
From External to Internal Regret

Avrim Blum1,� and Yishay Mansour2,��

1 School of Computer Science, Carnegie Mellon University,Pittsburgh, PA 15213
avrim@cs.cmu.edu

2 School of Computer Science, Tel-Aviv University, Israel
mansour@cs.tau.ac.il

Abstract. External regret compares the performance of an online al-
gorithm, selecting among N actions, to the performance of the best of
those actions in hindsight. Internal regret compares the loss of an online
algorithm to the loss of a modified online algorithm, which consistently
replaces one action by another.

In this paper, we give a simple generic reduction that, given an algo-
rithm for the external regret problem, converts it to an efficient online
algorithm for the internal regret problem. We provide methods that work
both in the full information model, in which the loss of every action is
observed at each time step, and the partial information (bandit) model,
where at each time step only the loss of the selected action is observed.
The importance of internal regret in game theory is due to the fact that
in a general game, if each player has sublinear internal regret, then the
empirical frequencies converge to a correlated equilibrium.

For external regret we also derive a quantitative regret bound for a
very general setting of regret, which includes an arbitrary set of modi-
fication rules (that possibly modify the online algorithm) and an arbi-
trary set of time selection functions (each giving different weight to each
time step). The regret for a given time selection and modification rule
is the difference between the cost of the online algorithm and the cost
of the modified online algorithm, where the costs are weighted by the
time selection function. This can be viewed as a generalization of the
previously-studied sleeping experts setting.

1 Introduction

The motivation behind regret analysis might be viewed as the following: we de-
sign a sophisticated online algorithm that deals with various issues of uncertainty
and decision making, and sell it to a client. Our online algorithm runs for some

� This work was supported in part by NSF grants CCR-0105488 and IIS-0312814.
�� The work was done while the author was a fellow in the Institute of Advance studies,

Hebrew University. This work was supported in part by the IST Programme of the
European Community, under the PASCAL Network of Excellence, IST-2002-506778,
by a grant no. 1079/04 from the Israel Science Foundation and an IBM faculty award.
This publication only reflects the authors’ views.

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 621–636, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

622 A. Blum and Y. Mansour

time and incurs a certain loss. We would like to avoid the embarrassment that
our client will come back to us and claim that in retrospect we could have in-
curred a much lower loss if we used his simple alternative policy π. The regret of
our online algorithm is the difference between the loss of our algorithm and the
loss using π. Different notions of regret quantify differently what is considered
to be a “simple” alternative policy.

At a high level one can split alternative policies into two categories. The first
consists of alternative policies that are independent from the online algorithm’s
action selection, as is done in external regret. External regret, also called the
best expert problem, compares the online algorithm’s cost to the best of N ac-
tions in retrospect [19, 15, 24, 17, 18, 6]. This implies that the simple alternative
policy performs the same action in all time steps, which indeed is quite simple.
Nonetheless, one important application of external regret to online algorithm
analysis is a general methodology of developing online algorithms whose per-
formance matches that of an optimal static offline algorithm by modeling the
possible static solutions as different actions.

The second category are those alternative policies that consider the online
sequence of actions and suggest a simple modification to it, such as “every time
you bought IBM, you should have bought Microsoft instead.” This notion is
captured by internal regret [13]. Specifically, internal regret allows one to modify
the online action sequence by changing every occurrence of a given action i by
an alternative action j. Specific low internal regret algorithms were derived in
[20, 12, 13, 14, 7], where the use of the approachability theorem [4] has played an
important role in some of the algorithms [20, 12, 14].

One of the main contributions of our work is to show a simple online way to
efficiently convert any external regret algorithm into an internal regret algorithm.
Our guarantee is somewhat stronger than internal regret and we call it swap
regret, which allows one to simultaneously swap multiple pairs of actions. (If
there are N actions total, then swap-regret is bounded by N times the internal
regret.) Using known results for external regret we can derive a swap regret
bound of O(N

√
T log N + N log N), and with additional optimization we are

able to reduce this regret bound to O(
√

NT log N + N log N log T). We also
show an Ω(

√
NT) lower bound for the case of randomized online algorithms

against an adaptive adversary.
The importance of internal regret is due to its tight connection to correlated

equilibria [3]. For a general-sum game of any finite number of players, a distri-
bution Q over the joint action space is a correlated equilibrium if every player
would have zero internal regret when playing it. In a repeated game scenario, if
each player uses an action selection algorithm whose internal regret is sublinear
in T , then the empirical distribution of the players actions converges to a corre-
lated equilibrium (see, e.g. [20]). In fact, we point out that the deviation from
a correlated equilibrium is bounded exactly by the average swap regret of the
players.

We also extend our internal regret results to the partial information model,
also called the adversarial multi-armed bandit (MAB) problem [2]. In this model,

From External to Internal Regret 623

the online algorithm only gets to observe the loss of the action actually se-
lected, and does not see the losses of the actions not chosen. For example, if
you are driving in rush-hour traffic and need to select which of several routes to
take, you only observe the travel time on the route actually taken. If we view
this as an online problem, each day selecting which route to take on that day,
then this fits the MAB setting. Furthermore, the route-choosing problem can
be viewed as a general-sum game: your travel time depends on the choices of
the other drivers as well. Thus, if every driver uses a low internal-regret algo-
rithm, then traffic patterns will converge to a correlated equilibrium. For the
MAB problem, our combining algorithm requires additional assumptions on the
base external-regret MAB algorithm: a smoothness in behavior when the actions
played are taken from a somewhat different distribution than the one proposed
by the algorithm. Luckily, these conditions are satisfied by existing external-
regret MAB algorithms such as that of Auer et al. [2]. For the multi-armed
bandit setting, we derive an O(

√
N3T log N + N2 log N) swap-regret bound.

Thus, after T = O(1
ε2 N3 log N) rounds, the empirical distribution on the his-

tory is an ε-correlated equlibrium. (The work of [21] also gives a multi-armed
bandit algorithm whose internal regret is sublinear in T , but does not derive
explicit bounds.)

One can also envision broader classes of regret. Lehrer [23] defines a notion of
wide range regret that allows for arbitrary action-modification rules, which might
depend on history, and also Boolean time selection functions (which determine
which subset of times is relevant). Using the approachability theorem [4], he
shows a scheme that in the limit achieves no regret (regret is sublinear in T).
While [23] derives the regret bounds in the limit, we derive finite-time regret
bounds for this setting. We show that for any family of N actions, M time
selection functions and K modification rules, the maximum regret with respect to
any selection function and modification rule is bounded by O(

√
TN log(MK)+

N log(MK)). Our model also handles the case where the time selection functions
are not Boolean, but rather reals in [0, 1].

This latter result can be viewed as a generalization of the sleeping experts
setting of [5, 16]. In the sleeping experts problem, we again have a set of experts,
but on any given time step, each expert may be awake (making a prediction)
or asleep (not predicting). This is a natural model for combining a collection
of if-then rules that only make predictions when the “if” portion of the rule is
satisfied, and this setting has had application in domains ranging from man-
aging a calendar [5] to text-categorization [11] to learning how to formulate
web search-engine queries [10]. By converting each such sleeping-expert into a
pair 〈expert, time-selection function〉, we achieve the desired guarantee that for
each sleeping-expert, our loss during the time that expert was awake is not much
more than its loss in that period. Moreover, by using non-Boolean time-selection
functions, we can naturally handle prediction rules that have varying degrees
of confidence in their predictions and achieve a confidence-weighted notion of
regret.

624 A. Blum and Y. Mansour

We also study the case of deterministic Boolean prediction in the setting
of time selection functions. We derive a deterministic online algorithm whose
number of weighted errors, with respect to any time selection function from our
class of M selection functions is at most 3OPT +1+2 log M , where OPT is the
best constant prediction for that time selection function. (For lack of space, the
proof is omitted in this extended abstract.)

Recent Related Work. It was brought to our attention [25] that comparable re-
sults can be achieved based on independent work appearing in the journal version
of [26]: specifically, the results regarding the relation between external and in-
ternal regret [27] and the multi-armed bandit setting [8]. In comparison to [27],
we are able to achieve a better swap regret guarantee in polynomial time (a
straightforward application of [27] to swap regret would require time-complexity
Ω(NN); alternatively, they can achieve a good internal-regret bound in poly-
nomial time, but then their swap regret bound becomes worse by a factor of√

N). On the other hand, work of [27] is applicable to a wider range of loss
functions, which also capture scenarios arising in portfolio selection. We should
stress that the above techniques are very different from the techniques proposed
in our work.

2 Model and Preliminaries

We assume an adversarial online model where there are N available actions
{1, . . . , N}. At each time step t, an online algorithm H selects a distribution pt

over the N actions. After that, the adversary selects a loss vector �t ∈ [0, 1]N ,
where �t

i ∈ [0, 1] is the loss of the i-th action at time t. In the full information
model, the online algorithm receives the loss vector �t and experiences a loss
�t
H =

∑N
i=1 pt

i�
t
i. In the partial information model, the online algorithms receives

(�t
kt , kt), where kt is distributed according to pt, and �t

H = �t
kt is its loss. The

loss of the i-th action during the first T time steps is LT
i =

∑T
t=1 �t

i, and the loss
of H is LT

H =
∑T

t=1 �t
H . The aim for the external regret setting is to design an

online algorithm that will be able to approach the best action, namely, to have
a loss close to LT

min = mini LT
i . Formally we would like to minimize the external

regret R = LT
H − LT

min.
We introduce a notion of a time selection function. A time selection function

I is a function over the time steps mapping each time step to [0, 1]. That is, I :
{1, . . . , T} → [0, 1]. The loss of action j using time-selector I is LT

j,I =
∑

t I(t)�t
j .

Similarly we define LH,I , the loss of the online algorithm H with respect to
time selection function I, as LT

H,I =
∑

t I(t)�t
H , where �t

H is the loss of H at
time t. This notion of experts with time selection is very similar to the notion
of “sleeping experts” studied in [16]. Specifically, for each action j and time
selection function I, one can view the pair (j, I) as an expert that is “awake”
when I(t) = 1 and “asleep” when I(t) = 0 (and perhaps “partially awake” when
I(t) ∈ (0, 1)).

From External to Internal Regret 625

We also consider modification rules that modify the actions selected by the
online algorithm, producing an alternative strategy we will want to compete
against. A modification rule F has as input the history and an action choice and
outputs a (possibly different) action. (We denote by F t the function F at time
t, including any dependency on the history.) Given a sequence of probability
distributions pt used by an online algorithm H, and a modification rule F ,
we define a new sequence of probability distributions f t = F t(pt), where f t

i =∑
j:F t(j)=i pt

j . The loss of the modified sequence is LH,F =
∑

t

∑
i f t

i �
t
i. Similarly,

given a time selection function I and a modification rule F we define LH,I,F =∑
t

∑
i I(t)f t

i �
t
i.

In our setting we assume a finite class of N actions, {1, . . . , N}, a finite set
F of K modification rules, and a finite set I of M time selection function. Given
a sequence of loss vectors, the regret of an online algorithm H with respect to
the N actions, the K modification rules, and the M time selection functions, is

RI,F
H = max

I∈I
max
F∈F

{LH,I − LH,I,F }.
Note that the external regret setting is equivalent to having a single time-

selection function (I(t) = 1 for all t) and a set Fex of N modification rules Fi,
where Fi always outputs action i. For internal regret, the set F in consists of
N(N − 1) modification rules Fi,j , where Fi,j(i) = j and Fi,j(i′) = i′ for i′ �= i.
That is, the internal regret of H is

max
F∈Fin

{LH − LH,F } = max
i,j

∑

t

pt
i(�

t
i − �t

j).

We define a slightly extended class of internal regret which we call swap regret.
This case has Fsw include all NN functions F : {1, . . . , N} → {1, . . . , N}, where
the function F swaps the current online action i with F (i) (which can be the
same or a different action).

A few simple relationships between the different types of regrets: since Fex ⊆
Fsw and F in ⊆ Fsw, both external and internal regret are upper-bounded by
swap-regret. Also, swap-regret is at most N times larger than internal regret.
On the other hand, even with N = 3, there are simple examples which separate
internal and external regret [26].

2.1 Correlated Equilibria and Swap Regret

We briefly sketch the relationship between correlated equilibria [3] and swap
regret.

Definition 1. A general-sum game 〈M, (Ai), (si)〉 has a finite set M of m play-
ers. Player i has a set Ai of N actions and a loss function si : Ai × (×j �=iAj) →
[0, 1] that maps the action of player i and the actions of the other players to a
real number. (We have scaled losses to [0, 1])

The aim of each player is to minimize its loss. A correlated equilibrium [3] is a
distribution P over the joint action space with the following property. Imagine a

626 A. Blum and Y. Mansour

correlating device draws a vector of actions a using distribution P over ×Ai, and
gives player i the action ai from a. (Player i is not given any other information
regarding a.) The probability distribution P is a correlated equilibria if for each
player it is its best response to play the suggested action (provided that the
other players do not deviate).

We now define an ε-correlated equilibrium.

Definition 2. A joint probability distribution P over ×Ai is an ε-correlated
equilibria if for every player j and for any function F : Aj → Aj, we have
Ea∼P [sj(aj , a

−j)] ≤ Ea∼P [sj(F (aj), a−j)] +ε, where a−j denotes the joint ac-
tions of the other players.

The following theorem relates the empirical distribution of the actions per-
formed by each player, their swap regret and the distance from a correlated
equilibrium (see also, [12, 13, 20]).

Theorem 1. Let G =< M, (Ai), (si) > be a game and assume that for T time
steps each player follows a strategy that has swap regret of at most R(T,N).
The empirical distribution Q of the joint actions played by the players is an
(R(T,N)/T)-correlated equilibrium, and the loss of each player equals, by defi-
nition, its expected loss on Q.

The above states that the payoff of each player is its payoff in some ap-
proximate correlated equilibrium. In addition, it relates the swap regret to the
distance from a correlated equilibria. Note that if the average swap regret van-
ishes then the procedure converges, in the limit, to a correlated equilibria (see
[20, 12, 14]).

3 Generic Reduction from External to Swap Regret

We now give a black-box reduction showing how any algorithm A achieving
good external regret can be used as a subroutine to achieve good swap regret
as well. The high-level idea is as follows. We will instantiate N copies of the
external-regret algorithm. At each time step, these algorithms will each give us
a probability vector, which we will combine in a particular way to produce our
own probability vector p. When we receive a loss vector �, we will partition it
among the N algorithms, giving algorithm Ai a fraction pi (pi is our probability
mass on action i), so that Ai’s belief about the loss of action j is

∑
t pt

i�
t
j , and

matches the cost we would incur putting i’s probability mass on j. In the proof,
algorithm Ai will in some sense be responsible for ensuring low regret of the
i → j variety. The key to making this work is that we will be able to define the
p’s so that the sum of the losses of the algorithms Ai on their own loss vectors
matches our overall true loss.

To be specific, let us formalize what we mean by an external regret algorithm.

Definition 3. An algorithm A has external regret R(Lmin, T,N) if for any se-
quence of T losses �t such that some action has total loss at most Lmin, for any
action j ∈ {1, . . . , N} we have

From External to Internal Regret 627

LT
A =

T∑

t=1

�t
A ≤

T∑

t=1

�t
j + R(Lmin, T,N) = LT

j + R(Lmin, T,N)

We assume we have N algorithms Ai (which could all be identical or different)
such that Ai has external regret Ri(Lmin, T,N). We combine the N algorithms
as follows. At each time step t, each algorithm Ai outputs a distribution qt

i ,
where qt

i,j is the fraction it assigns action j. We compute a vector p such that
pt

j =
∑

i pt
iq

t
i,j . That is, p = pQ, where p is the row-vector of our probabilities

and Q is the matrix of qi,j . (We can view p as a stationary distribution of
the Markov Process defined by Q, and it is well known such a p exists and is
efficiently computable.) For intuition into this choice of p, notice that it implies
we can consider action selection in two equivalent ways. The first is simply using
the distribution p to select action j with probability pj . The second is to select
algorithm Ai with probability pi and then to use algorithm Ai to select the
action (which produces distribution pQ).

When the adversary returns �t, we return to each Ai the loss vector pi�
t. So,

algorithm Ai experiences loss (pt
i�

t) · qt
i = pt

i(q
t
i · �t).

Now we consider the guarantee that we have for algorithm Ai, namely, for
any action j,

T∑

t=1

pt
i(q

t
i · �t) ≤

T∑

t=1

pt
i�

t
j + Ri(Lmin, T,N) (1)

If we sum the losses of the N algorithms at any time t, we get
∑

i pt
i(q

t
i · �t) =

ptQt�t, where pt is the row-vector of our probabilities, Qt is the matrix of qt
i,j ,

and �t is viewed as a column-vector. By design of pt, we have ptQt = pt. So, the
sum of the perceived losses of the N algorithms is equal to our actual loss pt�t.

Therefore, summing equation (1) over all N algorithms, the left-hand-side
sums to LT

H and so we have that for any function F : {1, . . . , N} → {1, . . . , N},

LT
H ≤

N∑

i=1

T∑

t=1

pt
i�

t
F (i) +

N∑

i=1

Ri(Lmin, T,N).

We have therefore proven the following theorem.

Theorem 2. For any N algorithms Ai with regret Ri, for every function F :
{1, . . . , N} → {1, . . . , N}, the above algorithm satisfies

LH ≤ LH,F +
N∑

i=1

Ri(Lmin, T,N),

i.e., the swap-regret of H is at most
∑N

i=1 Ri(Lmin, T,N).

A typical optimized experts algorithm [24, 17, 2, 6] will have R(Lmin, T,N) =
O(

√
Lmin log N + log N). (Alternatively, Corollary 4 can be also used to deduce

the above bound.) We can immediately derive the following corollary.

628 A. Blum and Y. Mansour

Corollary 1. Using an optimized experts algorithm as the Ai, for every function
F : {1, . . . , N} → {1, . . . , N}, we have that

LH ≤ LH,F + O(N
√

T log N + N log N)

We can perform a slightly more refined analysis of the bound by having Li
min

be the minimum loss for an action in Ai. Since
∑N

i=1

√
Li

min ≤ ∑N
i=1 Li

min, and
this is bounded by T since we scaled the losses given to algorithm Ai at time t
by pt

i, this implies the worst case regret is O(
√

TN log N + N log N). The only
problem is that algorithm Ai needs to “know” the value of Li

min to set its internal
parameters correctly. One way to avoid this is to use an adaptive method [1].
We can also avoid this problem using the standard doubling approach of starting
with Lmin = 1 and each time our guess is violated, we double the bound and
restart the online algorithm. The external regret of such a resetting optimized
experts algorithm would be

logLmin∑

j=1

O(
√

2j log N + log N) = O(
√

Lmin log N + log Lmin log N).

Going back to our case of N multiple online algorithms Ai, we derive the fol-
lowing,

Corollary 2. Using resetting optimized experts algorithms as the Ai, for every
function F : {1, . . . , N} → {1, . . . , N}, we have that

LH ≤ LH,F + O(
√

TN log N + N log N log T)

One strength of the above general reduction is it ability to accommodate new
regret minimization algorithms. For example, using the algorithm of [9] one can
get a more refined regret bound, which depends on the second moment.

3.1 Lower Bounds for Swap Regret

Notice that while good algorithms for the experts problem achieve external regret
roughly O(

√
T log N), our swap-regret bounds are roughly O(

√
TN log N). Or,

to put it another way, for external regret one can achieve regret εT by time
T = O(ε−2 log N), whereas we need T = O(ε−2N log N) to achieve swap-regret
εT (or an ε-correlated equilibrium). A natural question is whether this is best
possible. We give here a partial answer.

First, one tricky issue is that for a given stochastic adversary, the optimal pol-
icy for minimizing loss may not be the optimal policy for minimizing swap-regret.
For example, consider a process in which losses are generated by an almost un-
biased coin, with slight biases so that the optimal policy for minimizing loss uses
each action T/N times. Because of the variance of the coin flips, in retrospect,
most actions can be swapped with an expected gain of Ω(

√
(T log N)/N) each,

giving a total swap-regret of Ω(
√

TN log N) for this policy. However, a policy

From External to Internal Regret 629

that just picks a single fixed action would have swap-regret only O(
√

T log N)
even though its expected loss is higher.

We show a lower bound of Ω(
√

TN) on swap regret, but in a different model.
Specifically, we have defined swap regret with respect to the distribution pt pro-
duced by the player, rather that the actual action at selected from that distribu-
tion. In the case that the adversary is oblivious (does not depend on the player’s
action selection) then the two models have the same expected regret. However
we will consider a dynamic adversary, whose choices may depend on the player’s
action selection in previous rounds. In this setting (dynamic adversary and re-
gret defined with respect to the action selected from pt rather than pt itself) we
derive the following theorem.

Theorem 3. There exists a dynamic adversary such that for any randomized
online algorithm A, the expected swap regret of A is (1−λ)

√
TN/128, for T ≥ N

and λ = NTe−cN for some constant c > 0.

Proof. (sketch) The adversary behaves as follows. At each time step t, for any
action that has been played less than 8T/N times by A, the adversary flips a
fair coin to set its loss to 0 or 1 (call these random-loss actions). However, once
an action has been played 8T/N times by A, then its loss is 1 from then on (call
these 1-loss actions). Note that at most N/8 actions ever become 1-loss actions.

Now, if A in expectation plays 1-loss actions more than 1/4 of the time, then
A will incur such a high loss that it will even have a large external regret. Specif-
ically, A will have an expected loss at least 5T/8, whereas with high probability
there will exist some action of total loss at most T/2, and this gap exceeds the
bounds of the theorem. On the other hand, if A plays random-loss actions at
least 3/4 of the time, then there must be a large number (at least N/16) actions
that are played at least T/(4N) times by A. However, in the subset of Ti time-
steps that A plays some action i, there is a high probability that some other
action has loss only 1

2Ti − 1
4

√
Ti, even if A were able to choose which actions to

make 1-loss actions (and thereby remove from consideration) after the fact. On
the other hand, A’s expected loss is 1

2Ti. Thus, A has expected swap-regret at
least (N/16)(1

4

√
T/(4N)) =

√
TN/128. The (1 − λ) factor is to guarantee that

the realized values are close to their expected value, with high probability.
�

4 Reducing External to Swap Regret in the Partial
Information Model

In the full information setting the learner gets, at the end of each time step, full
information on the costs of all the actions. In the partial information (bandit)
model, the learner gets information only about the action that was selected. In
some applications this is a more plausible model regarding the information the
learner can observe.

The reduction in the partial information model is similar to the one of the
full information model, but with a few additional complications. We are given N

630 A. Blum and Y. Mansour

partial information algorithms Ai. At each time step t, each algorithm Ai gives
a distribution qt

i . Our master online algorithm combines them to some distri-
bution pt which it uses. Given pt it receives a feedback, but now this includes
information only regarding one action, i.e., it receives (�t

kt , kt), where kt is dis-
tributed according to pt. We take this feedback and distribute to each algorithm
Ai a feedback (bt

i, k
t), such that

∑
i bt

i = �t
kt . The main technical difficulty is

that now the action selected, kt, is distributed according to pt and not qt
i . (For

example, it might be that Ai has qt
i,j = 0 but it receives a feedback about ac-

tion j. From Ai’s point of view this is impossible! Or, more generally, Ai might
start noticing it seems to have a very bad random-number generator.) For this
reason, for the reduction to work we need to make a stronger assumption about
the guarantees of the algorithms Ai, which luckily is implicit in the algorithms
of [2]. Our main result is summarized in the following theorem.

Theorem 4. Given a multi-arm bandit algorithm satisfying Lemma 1 below (such
as the algorithm of [2]), it can be converted to a master online algorithm Int MAB,
such that for every function F : {1, . . . , N} → {1, . . . , N}, we have that

Ept [LInt MAB] ≤ Ept [LInt MAB,F] + N · RMAB(T, T,N)

where RMAB(C, T,N) = O(
√

CN log N + N log N).

Proof. Since results of [2] are stated in terms of maximizing gain rather then
minimizing loss we will switch to this notation, and later derive the loss mini-
mization results.

At each time step t the multi-arm bandit algorithm Ai gives a selection
distribution qt

i over actions, and given all the selection distributions we compute
an action distribution pt. We would like to keep two sets of gains, one is the
real gain, denoted by bt

i, and the other is the gain that the MAB algorithm Ai

observes gt
Ai

. Given the action distribution pt the adversary selects a vector of
real gains bt

i. Our MAB algorithm Int MAB receives a single feedback (bt
kt , kt)

where kt is a random variable that with probability pt
j equals j. Given bt it

returns to each Ai the pair (gt
Ai

, kt), where the observed gain gt
Ai

is based on bt,
pt and qt

i . Note that kt is distributed according to pt, which may not equal qt
i :

it is for this reason we need to use an MAB algorithm that satisfies Lemma 1.
In order to specify our MAB algorithm, Int MAB, we need to specify how

it selects the action distribution pt and the observed gains gt
Ai

. At each time
step t, each algorithm Ai outputs a selection distribution qt

i , where qt
i,j is the

probability it assigns action j. We compute an action distribution pt such that
pt

j =
∑

i pt
iq

t
i,j . That is, p = pQ, where p is the row-vector of our probabilities

and Q is the matrix of qi,j . Given pt the adversary returns a real gain (bt
kt , kt),

namely, the real gain is of our algorithm bt
kt . We return to each algorithm Ai an

observed gain of gt
Ai

= pt
ib

t
ktqi,kt/pt

kt . (In general, define gt
i,j = pt

ib
t
jq

t
i,j/pt

j , where
bt
j = 0 if j �= kt.) First, we will show that

∑N
i=1 gt

Ai
= bt

kt and that gt
Ai

∈ [0, 1].
From the property of the distribution pt we have that,

From External to Internal Regret 631

N∑

i=1

gt
Ai

=
N∑

i=1

pt
ib

t
ktqi,kt

pt
kt

=
pt

ktbt
kt

pt
kt

= bt
kt .

This shows that we distribute our real gain between the algorithms Ai, namely
that the sum of the observed gains equals the real gain. In addition, it bounds
the observed gain that each algorithm Ai receives. Namely, 0 ≤ gt

Ai
≤ bt

kt ≤ 1.
In order to describe the guarantee that each external regret multi-arm bandit

algorithm Ai has, for our application, we need the following additional definition.
At time t let Xt

i,j be a random variable such that Xt
i,j = gt

i,j/qt
i,j = pt

ib
t
j/pt

j if
j = kt and Xt

i,j = 0 otherwise. The expectation of Xt
i,j is

Ekt∼pt [Xt
i,j] = pt

j

pt
ib

t
j

pt
j

= pt
ib

t
j

Lemma 1 ([2]). There exists a multi-arm bandit algorithm, Ai, such that for
any sequence of observed gains gt

i,j ∈ [0, 1], for any sequence of selected actions
kt, and any action r and parameter γ ∈ (0, 1], the expected observed gains is
bounded by,

GAi,gt ≡
T∑

t=1

gt
Ai

≡
T∑

t=1

gt
kt ≥ (1 − γ)

T∑

t=1

Xt
i,r −

N ln N

γ
− γ

N

T∑

t=1

N∑

j=1

Xt
i,j (2)

We now use Lemma 1. Note, in Auer et al. [2] the action distribution is
identical to the selection distribution, i.e. pt = qt, and the observed and real gain
are identical, i.e., gt = bt. Auer et al. [2] derive the external regret bound by
taking the expectation with respect to the action distribution (which is identical
to the selection distribution). In our case we will like to separate the real gain
from the observed gain.

Let the total observed gain of algorithm Ai be GAi
=

∑T
t=1 gt

Ai
=

∑T
t=1 gt

i,kt .
Since we distribute our gain between the Ai, i.e.,

∑N
i=1 gt

Ai
= bt

Int MAB , we have
that BInt MAB =

∑T
t=1 bt

Int MAB =
∑N

i=1 GAi
. Since gt

i,j ∈ [0, 1], by Lemma 1,
this implies that for any action r we have

Ept [GAi
] ≥ (1 − γ)

T∑

t=1

Ept [Xt
i,r] −

N ln N

γ
− γ

N

T∑

t=1

N∑

j=1

Ept [Xt
i,j]

= (1 − γ)
T∑

t=1

pt
ib

t
r −

N ln N

γ
− γ

N

T∑

t=1

N∑

j=1

pt
ib

t
j

≥ (1 − γ)Bi,r − N ln N

γ
− γ

N

N∑

j=1

Bi,j

≥ Bi,r − O(
√

BmaxN ln N + N ln N) = Bi,r − RMAB(Bmax, N, T)

where Bi,r =
∑T

t=1 pt
ib

t
r, Bmax = maxi,j Bi,j and γ = min{√(N ln N)/Bmax, 1}.

632 A. Blum and Y. Mansour

Note that the expected benefit of our algorithm is E[BInt MAB,bt] =
∑N

i=1

Bi,i. For the regret we like to compare the gain of Bi,i to that of Bi,r, which is
the change in our benefit if each time we play action r rather than i. For swap
regret, we compare our expected benefit to that of

∑N
i= Bi,F (i), for some function

F . Therefore, we have that for any function F : {1, . . . , N} → {1, . . . , N},

Ept [BT
Int MAB] =

N∑

i=1

Ept [GAi
] ≥

N∑

i=1

Bi,F (i) − N · RMAB(Bmax, T,N).

For the case of losses let bt
j = 1−ct

j . Then BMAB = T −LMAB and we derive
Theorem 4.
�

5 External Regret with Time-Selection Functions

We now present a simple online algorithm that achieves a good external regret
bound in the presence of time selection functions, generalizing the sleeping ex-
perts setting. Specifically, our goal is for each action a, and each time-selection
function I, that our total loss during the time-steps selected by I is not much
more than the loss of a during those time steps (or more generally, the losses
weighted by I when I(t) ∈ [0, 1]). The idea of the algorithm is as follows. Let Ra,I

be the regret of our algorithm with respect to action a and time selection func-
tion I. That is, Ra,I =

∑
t I(t)(�t

H −�t
a). Let R̃a,I be a less-strict notion of regret

in which we multiply our loss by some β < 1, that is, R̃a,I =
∑

t I(t)(β�t
H − �t

a).
What we will do is give to each action a and time selection function I a weight
wa,I that is exponential in R̃a,I . We will prove that the sum of our weights never
increases, and thereby be able to easily conclude that none of the R̃a,I can be
too large.

Specifically, for each of the N actions and the M time selection functions
we maintain a weight wt

a,I . We update these weights using the rule wt+1
a,I =

wt
a,Iβ

I(t)(�t
a−β�t

H), where �t
H is the loss of our online algorithm H at time t.

(Initially, w0
a,I = 1.) Equivalently, wt

a,I = β−R̃t
a,I , where R̃t

a,I is the “less-strict”
regret mentioned above up to time t.

At time t we define wt
a =

∑
I I(t)wt

a,I , W t =
∑

a wt
a and pt

a = wt
a/W t. Our

distribution over actions at time t is pt.

Claim. At any time t we have 0 ≤ ∑
a,I wt

a,I ≤ NM .

Proof. Initially, at time t = 0, the claim clearly holds. Observe that at time t we
have the following identity,

W t�t
H = W t

∑

a

pt
a�t

a =
∑

a

wt
a�t

a =
∑

a

∑

I

I(t)wt
a,I�

t
a. (3)

For the inductive step we show that the sum of the weights can only decrease.
Note that for any β ∈ [0, 1], for x ∈ [0, 1] we have βx ≤ 1 − (1 − β)x, and for
x ∈ [−1, 0] we have βx ≤ 1 + (1 − β)|x|/β.

From External to Internal Regret 633

∑

a

∑

I

wt+1
a,I =

∑

a

∑

I

wt
a,Iβ

I(t)(�t
a−β�t

H)

≤
∑

a

∑

I

wt
a,I(1 − (1 − β)I(t)�t

a)(1 + (1 − β)I(t)�t
H)

≤ (
∑

a

∑

I

wt
a,I) − (1 − β)(

∑

a,I

wt
a,I�

t
a) + (1 − β)(

∑

a,I

I(t)wt
a,I�

t
H)

= (
∑

a

∑

I

wt
a,I) − (1 − β)W t�t

H + (1 − β)W t�t
H (using eqn. (3))

= (
∑

a

∑

I

wt
a,I).
�

Corollary 3. For every action a and time selection I we have

wt
a,I = βLa,I−βLH,I ≤ MN,

where LH,I =
∑

t I(t)�t
H is the loss of the online algorithm with respect to time-

selection function I.

A simple algebraic manipulation of the above implies the following theorem

Theorem 5. For every action a and every time selection function I ∈ I we
have

LH,I ≤ La,I + (log NM)/ log(1/β)
β

We can optimize for β in advance, or do it dynamically using [1], establishing:

Corollary 4. For every action a and every time selection function I ∈ I we
have

LH,I ≤ La,I + O(
√

Lmin log NM + log MN),

where Lmin = maxI mina{La,I}.

6 Arbitrary Time Selection and Modification Rules

In this section we combine the techniques from Sections 3 and 5 to derive a
regret bound for the general case where we assume that there is a finite set I of
M time selection functions, and a finite set F of K modification rules. Our goal
is to design an algorithm such that for any time selection function I ∈ I and
any F ∈ F , LH,I is not too much larger than LH,I,F .

We maintain at time t, a weight wt
j,I,F per action j, time selection I and

modification rule F . Initially w0
j,I,F = 1. We set

wt+1
j,I,F = wt

j,I,F βpt
jI(t)(�t

F (j)−β�t
H,j),

where W t
j,F =

∑
I I(t)wt

j,I,F , W t
j =

∑
F W t

j,F , and �t
H,j =

∑
F W t

j,F �t
F (j)/W t

j .

634 A. Blum and Y. Mansour

We use the weights to define a distribution pt over actions as follows. We
select a distribution pt such that

pt
i =

N∑

j=1

pt
j

∑

F :F (j)=i

W t
j,F /W t

j . (4)

I.e., p is the stationary distribution of the associated Markov chain. Notice that
the definition of p implies that the loss of H at time t can either be viewed
as

∑
i pt

i�
t
i or as

∑
j pj

∑
F (W t

j,F /W t
j)�t

F (j) =
∑

j pt
j�

t
H,j . The following Claim,

whose proof is omitted, bounds the magnitude of the weights.

Claim. For every action j, at any time t we have 0 ≤ ∑
I,F wt

j,I,F ≤ MK

The following theorem (proof omitted) derives the general regret bound.

Theorem 6. For every time selection I ∈ I and modification rule F ∈ F , we
have that

LH,I ≤ LH,I,F + O(
√

TN log MK + N log MK)

7 Conclusion and Open Problems

In this paper we give general reductions by which algorithms achieving good
external regret can be converted to algorithms with good internal (or swap)
regret, and in addition develop algorithms for a generalization of the sleeping
experts scenario including both real-valued time-selection functions and a finite
set of modification rules.

A key open problem left by this work is whether it is possible to achieve
swap-regret that has a logarithmic or even sublinear dependence on N . Specif-
ically, for external regret, existing algorithms achieve regret εT in time T =
O(1

ε2 log N), but our algorithms for swap-regret achieve regret εT only by time
T = O(1

ε2 N log N). We have shown that sublinear dependence is not possible
in against an adaptive adversary with swap-regret defined with respect to the
actions actually chosen from the algorithm’s distribution, but we do not know
whether there is a comparable lower bound in the distributional setting (where
swap-regret is defined with respect to the distributions pt themselves), which is
the model we used for all the algorithms in this work. In particular, an algorithm
with lower dependence on N would imply a more efficient (in terms of number
of rounds) procedure for achieving an approximate correlated equilibrium.

References

1. Peter Auer, Nicolò Cesa-Bianchi, and Claudio Gentile. Adaptive and self-confident
on-line learning algorithms. JCSS, 64(1):48–75, 2002. A preliminary version has
appeared in Proc. 13th Ann. Conf. Computational Learning Theory.

From External to Internal Regret 635

2. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–
77, 2002.

3. R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics, 1:67–96, 1974.

4. D. Blackwell. An analog ofthe mimimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6:1–8, 1956.

5. A. Blum. Empirical support for winnow and weighted-majority based algorithms:
results on a calendar scheduling domain. Machine Learning, 26:5–23, 1997.

6. Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. In STOC, pages
382–391, 1993. Also, Journal of the Association for Computing Machinery, 44(3):
427-485 (1997).

7. Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line pre-
diction and game theory. Machine Learning, 51(3):239–261, 2003.

8. Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under
partial monitoring. unpublished manuscript, 2004.

9. Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order
bounds for prediction with expert advice. In COLT, 2005.

10. W. Cohen and Y. Singer. Learning to query the web. In AAAI Workshop on
Internet-Based Information Systems, 1996.

11. W. Cohen and Y. Singer. Context-sensitive learning methods for text categoriza-
tion. ACM Transactions on Information Systems, 17(2):141–173, 1999.

12. D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games
and Economic Behavior, 21:40–55, 1997.

13. D. Foster and R. Vohra. Asymptotic calibration. Biometrika, 85:379–390, 1998.
14. D. Foster and R. Vohra. Regret in the on-line decision problem. Games and

Economic Behavior, 29:7–36, 1999.
15. Dean P. Foster and Rakesh V. Vohra. A randomization rule for selecting forecasts.

Operations Research, 41(4):704–709, July–August 1993.
16. Y. Freund, R. Schapire, Y. Singer, and M. Warmuth. Using and combining pre-

dictors that specialize. In Proceedings of the 29th Annual Symposium on Theory
of Computing, pages 334–343, 1997.

17. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In Euro-COLT, pages 23–37. Springer-
Verlag, 1995. Also, JCSS 55(1): 119-139 (1997).

18. Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999. A preliminary version
appeared in the Proceedings of the Ninth Annual Conference on Computational
Learning Theory, pages 325–332, 1996.

19. J. Hannan. Approximation to bayes risk in repeated plays. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139. Princeton University Press, 1957.

20. S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68:1127–1150, 2000.

21. S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilib-
rium. In Wilhelm Neuefeind Gerard Debreu and Walter Trockel, editors, Economic
Essays, pages 181–200. Springer, 2001.

22. Mark Herbster and Manfred K. Warmuth. Tracking the best expert. In Interna-
tional Conference on Machine Learning, pages 286–294, 1995.

636 A. Blum and Y. Mansour

23. E. Lehrer. A wide range no-regret theorem. Games and Economic Behavior,
42:101–115, 2003.

24. Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Information and Computation, 108:212–261, 1994.

25. Gilles Stoltz. Private communication.
26. Gilles Stoltz and Gábor Lugosi. Internal regret in on-line portfolio selection. In

COLT, 2003. To appear in Machine Learning Journal.
27. Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with com-

pact sets of strategies. submitted to Games and Economic Behavior, 2004.

	Introduction
	Model and Preliminaries
	Correlated Equilibria and Swap Regret

	Generic Reduction from External to Swap Regret
	Lower Bounds for Swap Regret

	Reducing External to Swap Regret in the Partial Information Model
	External Regret with Time-Selection Functions
	Arbitrary Time Selection and Modification Rules
	Conclusion and Open Problems
	References

