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Abstract. Martingale boosting is a simple and easily understood tech-
nique with a simple and easily understood analysis. A slight variant of the
approach provably achieves optimal accuracy in the presence of random
misclassification noise.

1 Introduction

Boosting [15, 7] has been an overwhelming practical success. In many applied
domains, the best known algorithms use boosting. Nevertheless, some time ago,
sensitivity to noise was identified as a weakness of the standard boosting tech-
niques [6, 10, 4].

Heuristics have been proposed to combat this [14, 12]. The heuristics are
based on an implicit view that noisy examples tend to be borderline cases: they
penalize noisy examples roughly in proportion to how much they deviate from
the norm. This view has been seen to be useful, but there are applications in
which many examples are not borderline.

Some boosting algorithms have been shown to be provably noise-tolerant
[17, 1, 2, 8, 9]. As in classification in general, the main approaches to theory for
noise-tolerant boosting can be divided into agnostic/malicious and independent
models. In the agnostic/malicious case, essentially nothing is assumed about the
noise, except a limit on its rate. This may appear to be more realistic than
the alternative in which the labels are assumed to be flipped independently
of the sample. However, analysis of agnostic or malicious noise models is by
necessity focused on the worst case; typically, in this case, noisy examples are
the most extreme elements of the opposite class. Sources involving independent
misclassification noise resemble applied problems more than this. Thus, analysis
of learning with independent misclassification noise may be the most effective
way to use theory to guide the design of boosting algorithms that are robust to
noisy data other than borderline cases.

This paper is about an approach that we call martingale boosting. We concen-
trate on the problem of predicting binary classifications, say 0 and 1. As in many
earlier boosting algorithms, learning proceeds incrementally in stages. In each
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stage, examples are partitioned into bins, and a separate base classifier is chosen
for each bin. An example is assigned a bin by counting the number of 1 predic-
tions made by the appropriate base classifiers from earlier rounds. The algorithm
halts after a predetermined number of rounds. In the basic version of martingale
boosting, the classifier output by the algorithm processes an item to be classified
in stages that correspond to the stages of training. During each stage, it applies
the appropriate base classifier, and determines its final prediction by comparing
the number of 1 predictions made by the chosen base classifiers with the number
of 0 predictions.

Why call it martingale boosting? By choosing a separate base classifier for
each bin, we can think of the algorithm as trying to push the fraction z of 1
predictions in the correct direction, whatever the current value of z.

The analysis is very simple: it proceeds by thinking of an object to be clas-
sified as taking a random walk on the number of base classifiers that predict 1.
If the error rates are slightly better than random guessing on both positive and
negative examples, it is easy to see that, after a few rounds, it is overwhelmingly
likely that more than half the steps are in the correct direction: such examples
are classified correctly by the boosted classifier.

In some cases, one can promote balanced error rates directly; for example, if
decision stumps are used as base classifiers, one can easily adjust the threshold
to balance the error rates on the training data. We also show that it is possible
to force a standard weak learner to produce a classifier with balanced error rates
in the cases that we need.

Martingale boosting facilitates noise tolerance by the fact that the probability
of reaching a given bin depends on the predictions made by the earlier base
classifiers, and not on the label of an example. (In particular, it does not depend
on the number that are correct or incorrect, as does Boost-by-Majority [5].)
The most technical aspect of the paper is to show that the reweighting to force
balanced errors can be done while preserving noise-tolerance. Ideas from earlier
work by Kalai and Servedio [9] are useful there.

Because it is a simple and easily understood technique that generates highly
noise-tolerant algorithms, ideas from martingale boosting appear likely to be
practically useful.

2 Preliminaries

Given a target concept c : X → {0, 1} and a distribution D over X, we write
D+ to denote the distribution D restricted to the positive examples {x ∈ X :
c(x) = 1}. Thus, for any event S ⊆ {x ∈ X : c(x) = 1} we have PrD+ [x ∈ S] =
PrD[x ∈ S]/PrD[c(x) = 1]. Similarly, we write D− to denote D restricted to the
negative examples {x ∈ X : c(x) = 0}.
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Fig. 1. The branching program produced by the boosting algorithm. Each node vi,t is
labeled with a 0/1-valued function hi,t; left edges correspond to 0 and right edges to 1

3 High-Level Structure of the Boosting Algorithm

The boosting algorithm works in a series of T stages. The hypothesis of the
boosting algorithm is a layered branching program with T + 1 layers in a grid
graph structure, where layer t has t nodes (see Figure 1); we refer to the i-th
node from the left in layer t as vi,t, where i ranges from 0 to t−1. For 1 ≤ t ≤ T,
each node vi,t in layer t has two outgoing edges, one left edge (which is labeled
with a 0) to node vi,t+1 and one right edge (labeled with a 1) to node vi+1,t+1.
Nodes vi,T+1 in layer T + 1 have no outgoing edges.

Before stage t of the boosting algorithm begins, each node at levels 1, . . . , t−1
has been labeled with a 0/1-valued hypothesis function. We write hi,j to denote
the hypothesis function that labels node vi,j . In the t-th stage, hypothesis func-
tions are assigned to each of the t nodes v0,t through vt−1,t at level t. Given
an example x ∈ X in stage t, the branching program routes the example by
evaluating h0,1 on x and then sending the example on the outgoing edge whose
label is h0,1(x), i.e. sending it to node vh0,1(x),1. The example is routed through
successive levels in this way until it reaches level t; more precisely, when example
x reaches some node vi,j in level j, it is routed from there via the outgoing edge
whose label is hi,j(x) to the node vi+hi,j(x),j+1. In this fashion the example x
eventually reaches the node v�,t after being evaluated on t−1 hypotheses, where
� is the number of these t − 1 hypotheses which evaluated to 1 on x.

Thus, in the t-th stage of boosting, given an initial distribution D over exam-
ples x, the hypotheses that have been assigned to nodes at levels 1, . . . , t−1 of the
branching program induce t different distributions D0,t, . . . ,Dt−1,t correspond-
ing to the t nodes v0,t, . . . , vt−1,t in layer t (a random draw x from distribution
Di,t is a draw from D conditioned on x reaching vi,t). In the following sections,
we will carefully specify just how the hypotheses h0,t, . . . , ht−1,t are generated
to label the nodes v0,t, . . . , vt−1,t in the t-th stage of boosting; as we will see in
Section 5, for the boosting algorithms that work in the standard model, it is not
the case that hi,t is obtained simply by running the weak learner on distribution
Di,t and using the resulting hypothesis as hi,t.
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Once all T stages of boosting have been performed, the resulting branching
program routes any example x to some node v�,T+1 at level T + 1; observe that
� is the number of hypotheses that evaluated to 1 out of the T hypotheses that
were evaluated on x. The final classifier computed by the branching program is
simple: given an example x to classify, if the final node v�,T+1 that x reaches has
� ≥ T/2 then the output is 1, and otherwise the output is 0.

3.1 Relation to Previous Boosting Algorithms

Readers who are familiar with Freund’s paper on the Boost-by-Majority algo-
rithm [5] may experience a sense of déjà vu on looking at Figure 1, since a very
similar figure appears in [5]. Indeed, both our current boosting scheme and the
Boost-by-Majority algorithm can be viewed as routing an example through a
branching program which has the graph structure shown in Figure 1, and both
boosters work by ultimately predicting 1 or 0 according to whether the major-
ity of T weak hypotheses evaluate to 1 or 0. However, in Boost-by-Majority, in
stage t the weak learning algorithm is only invoked once, using a single distri-
bution Dt that reweights each examples according to which node vi,t at level t
it arrives at. Thus, in Boost-by-Majority there are only T weak hypotheses that
are ever generated in the course of boosting, and each node v0,t, . . . , vt−1,t is
labeled with the same weak hypothesis ht; the final output is a majority vote
over these T hypotheses h1, . . . , hT . In contrast, our algorithm invokes the weak
learner t separate times in stage t, once for each of the t distinct distributions
D0,t, . . . ,Dt−1,t corresponding to the nodes v0,t, v1,t, . . . , vt−1,t. (We remind the
reader again that as we will see in Section 5, the hypothesis hi,t is not obtained
simply by running the weak learner on Di,t and taking the resulting hypothesis
to be hi,t.) A total of T (T + 1)/2 weak hypotheses are constructed, and any
single example x only encounters T of these hypotheses in its path through the
branching program.

As we will see, our algorithm has a very simple proof of correctness which
seems quite different from the Boost-by-Majority proof. Moreover, the fact that
our algorithm constructs a different hypothesis hi,t for each node vi,t seems to
play an important role in enabling our boosting algorithm to tolerate random
classification noise. We will show in Section 7 that a slight variant of our boosting
algorithm can learn to any accuracy rate 1− ε < 1−η in the presence of random
classification noise at rate η; no such guarantee is given for Boost-by-Majority
or any variant of it that we are aware of in the literature, and we were unable to
prove such a guarantee for Boost-by-Majority. It is an interesting question for
future work to determine whether Boost-by-Majority actually has (close to) this
level of noise tolerance.

Another related algorithm is the “boosting by branching programs” algorithm
of Mansour and McAllester [11], which we refer to as the MM algorithm. Kalai
and Servedio [9] modified the MM algorithm to obtain a boosting algorithm
which is robust in the presence of random classification noise.

Like the Mansour/McAllester boosting algorithm, our booster works by build-
ing a branching program. Also, as mentioned earlier, our modification and anal-
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ysis of this paper’s boosting algorithm to achieve random classification noise
tolerance will follow the approach of Kalai & Servedio. However, there are sig-
nificant differences between our boosting algorithm and this earlier work. The
algorithm and analysis of [11] and [9] are based on the notion of “purity gain;” a
node v is split into two descendents if each of the two labels 0 and 1 is achieved
by a nonnegligible fraction of the examples that reach v, and two nodes v and w
are merged if the ratio of positive to negative examples within v is similar to the
ratio within w. Nodes that are pure (for some b ∈ {0, 1} almost all examples that
reach v are labeled with b) are “frozen” (i.e. not split any more) and assigned
the label b. In contrast, in our new algorithm the label of a given terminal node
in the branching program depends not on the majority vote label of examples
that reach that node, but on the majority vote label of the hypotheses that are
evaluated on the path to the node. In the analysis of our algorithm, progress is
measured not in terms of purity gain achieved by splitting a node, but rather by
the amount of “drift” in the right direction that a node imparts to the examples
that reach it. (We will see, though, that notions of purity do play a role for
efficiency reasons in the example oracle model implementation of the algorithm
that we describe in Section 6.)

The branching program output by our algorithm has a regular structure, and
is easily interpreted, arguably in contrast with the output of previous algorithms
for boosting by branching programs [11, 9].

4 Boosting a Two-Sided Weak Learner

Let c : X → {0, 1} be the target function that we are trying to learn to high
accuracy with respect to distribution D over X. Throughout this section the
distributions D+ and D− are defined with respect to c.

Definition 1. A hypothesis h : X → {0, 1} is said to have two-sided advan-
tage γ with respect to D if it satisfies both Prx∈D+ [h(x) = 1] ≥ 1

2 + γ and
Prx∈D− [h(x) = 0] ≥ 1

2 + γ.

Thus such a hypothesis performs noticeably better than random guessing both
on positive examples and on negative examples. In this section we will assume
that we have access to a two-sided weak learner that, when invoked on target
concept c and distribution D, outputs a hypothesis with two-sided advantage.
(In the next section, we will perform an analysis using the usual assumption of
having just a standard weak learner. That analysis can be viewed as reducing
that problem to the two-side model studied here.)

We now show how the general boosting framework of Section 3 can be used
to boost a two-sided weak learner to high accuracy. This is done very simply:
in stage t, at each node vi,t we just run the two-sided weak learner on examples
drawn from Di,t (recall that this is the distribution obtained by filtering D to ac-
cept only those examples that reach node vi,t), and use the resulting hypothesis,
which has two-sided advantage with respect to Di,t, as the hypothesis function
hi,t labelling node vi,t. We refer to this boosting scheme as Basic MartiBoost.
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The idea of the analysis is extremely simple. Let h denote the final branching
program that Basic Martiboost constructs. We will see that a random example
x drawn from D+ (i.e. a random positive example) is routed through h according
to a random walk that is biased toward the right, and a random example x drawn
from D− is routed through h according to a random walk that is biased toward
the left. Since h classifies example x according to whether x reaches a final node
v�,T+1 with � ≥ T/2 or � < T/2, this will imply that h has high accuracy on
both random positive examples and random negative examples.

So consider a random positive example x (i.e. x is distributed according
to D+). For any node vi,t, conditioned on x reaching node vi,t we have that x
is distributed according to (Di,t)+. Consequently, by the definition of two-sided
advantage we have that x goes from node vi,t to node vi+1,t+1 with probability at
least 1/2+γ, so x does indeed follow a random walk biased to the right. Similarly,
for any node vi,t a random negative example that reaches node vi,t will proceed to
node vi,t+1 with probability at least 1/2+γ, and thus random negative examples
follow a random walk biased to the left. Now standard bounds on random walks
are easily seen to imply that if T = O( log 1/ε

γ2 ), then the probability that a random
positive example x ends up at a node v�,T+1 with � < T/2 is at most ε. The
same is true for random negative examples, and thus h has overall accuracy at
least 1 − ε with respect to D. In more detail, we have the following theorem:

Theorem 1. Let γ1, γ2, . . . , γT be any sequence of values between 0 and 1/2.
For each value t = 1, . . . , T , suppose that each of the t invocations of the weak
learner on distributions Di,t (with 0 ≤ i ≤ t − 1) yields a hypothesis hi,t which
has two-sided advantage γt with respect to Di,t. Then the final output hypoth-
esis h that Basic Martiboost computes will satisfy Prx∈D[h(x) �= c(x)] ≤
exp

(

−(
∑T

t=1 γt)2/(2T )
)

.

Proof. As sketched above, we will begin by bounding the error rate on positive
examples (a nearly identical proof will work for the negative examples).

For t = 1, . . . , T we define the 0/1 valued random variable Xt as follows:
given a draw of x from D+, the random variable Xt takes value hi,t(x) where
i denotes the index of the node vi,t that x reaches at level t of the branching
program. Let the random variable Y denote X1 + · · · + XT , so the final node
at which x terminates is vY,T+1. Let random variables Y0, Y1, . . . , YT denote the
Doob martingale sequence Y0 = E[Y ] and Yt = E[Y |X1, . . . , Xt] for t = 1, . . . , T
(see e.g. Section 4.4.3 of [13]). Note that Y0 is a constant and YT equals Y.

Conditioned on x reaching node vi,t, we have that x is distributed according
to (Di,t)+, and thus for each t = 1, . . . , T the expectation E[Xt] equals

t−1
∑

i=0

Pr[x reaches vi,t] · Pr
x∈(Di,t)+

[hi,t(x) = 1] ≥
t−1
∑

i=0

Pr[x reaches vi,t] · (1

2
+ γt) =

1

2
+ γt,

so by linearity of expectation we have E[Y ] ≥ T
2 +

∑T
t=1 γt. By Azuma’s in-

equality (see e.g. Theorem 4.16 of [13]) we thus have that Prx∈D+ [YT < T/2] ≤
exp

(

− (
∑ T

t=1 γt)
2

2T

)

. Recalling that YT equals Y and h(x) = 0 only if fewer than
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T/2 of the branching program hypotheses hi,t that are evaluated on x yield 1,
we have that Prx∈D+ [h(x) = 0] equals the left-hand side of the above inequality.

The same argument shows that Prx∈D− [h(x) = 1] ≤ exp
(

− (
∑ T

t=1 γt)
2

2T

)

. ��

Note that if we have γt ≥ γ for all t, then Theorem 1 gives the familiar bound
Prx∈D[h(x) �= c(x)] ≤ exp(−γ2T

2 ).

5 Boosting a Standard Weak Learner

We recall the usual definition of a weak learner.

Definition 2. Given a target function c : X → {0, 1} and a distribution D, a
hypothesis h : X → {0, 1} is said to have advantage γ with respect to D if it
satisfies Prx∈D[h(x) = c(x)] ≥ 1

2 + γ.

In this section we will assume that we have access to a standard weak learning
algorithm which, when invoked on target concept c and distribution D, outputs a
hypothesis h which has advantage γ with respect to D. This is the usual assump-
tion that is made in the study of boosting, and is clearly less demanding than
the two-sided weak learner we considered in the previous section. We will show
how the Basic Martiboost algorithm of the previous section can be modified
to boost a standard weak learner to high accuracy.

For clarity of exposition, throughout this section we will consider an abstract
version of the boosting algorithm in which all desired probabilities can be ob-
tained exactly (i.e. we do not consider issues of sampling error, etc. here). We
will deal carefully with these issues when we describe an example oracle model
implementation of the algorithm in Section 6.

5.1 Definitions and an Easy Lemma

Let c : X → {0, 1} be a target concept. We say that a distribution D over
X is balanced if D puts equal weight on positive and negative examples, i.e.
Prx∈D[c(x) = 0] = 1

2 . Given an arbitrary distribution D (not necessarily bal-
anced), we write ̂D to denote the balanced version of D which is an equal average
of D+ and D−; i.e. for any S ⊆ X we have Pr

̂D[S] = 1
2 PrD+ [S] + 1

2 PrD− [S].
Given a distribution D over X and a hypothesis h : X → {0, 1}, we define

̂h, the balanced version of h, to be the (probabilistic) version of h described
below; the key property of ̂h is that it outputs 0 and 1 equally often under
D. Let b ∈ {0, 1} be the value that h evaluates to more often, and let r =
Prx∈D[h(x) = b] (so 1/2 ≤ r ≤ 1). Given an input x ∈ X, to evaluate ̂h on
x we toss a biased coin which comes up heads with probability 1

2r . If we get
heads we output h(x), and if we get tails we output 1 − b. This ensures that
Prx∈D[̂h(x) = b] = Pr[coin is heads & h(x) = b] = 1

2r · r = 1
2 .

The following simple lemma shows that if we have a weak hypothesis h that
has advantage γ relative to a balanced distribution D, then the balanced hy-
pothesis ̂h has advantage at least γ/2 relative to D.



86 P.M. Long and R.A. Servedio

Table 1. Each table entry gives the probability of the corresponding event under the
balanced distribution D

c(x) = 1 c(x) = 0

h(x) = 1 p q

h(x) = 0 1/2 − p 1/2 − q

c(x) = 1 c(x) = 0

h(x) = 1, ̂h(x) = 1 p
2r

q
2r

h(x) = 1, ̂h(x) = 0 p(1 − 1
2r

) q(1 − 1
2r

)

h(x) = 0, ̂h(x) = 1 0 0

h(x) = 0, ̂h(x) = 0 1
2
− p 1

2
− q

Table 2. Each table entry gives the probability of the corresponding event under the
balanced distribution ̂Di,t

hi,t(x) = 0 hi,t(x) = 1

c(x) = 0 p 1/2 − p

c(x) = 1 1/2 − p p

Lemma 1. If D is a balanced distribution and PrD[h(x) = c(x)] ≥ 1
2 + γ then

PrD[̂h(x) = c(x)] ≥ 1
2 + γ

2 .

Proof. We may assume without loss of generality that PrD[h(x) = 1] = r ≥ 1
2 ,

i.e. that b = 1 in the above discussion. If we let p denote PrD[h(x) = 1 & c(x) = 1]
and q denote PrD[h(x) = 1 & c(x) = 0], so p + q = r, then the probabilities for
all four possible values of h and c are given in the left side of Table 1. From the
definition of ̂h it is straightforward to verify that the probabilities of all eight
combinations of values for h,̂h and c are as given in the right side of Table 1.
We thus have that PrD[̂h(x) = c(x)] = p

2r + q
(

1 − 1
2r

)

+ 1
2 − q = 1

2 + p−q
2r . By

assumption we have PrD[h(x) = c(x)] ≥ 1
2 + γ, so from the left side of Table 1

we have p − q ≥ γ. The claim follows since r ≤ 1. ��

5.2 Boosting a Standard Weak Learner with MartiBoost

Our algorithm for boosting a standard weak learner, which we call MartiBoost,
works as follows. In stage t, at each node vi,t we run the weak learning algorithm
on the balanced version ̂Di,t of the distribution Di,t; let gi,t denote the hypothesis
that the weak learner returns. The hypothesis hi,t that is used to label vi,t is
hi,t = ĝi,t, namely gi,t balanced with respect to the balanced distribution ̂Di,t.

The following lemma plays a key role in our proof of correctness:

Lemma 2. We have Prx∈(Di,t)+ [hi,t(x) = 1] ≥ 1
2 + γ

2 and Prx∈(Di,t)− [hi,t(x) =
0] ≥ 1

2 + γ
2 .

Proof. Since the original hypothesis gi,t that the weak learner returns when
invoked with ̂Di,t has accuracy at least 1

2 + γ with respect to ̂Di,t, by Lemma 1
we have that the balanced hypothesis hi,t has accuracy at least 1

2 + γ
2 with
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respect to ̂Di,t. Let p denote Pr
̂Di,t

[hi,t(x) = c(x) = 0]. Since ̂Di,t is a balanced
distribution and hi,t is a balanced hypothesis, it is easy to see that all four table
entries must be as given in Table 2, and thus Pr

̂Di,t
[hi,t(x) = c(x)] = 2p ≥ 1

2 + γ
2 ,

i.e. p ≥ 1
4 + γ

4 . But since ̂Di,t is an equal mixture of (Di,t)+ and (Di,t)−, this
implies that Prx∈(Di,t)+ [hi,t(x) = 1] ≥ ( 1

4 + γ
4 )/ 1

2 = 1
2 + γ

2 . We similarly have
that Prx∈(Di,t)− [hi,t(x) = 0] ≥ 1

2 + γ
2 , and the lemma is proved. ��

With this lemma in hand it is easy to prove correctness of MartiBoost:

Theorem 2. Let γ1, γ2, . . . , γT be any sequence of values between 0 and 1/2. For
each value t = 1, . . . , T , suppose that each of the t invocations of the weak learner
on distributions ̂Di,t (with 0 ≤ i ≤ t−1) yields a hypothesis gi,t which has advan-
tage γt with respect to ̂Di,t. Then the final branching program hypothesis h that

MartiBoost constructs will satisfy Prx∈D[h(x) �= c(x)] ≤ exp
(

− (
∑ T

t=1 γt)
2

8T

)

.

Proof. The proof is almost identical to the proof of Theorem 1. We define se-
quences of random variables X1, . . . , XT and Y0, . . . , YT as before; the only dif-
ference is that (i) now we have E[Xt] ≥ 1

2 + γt

2 (by Lemma 2) rather than
E[Xt] ≥ 1

2 +γt as in the earlier proof, and (ii) the randomness is now taken over
both the draw of x from D+ and over the internal randomness of each hypothesis
hi,t at each node in the branching program. This loss of a factor of 2 from (i) in
the advantage accounts for the different constant (worse by a factor of 4) in the
exponent of the bound. ��

6 Complexity Issues: Implementation of MartiBoost That
Works with an Example Oracle

Thus far we have described and analyzed an abstract version of MartiBoost
without specifying how the weak learner is actually run on the distribution ̂Di,t

at each node. One approach is to run the boosting algorithm on a fixed sample.
In this case all relevant probabilities can be maintained explicitly in a look-up
table, and then Theorem 2 bounds the training set accuracy of the MartiBoost
final hypothesis over this fixed sample.

In this section we describe and analyze an implementation of the algorithm
in which the weak learner runs given access to an example oracle EX(c,D).
As we will see, this version of the algorithm requires some changes for the sake
of efficiency; in particular we will “freeze” the execution of the algorithm at
nodes vi,t where it is too expensive to simulate ̂Di,t. We give an analysis of
the time and sample complexity of the resulting algorithm which shows that it
is computationally efficient and can achieve a highly accurate final hypothesis.
Note that the accuracy in this case is measured with respect to the underlying
distribution generating the data (and future test data).

6.1 The Model

We define weak learning in the example oracle EX(c,D) framework as follows:
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Definition 3. Given a target function c : X → {0, 1}, an algorithm A is said
to be a weak learning algorithm with advantage γ if it satisfies the following
property: for any δ > 0 and any distribution D over X, if A is given δ and
access to EX(c,D) then algorithm A outputs a hypothesis h : X → {0, 1} which
with probability at least 1 − δ satisfies Prx∈D[h(x) = c(x)] ≥ 1

2 + γ.

We let mA(δ) denote the running time of algorithm A, where we charge one time
step per invocation of the oracle EX(c,D). Thus, if we must run algorithm A
using a simulated oracle EX(c,D′) but we only have access to EX(c,D), the
runtime will be at most mA(δ) times the amount of time it takes to simulate a
draw from EX(c,D′) given EX(c,D).

6.2 An Idealized Version of the Oracle Algorithm

We now describe the version of MartiBoost designed to work with a sam-
pling oracle in more detail; we call this algorithm Sampling Martiboost, or
SMartiBoost. While this algorithm is intended to work with random examples,
to keep the focus clear on the main ideas, let us continue for a while to as-
sume that all required probabilities can be computed exactly. In Section 6.3
we will show that the analysis still holds if probabilities are estimated using a
polynomial-size sample.

For convenience, we will use r to denote all of the random bits used by all
the hypotheses hi,t. It is convenient to think of r as an infinite sequence of
random bits that is determined before the algorithm starts and then read off
one at a time as needed by the algorithm (though the algorithm will use only
polynomially many of them).

In stage t of SMartiBoost, all nodes at levels t′ < t have been labeled and
the algorithm is labelling nodes v0,t, . . . , vt−1,t. Let pi,t denote Prx∈D,r[x reaches
vi,t]. For each b ∈ {0, 1}, let pb

i,t denote Prx∈D,r[x reaches vi,t and the label of
x is b], so pi,t = p0

i,t + p1
i,t. In stage t, SMartiBoost does the following for each

node vi,t:

1. If minb∈{0,1} pb
i,t < ε

T (T+1) , then the algorithm “freezes” node vi,t by labelling
it with the bit (1− b) and making it a terminal node with no outgoing edges
(so any example x which reaches vi,t will be assigned label (1 − b) by the
branching program hypothesis).

2. Otherwise, we have minb∈{0,1} pb
i,t ≥ ε

T (T+1) . In this case SMartiBoost works
just like MartiBoost: it runs the weak learning algorithm on the balanced
version ̂Di,t of Di,t to obtain a hypothesis gi,t, and it labels vi,t with hi,t =
ĝi,t, which is gi,t balanced with respect to ̂Di,t.

The idea is that each node which is “frozen” in step (1) above contributes at
most ε

T (T+1) to the error of the final branching program hypothesis; since there
are at most T (T + 1)/2 many nodes in the branching program, the total error
induced by all frozen nodes is at most ε

2 . On the other hand, for any node vi,t

that satisfies condition (2) and is not frozen, the expected number of draws from
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EX(c,D) that are required to simulate a draw from EX(c, ̂Di,t) is O(T 2

ε ), and
thus we can indeed run the weak learner efficiently on the desired distributions.
(We discuss computational efficiency in more detail in the next subsection where
we take sampling issues into account.)

The following theorem establishes correctness of SMartiBoost:

Theorem 3. Let T = 8 ln(2/ε)
γ2 . Suppose that each time it is invoked on some

distribution ̂Di,t, the weak learner outputs a hypothesis that has advantage γ with
respect to ̂Di,t. Then the final branching program hypothesis h that SMartiBoost
constructs will satisfy Prx∈D[h(x) �= c(x)] ≤ ε.

Proof. Given an unlabeled instance x ∈ X and a particular setting r of the
random bits for each of the (randomized) hypotheses hi,t labelling nodes of the
branching program, we say that (x, r) freezes at node vi,t if the path through
the branching program that x takes under randomness r causes it to termi-
nate at a node vi,t with t < T + 1 (i.e. at a node vi,t which was frozen by
SMartiBoost). We have that Pr[h(x) �= c(x)] = Pr[h(x) �= c(x) & (x, r) freezes]
+ Pr[h(x) �= c(x) & (x, r) does not freeze]. This is at most ε

2 + Pr[h(x) �=
c(x) & (x, r) does not freeze] (here the probabilities, as in the proof of Theo-
rem 2, are taken over the draw of x from D and the choice of r).

It remains to show that Pr[h(x) �= c(x) & (x, r) does not freeze] ≤ ε
2 . As

before, we first will show that Prx∈D+ [h(x) �= c(x) & (x, r) does not freeze] is at
most ε

2 ; the negative examples can be handled similarly.
To show that Prx∈D+ [h(x) �= c(x) & (x, r) does not freeze] ≤ ε

2 , we consider a
slightly different random process than in the proof of Theorem 2. For t = 1, . . . , T
we now define the 0/1 valued random variable X ′

t as follows: given a draw of x
from D+ and a random choice of r,

– If (x, r) does not freeze at any node vj,t′ with t′ ≤ t, then X ′
t takes value

hi,t(x) where i denotes the index of the node vi,t that x reaches under ran-
domess r at level t of the branching program;

– If (x, r) freezes at some node vj,t′ with t′ ≤ t, then X ′
t takes value 1 with

probability 1
2 + γ

2 and takes value 0 with probability 1
2 − γ

2 .

(This part of the proof is reminiscent of [2].) It is clear that E[X ′
t | (x, r) freezes

at some node vj,t′ with t′ ≤ t] = 1
2 + γ

2 . On the other hand, if (x, r) does not freeze
at any such node, then conditioned on x reaching node vi,t under randomness
r we have that x is distributed according to (Di,t)+. It follows from Lemma 2
that E[X ′

t | (x, r) freezes at no node vj,t′ with t′ ≤ t] ≥ 1
2 + γ

2 , and thus overall
we have E[X ′

t] ≥ 1
2 + γ

2 .
Let the random variable Y ′ denote X ′

1 + · · ·+X ′
T ; by linearity of expectation

we have E[Y ′] ≥ T
2 + Tγ

2 . Let random variables Y ′
0 , Y ′

1 , . . . , Y ′
T denote the Doob

martingale sequence Y ′
0 = E[Y ′] and Y ′

t = E[Y ′|X ′
1, . . . , X

′
t] for t = 1, . . . , T ,

so Y ′
T is identical to Y ′. By Azuma’s inequality we have that Pr [Y ′

T < T/2] ≤
exp

(

−γ2T
8

)

. Now recall that if (x, r) never freezes, then the prediction h(x) is
determined by the majority of the values of hi,t(x) obtained from hypotheses hi,t



90 P.M. Long and R.A. Servedio

encountered in its path through the branching program. Thus, in the particular
case of positive examples, Prx∈D+,r[h(x) �= c(x) & (x, r) does not freeze] ≤
Pr [Y ′

T < T/2]. Applying the inequality from above, bounding negative examples
similarly, and recalling our choice of T, we have that Pr[h(x) �= c(x) & (x, r)
does not freeze] ≤ ε

2 and the theorem is proved. ��

6.3 Dealing with Sampling Error

In this section we remove the assumptions that we know all required probabilities
exactly, by showing that sufficiently accurate estimates of them can be obtained
efficiently. We use Õ below notation to hide polylogarithmic factors, and ignore
the dependences on δ – which are everywhere polylogarithmic – throughout for
the sake of readability.

Theorem 4. Let T = Θ( log(1/ε)
γ2 ). If A is a weak learning algorithm that requires

sA many examples to construct a γ-advantage hypothesis, then SMartiBoost
makes O(sA) · Õ( 1

ε ) · poly( 1
γ ) many calls to EX(c,D) and with probability 1 − δ

outputs a final hypothesis h that satisfies Prx∈D[h(x) �= c(x)] ≤ ε.

Proof sketch. Standard sampling bounds let us estimate each pb
i,t and efficiently

simulate EX(c, ̂Di,t) for nodes vi,t that have some pb
i,t value that is not too

small. Once we have run the weak learning algorithm with EX(c, ̂Di,t) and it has
given us its hypothesis gi,t, we need to construct hi,t, the randomized hypothesis
obtained from gi,t by flipping some of its predictions in order to output 0 and 1
equally often with respect to ̂Di,t. In order to do this perfectly as in Section 5.1,
we would need the exact value of r = Pr

x∈ ̂Di,t
[gi,t(x) = b] ≥ 1

2 . While this exact
value is not available to us, a straightforward generalization of Lemma 1 shows
that an approximate value is good enough for our needs. ��

7 A Noise-Tolerant Version of SMartiBoost

In this section we show how the SMartiBoost algorithm can be modified to with-
stand random classification noise. We follow the approach of Kalai & Servedio
[9], who showed how the branching program boosting algorithm of Mansour and
McAllester can be modified to withstand random classification noise.

Given a distribution D and a value 0 < η < 1
2 , a noisy example oracle is an

oracle EX(c,D, η) defined as follows: each time EX(c,D, η) is invoked, it returns
a labeled example (x, b) ∈ X × {0, 1} where x ∈ X is drawn from distribution
D and b is independently chosen to be c(x) with probability 1 − η and 1 − c(x)
with probability η. Recall the definition of noise-tolerant weak learning:

Definition 4. Given a target function c : X → {0, 1}, an algorithm A is said to
be a noise-tolerant weak learning algorithm with advantage γ if it satisfies the
following property: for any δ > 0 and any distribution D over X, if A is given δ
and access to a noisy example oracle EX(c,D, η) where 0 ≤ η < 1

2 , then A runs
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in time poly( 1
1−2η , 1

δ ) and with probability at least 1 − δ A outputs a hypothesis
h such that Prx∈D[h(x) = c(x)] ≥ 1

2 + γ.

Ideally, we would like a boosting algorithm that can convert any noise-tolerant
weak learning algorithm into a noise-tolerant strong learning algorithm that can
achieve any arbitrarily low error rate ε > 0. However, in [9] it is shown that in
general it is not possible to boost the error rate ε down below the noise rate η.1

They showed that a variant of the MM boosting algorithm can achieve any error
rate ε = η + τ in time polynomial in 1

τ and the other relevant parameters. We
now show that a variant of SMartiBoost has the same property.

For ease of presentation, we first give the noise-tolerant martingale boost-
ing algorithm under the assumption that all required probabilities are obtained
exactly, and then deal with sample complexity issues.

As a labeled example (x, b) proceeds through levels 1, . . . , t−1 of the branch-
ing program in stage t, the path it takes is completely independent of b. Thus,
given a source EX(c,D, η) of noisy examples, the distribution of examples that
arrive at a particular node vi,t is precisely EX(c,Di,t, η). Once a labeled example
(x, b) arrives at some node vi,t, though, it is clear that the label b must be con-
sulted in the “rebalancing” of the distribution Di,t to obtain distribution ̂Di,t.
More precisely, the labeled examples that reach node vi,t are distributed accord-
ing to EX(c,Di,t, η), but in order to use SMartiBoost with a noise-tolerant weak
learner we must simulate the balanced distribution ̂Di,t corrupted with random
classification noise, i.e. EX(c, ̂Di,t, η

′). (As we show below, it turns out that η′

need not necessarily be the same as η; it is okay to have a higher noise rate η′

for the balanced oracle as long as η′ is not too close to 1
2 .) The following lemma

(Lemma 7 from [9]) shows that it is possible to do this:

Lemma 3. Let τ > 0 be any value satisfying η+ τ
2 < 1

2 . Suppose we have access
to EX(c,D, η). Let ρ denote Prx∈D[c(x) = 1]. Suppose that η + τ

2 ≤ ρ ≤ 1
2 (the

case where η + τ
2 ≤ 1 − ρ ≤ 1

2 is completely analogous). Consider the following
rejection sampling procedure: given a draw (x, b) from EX(c,D, η), (i) if b = 0
then with probability pr = 1−2ρ

1−ρ−η reject (x, b), and with probability 1−pr = ρ−η
1−ρ−η

set b′ = b and accept (x, b′); (ii) if b = 1 then set b′ to 1 − b with probability
pf = (1−2ρ)η(1−η)

(1−ρ−η)(ρ+η−2ρη) (and set b′ to b with probability 1−pf ), and accept (x, b′).

Given a draw from EX(c,D, η), with probability prej := (1−2ρ)(ρη+(1−ρ)(1−η))
1−ρ−η

this procedure rejects, and with probability 1− prej = 2(1−2η)(1−ρ)ρ
1−ρ−η the procedure

accepts. Moreover, if the procedure accepts, then the (x, b′) that it accepts is
distributed according to EX(c, ̂D, η′) where η′ = 1

2 − ρ−η
2(ρ+η−2ρη) .

1 They showed that if cryptographic one-way functions exist, then there is no efficient
“black-box” boosting algorithm that can always achieve a final error rate ε < η. A
black-box boosting algorithm is a boosting algorithm that can run the weak learning
algorithm in a black-box fashion but cannot “inspect the code” of the weak learner.
All known boosting algorithms are black-box boosters. See [9] for more discussion.
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So Noise-Tolerant SMartiBoost works in the following way. As in Sec-
tion 6.2 let pi,t denote Prx∈D,r[x reaches vi,t]. For b = 0, 1 let qb

i,t denote
qb
i,t = Prx∈D,r[c(x) = b | x reaches vi,t] = Prx∈Di,t,r[c(x) = b], so q0

i,t + q1
i,t = 1.

The boosting algorithm (which takes as input a parameter τ > 0, where η + τ is
the desired final accuracy of the hypothesis; we assume WLOG that η + τ < 1

2 )
proceeds in stage t as follows: at each node vi,t,

1. If pi,t < 2τ
3T (T+1) , then the algorithm “freezes” node vi,t by labelling it with

an arbitrary bit and making it a terminal node with no outgoing edges.
2. Otherwise, if minb∈{0,1} qb

i,t < η + τ
3 , then the algorithm “freezes” node vi,t

by making it a terminal node labeled with (1 − b).
3. Otherwise the algorithm runs the noise-tolerant weak learner using EX(c,

̂Di,t, η
′) as described in Lemma 3 to obtain a hypothesis gi,t. The balanced

(with respect to ̂Di,t) version of gi,t, which we call hi,t, is used to label
node vi,t.

Theorem 5. Let T = 8 ln(3/τ)
γ2 . Suppose that each time it is invoked with some

oracle EX(c, ̂Di,t, η
′), the weak learner outputs a hypothesis gi,t with Pr

x∈ ̂Di,t

[gi,t(x) = c(x)] ≥ 1
2 + γ. Then the final branching program hypothesis h that

Noise-Tolerant SMartiBoost constructs will satisfy Prx∈D[h(x) �= c(x)] ≤ η+
τ.

Proof. As in the proof of Theorem 3, given an unlabeled instance x ∈ X and a
particular setting r of the random bits for each of the (randomized) hypotheses
hi,t labelling nodes of the branching program, we say that (x, r) freezes at node
vi,t if the path through the branching program that x takes under randomness r
causes it to terminate at a node vi,t with t < T +1 (i.e. at a node vi,t which was
frozen by Noise-Tolerant SMartiBoost). We say that a node vi,t is negligible
if pi,t < 2τ

3T (T+1) . We have that Pr[h(x) �= c(x)] = Pr[h(x) �= c(x) & (x, r) does
not freeze]+ Pr[h(x) �= c(x) & (x, r) freezes at a negligible node]+ Pr[h(x) �=
c(x) & (x, r) freezes at a non-negligible node]. Since (x, r) reaches a given
negligible node vi,t with probability at most 2τ

3T (T+1) and there are at most
T (T + 1)/2 many negligible nodes, Pr[h(x) �= c(x)& (x, r) freezes at a negligible
node] is at most τ

3 . Consequently Pr[h(x) �= c(x)] is at most τ
3 + Pr[h(x) �=

c(x) & (x, r) does not freeze] plus
∑

i,t : vi,t is non-negligible

Pr[h(x) �= c(x)| (x, r) freezes at vi,t] · Pr[(x, r) freezes at vi,t].

Since Pr[h(x) �= c(x) | (x, r) freezes at vi,t] equals Prx∈Di,t,r[h(x) �= c(x)],
by the fact that the algorithm freezes vi,t if minb∈{0,1} qb

i,t < η + τ
3 (case (2)

above), we have that the sum above is at most η + τ
3 . Thus Pr[h(x) �= c(x)] ≤

Pr[h(x) �= c(x) & (x, r) does not freeze] + η + 2τ
3 , so it remains to show that

Pr[h(x) �= c(x) & (x, r) does not freeze] is at most τ
3 . The proof of this is identical

to the proof that Pr[h(x) �= c(x) & (x, r) does not freeze] ≤ ε
2 in the proof of

Theorem 3 but now with τ
3 in place of ε

2 . ��
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It remains to remove the assumptions that we know all required probabil-
ities exactly, by showing that sufficiently accurate estimates of them can be
obtained efficiently via a polynomial amount of sampling. A straightforward
but technical analysis (see full version for details) gives the following theorem,
which establishes correctness and efficiency of the sampling-based version of
Noise-Tolerant SMartiBoost:

Theorem 6. Given any τ such that η + τ < 1
2 , let T = Θ( log(1/τ)

γ2 ). If A is a
noise-tolerant weak learning algorithm with advantage γ, then Noise-Tolerant
SMartiBoost makes poly( 1

γ , 1
τ , 1

δ ) many calls to EX(c,D, η) and with probability
1 − δ outputs a final hypothesis h that satisfies Prx∈D[h(x) �= c(x)] ≤ η + τ.

8 Conclusion

Because of its simplicity and attractive theoretical properties, we suspect martin-
gale boosting may be useful in practice. The most likely avenue to a practically
useful algorithm appears to involve repeatedly dividing the training data into
bins, as opposed to using fresh examples during each stage, as is analyzed in
Section 6. A generalization analysis for such an algorithm based on the syntactic
complexity of the output classifier seems likely to be conservative, as was the
case for boosting algorithms based on voting [16, 3]. Carrying out a meaningful
formal generalization analysis is a possible topic for future research.

Because of space constraints, we have not presented a detailed computational
complexity analysis. Some mileage can be gained from the fact that the base
classifiers in a given stage are trained on the cells of a partition of the original
dataset, possibly dividing it into small datasets.
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