weights in a network. In TC domain, the inputs to NN are
the weights of features, i.e. terms, in a text document. And the output is the desired
category or categories of the text document [2], [20], [23], [24].

Perceptron, the simplest type of NN classifier, is a linear classifier and has been ex-
tensively researched. Combined with effective means of feature selection, perceptron
has achieved a very good performance and remains as the most popular choice of NN
[16]. A non-linear NN, on the other hand, is a network with one or more additional
“layers” of neurons, which in TC usually represent higher-order interactions between
terms that the network is able to learn [17], [18], [23], [24], [26]. The literature on
comparative experiments relating non-linear NNs to their linear counterparts show
that the former has yielded either no improvement or very small improvements [23].
With their flexible architectures, NNs are well suited for applications of hierarchy text
classification also [24].

Compared with NN, support vector machine (SVM) is relatively new to research-
ers in the fields of machine learning and information retrieval. However, it has
quickly become the most popular algorithm mainly due to its leading performance. It
is invented by Vapnik [22] and first introduced into the TC area by Joachims [8], [9].
His SVM implementation, i.e. SVM Light, has become one of the most popular pack-
ages of SVM application and has been widely used for TC [5], [11], [20], [26]. Ac-
cording to Joachims [8], SVM is very suitable for TC purpose, because SVM is not
very sensitive to the high dimensionality of the feature space and most of TC jobs can
be linearly separated. Yang and Liu’s experiments [26] over a benchmarking TC cor-
pus show that compared with the assumption of non-linear separation, the linear sepa-
ration case can lead to a slightly better performance and save much effort on parame-
ter tuning.

Invented by Huang Guangbin, extreme learning machine (ELM) is a newly avail-
able learning algorithm for a single layer feedforward neural network [7]. ELM ran-
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domly chooses the input weights and analytically determines the output weights of the
network. In theory, this algorithm tends to provide the good generalization perform-
ance at extremely fast learning speed. The regression and classification experiments
conducted by the inventors have shown that compared with BP and SVM, ELM is
easier to use, faster to learn and has the higher generalization performance [7].

3 Extreme Learning Machine

A standard single layer feedforward neural network with n hidden neurons and activa-
tion function g(x) can be mathematically modeled as:

> Bswx, +b)=d, j=1...N ¢))
i=1

where w, is the weight vector connecting inputs and the ith hidden neurons, B, is
the weight vector connecting the ith hidden neurons and output neurons, dis the out-
put from ELM for data point j.

With N data points in a pair as (xj,tj) , X, € R"and ¢, € R" where t is the corre-
sponding output for data point x;, the ideal case is training with zero errors, which

can be represented as:

;ﬂ,g(wl.xj+bl.)=tj,j=1,...,N )
The above equations can be written compactly as:
HSG=T 3)
where
gwx +b) -+ gw,x +b,)
H= : : @)
gwx, +b) - gw,x,+b,) N
B o
p=|: and T=| : (5)
T T
ﬂ" nxm tN Nxm
So the solution is:
f=H'T 6)

where H' is called Moore-Penrose generalized inverse [7].
The most important properties of this solution as claimed by the authors [7] are:

—_—

. Minimum training error
2. Smallest norm of weights and best generalization performance

3. The minimum norm least-square solution of Hf = T is unique, which is ﬁ =H'T.
So finally, the ELM algorithm is [7]:
Given a training set{(x,.,ti)|xl. eR"teR",i= 1,...,N}, activation function g(x),
and N hidden neurons,
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Step 1: Assign arbitrary input weights w, and biasb,, i =1,...

Step 2: Calculate the hidden layer output matrix H .
Step 3: Calculate the output weights 5 :

B=HT

where H, f# and are as defined before.

4 Experiments

4.1 Data Set - MCV1

N/

393
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Manufacturing Corpus Version 1 (MCV1) is an archive of 1434 English language
manufacturing related engineering papers. It combines all engineering technical

Table 1. The 18 major categories of MCV1

COL. Assembly & Joining

C07. Machining & Material
Removal Processes

C13. Product Design Manage-
ment

C02. Composites Manufactur-

C08. Manufacturing Engineer-

C14. Quality

ing ing & Management
CO03. Electronics Manufactur- C09. Manufacturing Systems, C15. Rapid Prototyping
ing Automation & IT

CO04. Finishing & Coating

C10. Materials

C16. Research & Development
/ New Technologies

CO05. Forming & Fabricating

C11. Measurement, Inspection
& Testing

C17. Robotics & Machine Vi-
sion

C06. Lean Manufacturing &
Supply Chain Management

C12. Plastics Molding &
Manufacturing

C18. Welding
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Fig. 1. Documents frequency distribution of MCV1 and ELM data set
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papers from Society of Manufacturing Engineers (SME) from year 1998 to year 2000
[12]. There are 18 major categories of documents and two levels of subcategories be-
low them. The 18 major categories are shown in Table 1:

Each document in MCV1 is labeled with one to nine category labels. For the pur-
pose of this research, only one label is associated with each document. It is mainly
because the current version of ELM only takes the highest value from output neurons
as the prediction; it cannot handle the problem of multiclass classification using a sin-
gle ELM machine.

Figure 1 shows that the documents frequency distribution in ELM data set matches
very well with the original distribution in MCV1.

Table 2 shows the detailed distribution of 1434 documents from different catego-
ries.

Table 2. Percentage of documents of 18 categories in ELM data set

Co01 Co02 Co3 Co4 Co0s Co6

2.58% 1.47% 0.70% 1.81% 4.95% 3.63%

Co7 Co08 Co9 C10 C11 C12

13.96% 19.12% | 25.40% 551% 5.44% 1.05%

C13 C14 C15 C16 c17 C18

4.47% 2.30% 2.02% 1.74% 2.65% 1.19%

4.2 Experimental Setting

In the experiments, only the abstract of each paper is used. All standard text process-
ing procedures are applied in the experiments, including stop words removal, stem-
ming. By using the general #fidf weighting scheme, the documents are represented in

vector format. Chi-square five fold cross validation is used to evaluate the features for
ELM dataset.

In order to compare with SVM strictly, one ELM machine is built over each of 18
major categories. Document vectors sharing the same category label will be set as
positive and all other vectors are set as negative. This way of building data set is gen-
erically the same as the one for SVM. In this paper, we call this “one-against-all”.
One-against-all is different from purely binary classification in the sense that the
negative part is composed by many different categories, instead of from a single op-
posite category. Therefore, there are totally 18 datasets. For each of them, five fold
cross validation is assessed. SVM Light is chosen as the SVM package with linear
function as the kernel function. For ELM, all data points have been normalized
to(—1,1) and sigmoid has been chosen as the activation function. The way to search

for the optimal size of neurons is suggested by the authors in [7]. With the starting
size of 20, the number of neurons increases with a step of 20. Based on the output per-
formance, the optimal size of neurons will be decided. Finally based on the optimal
sizes of neurons, 50 more trials are performed in order to collect the best output.
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4.3 Performance Indicator

Accuracy has been used as the performance indicator for classification comparison
with SVM in [7]. However, if the datasets are formed as one-against-all, accuracy is
not always a good indicator. A very obvious example for this argument is a dataset
that might have some categories with very few documents. If the system predicts all
data points as negative, it can still generate a very high accuracy value since the nega-
tive portion of this data set, which is composed by many different categories, occupies
the large percentage of this data set. With the negative prediction for a document, it is
still unclear which category it belongs to. The building of our dataset rightly fits into
this case. In order to avoid this problem and show the real performance of both algo-

2
rithms, the classic F; value which is defined as F, = " s adopted, where p repre-

+r

sents precision and r represents recall [1], [15], [20]. This performance indicator com-
bines the effects of precision and recall, and it has been widely used in TC domain.

4.4 Results and Discussion

Figure 2 shows the relationship between the size of neurons and its performance for
ELM machines built over major categories in MCV1. Obviously, with the increase of
neurons, ELM machines achieve the best performance very quickly and remain stable
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Fig. 2. Number of neurons vs. F; performance
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for a wide range of neuron sizes. The broad spectrum of neuron size implies that ELM
is robust to this critical parameter setting. It is also noted that for MCV1 dataset, 60-
120 neurons can provide most categories with good performance in a few trials.

In the experiments, authors are curious whether feature selection still contributes
towards the performance of ELM. Chi-Square five fold cross validation has been ap-
plied to select the salient features. With feature selection, the dimension has been
dramatically reduced from over five thousand to less than one hundred. Table 3 shows
the performance difference before and after feature selection. It is now clear that fea-
ture selection still has a critical role in ELM computation.

Table 3. Performance difference before and after feature selection

No. of F; ELM F; ELM
Category Documents Percentage Before . After .
Feature Selection | Feature Selection
C01 37 2.58% 0.231 0.599
C02 21 1.47% N/A N/A
C03 10 0.70% N/A N/A
C04 26 1.81% 0.145 0.461
C05 71 4.95% N/A 0.370
C06 52 3.63% N/A 0.369
Cco7 200 13.96% 0.247 0.491
C08 274 19.12% 0.213 0.346
C09 364 25.40% N/A 0.330
C10 79 5.51% 0.183 0.446
Cl1 78 5.44% N/A 0.338
C12 15 1.05% N/A N/A
CI13 64 4.47% N/A N/A
Cl4 33 2.30% N/A N/A
CI15 29 2.02% N/A 0.445
Cl6 25 1.74% N/A 0.455
C17 38 2.65% N/A N/A
C18 17 1.19% 0.236 0.653

The most important results are F; values and accuracy values of SVM and ELM
over 18 categories as shown in Table 4.

Note that SVM still outperforms ELM for the majority of categories. In some
cases, the algorithms yield no results due to the lack of training samples or probably
noise. In category C02, C03, and C14, when SVM does not work, ELM does not
work as well. There are three categories, i.e. C12, C13, and C17, ELM does not work,
while SVM still gives results. In two categories, i.e. C04 and C06, ELM slightly out-
performs SVM and in two more categories, the performance from both are close to
each other. It is also noted that the performance of both algorithms, evaluated by F;



Comparison of Extreme Learning Machine with Support Vector Machine 397

values, does not necessarily link to the values of accuracy. In many instances, even
where the ELM has higher accuracy values, SVM still outperforms ELM in terms of
F; values.

Table 4. F; values and accuracy values of SVM and ELM over 18 categories

F,; Accuracy

Category No. of Per F; | F; | Accuracy | Accuracy | Difference | Difference
Documents SVM |ELM| SVM ELM (SVM- (SVM-
ELM) ELM)

C01 37 2.58% [0.699|0.599| 0.980 0.984 0.099 -0.004
Cc02 21 1.47% | N/A | NJA | 0.970 0.985 N/A -0.014
C03 10 0.70% | N/A | N/A | 0.986 0.994 N/A -0.007
C04 26 1.81% [0.459]0.461| 0.978 0.986 -0.002 -0.008
C05 71 4.95% 10.486]0.370| 0.932 0.930 0.116 0.002
C06 52 3.63% [0.361|0.369| 0.934 0.961 -0.007 -0.026
C07 200 13.96%|0.62410.491| 0.864 0.866 0.134 -0.003
C08 274 19.12%0.54810.346| 0.684 0.800 0.202 -0.116
C09 364 25.40%(0.491(0.330| 0.534 0.687 0.161 -0.153
C10 79 5.51% |0.485|0.446| 0.927 0.944 0.039 -0.018
Cl1 78 5.44% [0.521]0.338| 0.922 0.933 0.183 -0.011
Cl12 15 1.05% |0.511| N/A | 0.977 0.988 >> -0.011
C13 64 447% |0.225| N/A | 0.884 0.953 >> -0.069
Cl4 33 2.30% | N/A | N/A | 0.959 0.976 N/A -0.017
Cl15 29 2.02% 10.566|0.445| 0.969 0.977 0.121 -0.008
Cl6 25 1.74% |0.5580.455| 0.987 0.986 0.104 0.001
Cl17 38 2.65% [0.267| N/A | 0.953 0.970 >> -0.018
CI8 17 1.19% [0.709]0.653| 0.988 0.990 0.056 -0.002

In our experiments, the CPU time spent by both ELM and SVM are trivial. As
mentioned before in section 2, in TC tasks, many documents can be linearly classified
in high dimensional space [8]. It is well known that with the sigmoid or RBFs as the
kernel functions, SVM suffers from its tedious parameter tuning. So in TC tasks it is
ideal for SVM to adopt a linear function as the kernel function to save much time on
parameter tuning. By comparison, even with a single parameter to be tuned, the arbi-
trary assignment of initial weights requires ELM to search for the optimal size of neu-
ron and run many times to get the average value [7]. In this case, ELM loses its edge
over SVM.

5 Conclusion

In this paper, we have studied the performance of SVM and the newly available ELM
algorithm for TC tasks. F; has been used to evaluate the performance because of its
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better suitability than accuracy as an indicator. While the ELM is easy to tune with a
single parameter and is robust to the parameter settings, it is shown that SVM still
outperforms ELM for the majority of categories in terms of F; values. Furthermore,
accuracy does not have clear links with the performance evaluated by F;. Compared
to SVM with linear function as kernel function, the advantage of fast training of ELM
is not significant in TC tasks.
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