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Abstract. We consider the problem of learning mixtures of distribu-
tions via spectral methods and derive a characterization of when such
methods are useful. Specifically, given a mixture-sample, let µi, Ci, wi

denote the empirical mean, covariance matrix, and mixing weight of the
samples from the i-th component. We prove that a very simple algo-
rithm, namely spectral projection followed by single-linkage clustering,
properly classifies every point in the sample provided that each pair of
means µi, µj is well separated, in the sense that ‖µi − µj‖2 is at least

‖Ci‖2(1/wi +1/wj) plus a term that depends on the concentration prop-
erties of the distributions in the mixture. This second term is very small
for many distributions, including Gaussians, Log-concave, and many oth-
ers. As a result, we get the best known bounds for learning mixtures of ar-
bitrary Gaussians in terms of the required mean separation. At the same
time, we prove that there are many Gaussian mixtures {(µi, Ci, wi)} such
that each pair of means is separated by ‖Ci‖2(1/wi + 1/wj), yet upon
spectral projection the mixture collapses completely, i.e., all means and
covariance matrices in the projected mixture are identical.

Keywords: learning mixtures of distributions, spectral methods, sin-
gular value decomposition, gaussians mixtures, log-concave and concen-
trated distributions.

1 Introduction

A mixture of k distributions D1, . . . , Dk with mixing weights w1, . . . , wk, where∑
i w1 = 1, is the distribution in which each sample is drawn from Di with prob-

ability wi. Learning mixtures of distributions is a classical problem in statistics
and learning theory (see [4, 5]). Perhaps the most studied case is that of learning
Gaussian mixtures. In such a mixture, each constituent distribution is a mul-
tivariate Gaussian, characterized by a mean vector µi ∈ R

d and an arbitrary
covariance matrix Ci = RiR

T
i ∈ R

d×d. That is, a sample from the i-th Gaussian
is a vector µi+Rix, where x ∈ R

d is a vector whose components are i.i.d. N(0, 1)
random variables. We let σ2

i = ‖Ci‖ denote the maximum directional variance
of each Gaussian, where ‖ · ‖ denotes the matrix spectral norm.
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We begin with discussing some earlier works on learning Gaussian mixtures,
which serve as the motivation (and canonical model) for our work. A generally
fruitful approach to learning mixtures of Gaussians is to start by projecting the
samples onto a low dimensional space. This idea, originated in non-parametric
statistics in the 60s, is motivated by the fact that reducing the dimensional-
ity of the host space, dramatically reduces the number of potential component
separators, thus affording a more complete search among them. Moreover, it is
well-known that the projection of a Gaussian mixture onto a fixed subspace is
also a Gaussian mixture, one in which the means and mixing weights behave in
the obvious way, while the covariance matrices get transformed to new matrices
of no greater maximum directional variance.

Dasgupta [2] pioneered the idea of projecting Gaussian mixtures onto random
low-dimensional subspaces. For a typical subspace, the separation of each mean
µi from the other means shrinks at the same rate as E[‖Rix‖2], i.e., in proportion
to the reduction in dimension. Thus, the random projection’s main feature is to
aid clustering algorithms that are exponential in the dimension. But, in order
for a mixture to not collapse under a typical projection the separation between
means µi, µj needs to grow as (σi +σj)× d1/2, i.e., not only must the Gaussians
not touch but, in fact, they must be pulled further and further apart as their
dimensionality grows.

In [3], Dasgupta and Schulman reduced this requirement to (σi+σj)×d1/4 for
spherical Gaussians by showing that, in fact, under this conditions the EM algo-
rithm can be initialized so as to learn the µi in only two rounds. Arora and Kan-
nan [1] combined random projections with sophisticated distance-concentration
arguments in the context of learning mixtures of general Gaussians. In their
work, the separation of means is not the only relevant parameter and their re-
sults apply to many cases where a worst-case mixture with the given separation
characteristics is not learnable by any algorithm. That said, the worst case sep-
aration required by the results in [1] is also (σi + σj) × d1/4.

Rather than projecting the mixture onto a random subspace, we could dream
of projecting it onto the subspace spanned by the mean vectors. This would
greatly enhance the “contrast” in the projected mixture since E[‖Rix‖2] is re-
duced as before, but the projected means remain fixed and, thus, at the same
distance. Recently, Vempala and Wang [6] did just this, by exploiting the fact
that in the case of spherical Gaussians, as the number of samples grows, the
subspace spanned by the top singular vectors of the data set converges to the
subspace spanned by the mean vectors. This allowed them to give a very simple
and elegant algorithm for learning spherical Gaussians which works as long as
each pair of means µi, µj is separated by (σi + σj)× k1/4, i.e., a length indepen-
dent of the original dimensionality.

Unfortunately, for non-spherical Gaussians the singular vector subspace does
not in general convergence to the subspace spanned by the means. Vempala and
Wang [6] observed this and asked if spectral projections can be useful for dis-
tributions that are not weakly isotropic, e.g. non-spherical Gaussians. In recent
related work, Kannan, Salmasian, and Vempala [8] show how to use spectral
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projections to learn mixtures of Log-concave distributions in which each pair of
means µi, µj is separated by, roughly, k3/2(σi + σj)/w2

min.
Here, we show that combining spectral projection with single-linkage cluster-

ing gives a method for recursively dissecting mixtures of concentrated distribu-
tions, e.g., Gaussian mixtures, when each pair of means µi, µj in the mixture is
separated by (σi +σj)(1/wi +1/wj)1/2, plus a term describing the concentration
of the constituent distributions. For example, for Gaussian mixtures this second
term is of order (σi + σj)(k + (k log n)1/2).

At the same time, we also provide a lower bound that demonstrate that for
spectral projection, separation in excess of (σi + σj)(1/wi + 1/wj)1/2 is manda-
tory. That is, we prove that for any set of mixing weights w1, . . . , wk, there is an
arrangement of identical Gaussians, with maximal directional variance σ where
every pair of means µi, µj is separated by σ(1/wi + 1/wj)1/2, yet upon spec-
tral projection the mixture collapses completely, i.e., all means and covariance
matrices in the projected mixture are identical. Thus, with the exception of the
concentration term, our upper and lower bounds coincide.

We should mention briefly an important difference of our approach as com-
pared to much previous work. Given as input some k′ ≥ k, our algorithm re-
cursively subdivides the data set using cuts that respect mixture boundaries
whenever applied to mixtures with at least two components present. Unlike
previous work, our algorithm does not terminate with a partition of the input
samples into k sets, but instead continues subdivision, returning a hierarchy
that describes many legitimate k-partitions for varying values of k. This subdi-
vision tree admits simple dynamic programming algorithms that can reconstruct
k-partitions minimizing a variety of loss functions, which we discuss later in fur-
ther detail. Importantly, it gives the flexibility to explore several values of k in
a uniform manner. Computing each cut in this tree reduces to computing the
top k singular vectors of a sample submatrix followed by a Minimum Spanning
Tree computation on the corresponding projected sample. As a result, a naive
implementation of our algorithm runs in time O(kd3n2). If one is a bit more
careful and performs the MST computations on appropriately large subsamples,
the running time becomes linear in n, specifically O(n(k2d2 + d3)/wmin).

2 Our Techniques and Results

From this point on, we adopt the convention of viewing the data set as a col-
lection of samples with hidden labels, rather than samples from a pre-specified
mixture of distributions. This will let us describe sufficient conditions for cor-
rect clustering that are independent of properties of the distributions. Of course,
we must eventually determine the probability that a specific distribution yields
samples with the requisite properties, but deferring this discussion clarifies the
results, and aids in their generality.

Our exposition uses sample statistics: µi, σi, and wi. These are the empirical
analogues of µi, σi, and wi, computed from a d×n matrix of labeled samples A.
We also use ni to denote the number of samples in the mixture with label i.
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The advantages of sample statistics are twofold: i) they allow for more concise
and accurate proofs, and ii) they yield pointwise bounds that may be applied
to arbitrary sets of samples. We will later discuss the convergence of the sample
statistics to their distributional equivalents, but for now the reader may think
of them as equivalent.

2.1 Spectral Projection and Perturbation

We start our analysis with an important tool from linear algebra: the optimal
rank k column projection. For every matrix A and integer k, there exists a rank
k projection matrix PA such that for any other matrix X of rank at most k,

‖A − PAA‖ ≤ ‖A − X‖ . (1)

The matrix PA is spanned by the top k left singular vectors of A, read from A’s
singular value decomposition.

Our key technical result is that the sample means µi are only slightly per-
turbed when projected through PA. We use the notation σ2 =

∑
i wiσ

2
i for the

weighted maximum directional variance.

Theorem 1. For any set A of labeled samples, for all i, ‖µi−PAµi‖ ≤ σ/w
1/2
i .

Proof. Let xi ∈ {0, 1/ni}n be the scaled characteristic vector of samples in A
with label i, i.e., xq

i = 1/ni iff the q-th sample has label i. Thus, µi = Axi and

‖µi −PAµi‖ = ‖(A−PAA)xi‖ ≤ ‖A−PAA‖ ‖xi‖ ≤ ‖A−PAA‖/n
1/2
i . (2)

Let B be the d × n matrix that results by replacing each sample (column) in A
by the empirical mean of its component. B has rank at most k, and so by (1)

‖A − PAA‖ ≤ ‖A − B‖ . (3)

Write D = A − B and let Dj be the d × nj submatrix of samples with label j,
so that ‖DjD

T
j /nj‖ = σ2

j . Then

‖D‖2 = ‖DDT ‖ = ‖
∑

j

DjD
T
j ‖ ≤

∑

j

‖DjD
T
j ‖ =

∑

j

σ2
jnj = σ2n . (4)

Combining (2),(3) and (4) we get ‖µi − PAµi‖ ≤ σ(n/ni)1/2 = σ/w
1/2
i . ��

Theorem 1 and the triangle inequality immediately imply that for every i, j
the separation of µi, µj is reduced by the projection onto PA by no more than

‖(µi − µj) − PA(µi − µj)‖ ≤ σ(1/w
1/2
i + 1/w

1/2
j ) . (5)

In Theorem 2 below we sharpen (5) slightly (representing an improvement of no
more than a factor of

√
2). As we will prove in Section 4, the result of Theorem 2

is tight.
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Theorem 2. For any set A of labeled samples, for all i, j, ‖(µi −µj)−PA(µi −
µj)‖ ≤ σ(1/wi + 1/wj)1/2.

Proof. Analogously to Theorem 1, we now choose xij ∈ {0, 1/ni,−1/nj}n so
that µi − µj = Axij and ‖xij‖ = (1/ni + 1/nj)1/2. Recall that by (3) and (4)
we have ‖(A − PAA)‖ ≤ σn1/2. Thus,

‖(µi − µj) − PA(µi − µj)‖ = ‖(A − PAA)xij‖
≤ ‖A − PAA‖(1/ni + 1/nj)1/2

= σ(1/wi + 1/wj)1/2 .

��
2.2 Combining Spectral Projection and Single-Linkage

We now describe a simple partitioning algorithm combining spectral projection
and single-linkage that takes as input a training set A, a set to separate B, and
a parameter k. The algorithm computes an optimal rank k projection for the
samples in A which it applies to the samples in B. Then, it applies single-linkage
to the projected samples, i.e., it computes their minimum spanning tree and
removes the longest edge from it.

Separate(A,B, k):

1. Construct the Minimum Spanning Tree on PAB with respect to the 2-norm.
2. Cut the longest edge, and return the connected components.

Separate will be the core primitive we build upon in the following sections, and
so it is important to understand the conditions under which it is guaranteed to
return a proper cut.

Theorem 3. Assume that A,B are sets of samples containing the same set of
labels and that the sample statistics of A satisfy, with i = arg maxi σi,

∀j 	= i : ‖µi − µj‖ > σi(1/wi + 1/wj)1/2 + 4 max
xu∈B

‖PA(xu − µu)‖ . (6)

If B contains at least two labels, then Separate(A,B, k) does not separate sam-
ples of the same label.

Proof. The proof idea is that after projecting B on PA, the samples in B with
label i will be sufficiently distant from all other samples so that the following is
true: all intra-label distances are shorter than the shortest inter-label distance
involving label i. As a result, by the time an inter-label edge involving label i is
added to the Minimum Spanning Tree, the samples of each label already form a
connected component.

By the triangle inequality, the largest intra-label distance is at most

‖PA(xi − xj)‖ ≤ 2 max
xv∈B

‖PA(xv − µv)‖ . (7)
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On the other hand, also by the triangle inequality, all inter-label distances are
at least

‖PA(xi − xj)‖ ≥ ‖PA(µi − µj)‖ − 2 max
xv∈B

‖PA(xv − µv)‖ . (8)

To bound ‖PA(µi − µj)‖ from below we first apply the triangle inequality one
more time to get (9). We then bound the first term in (9) from below using (6)
and the second term using Theorem 2, thus getting

‖PA(µi − µj)‖ ≥ ‖µi − µj‖ − ‖(I − PA)(µi − µj)‖ (9)

> (σi − σ)(1/wi + 1/wj)1/2 + 4 max
xv∈B

‖PA(xv − µv)‖ . (10)

As σi ≥ σ, combining (8) and (10) we see, by (7), that all inter-label distances
involving label i have length exceeding the upper bound on intra-label distances.

��

2.3 k-Partitioning the Full Sample Set

Given two sets of samples A,B and a parameter k, Separate bisects B by pro-
jecting it onto the optimal rank k subspace of A and applying single-linkage
clustering. Now, we show how to use Separate recursively and build an al-
gorithm Segment which on input A,B, k outputs a full k-partition of B. To
classify n sample points from a mixture of distributions we simply partition
them at random into two sets X,Y and invoke Segment twice, with each set
being used once as the training set and once as the set to be partitioned.

Applying Separate recursively is non-trivial. Imagine that we are given sets
A,B meeting the conditions of Theorem 3 and by running Separate(A,B, k)
we now have a valid bipartition B = B1 ∪ B2. Recall that one of the conditions
in Theorem 3 is that the two sets given as input to Separate contain the same
set of labels. Therefore, if we try to apply Separate to either B1 or B2 using A
as the training set we are guaranteed to not meet that condition! Another, more
technical, problem is that we would like each recursive invocation to succeed or
fail independently of the rest. Using the same training set for all invocations
introduces probabilistic dependencies among them that are very difficult to deal
with.

To address these two problems we will need to be a bit more sophisticated
in our use of recursion: given sets A,B rather than naively running Sepa-
rate(A,B, k), we will instead first subsample A to get a training set A1 and
then invoke Separate(A1, A ∪ B − A1, k). The idea is that if A1 is big enough
it will have all the good statistical properties of A (as demanded by Theorem 3)
and Separate will return a valid bipartition of A ∪ B − A1. The benefit, of
course, is that each part of B will now be accompanied by the subset of A−A1

of same labels. Therefore, we can now simply discard A1 and proceed to apply
the same idea to each of the two returned parts, as we know which points in
each part came from A and which came from B.
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Our algorithm Segment will very much follow the above idea, the only dif-
ference being that rather than doing subsampling with each recursive call we
will fix a partition of A = A1 ∪ · · · ∪Ak at the outset and use it throughout the
recursion. More specifically, we will think of the execution of Segment as a full
binary tree with 2k − 1 nodes, each of which will correspond to an invocation
of Separate. In each level 1 ≤ � ≤ k of the tree, all invocations will use A�

as the training set and they will partition some subset of A�+1 ∪ · · · ∪ Ak ∪ B.
So, for example, at the second level of the tree, there will be two calls to Sepa-
rate, both using A2 as the training set and each one partitioning the subset of
A∪B−A1 that resulted by the split at level 1. Clearly, one of these two parts can
already consist of samples from only one label, in which case the invocation at
level 2 will produce a bipartition which is arbitrary (and useless). Nevertheless,
as long as these are the only invocations in which samples with the same label
are split, there exists a subset of k nodes in the tree which corresponds exactly
to the labels in B. As we will see, we will be able to identify this subset in time
O(k2 min(n, 2k)) by dynamic programming.

Formally, Segment takes as input a sample set S ⊆ A ∪B and a parameter
� indicating the level. Its output is the hierarchical partition of S as captured by
the binary tree mentioned above. To simplify notation below, we assume that
the division of A into A1, . . . , Ak is known to the algorithm.

Segment(S, �)
1. Let [L,R] = Separate(A� ∩ S, S \ A�, k).
2. If � < k invoke Segment(L, � + 1) and Segment(R, � + 1).

To state the conditions that guarantee the success of Segment we need to
introduce some notation. For each i, �, let µ�

i , σ�
i , and w�

i be the sample statistics
associated with label i in A�. For each vector v ⊆ {1, . . . , k} let Av

� denote the set
of samples from A� with labels from v, and let Bv

� denote the set of samples from⋃
m>� Am ∪ B with labels from v. Finally, we say that a hierarchical clustering

is label-respecting if for any set of at least two labels, the clustering does not
separate samples of the same label.

Theorem 4. Assume that A1, . . . , Ak and B each contain the same set of labels
and that for every pair (�,v), with i = arg maxi∈v σ�

i , we have:

∀ j ∈ v − i : ‖µ�
i − µ�

j‖ ≥ σ�
i(1/w�

i + 1/w�
j)

1/2 + 4 max
xu∈Bv

�

‖PAv
�
(xu − µ�

u)‖ .

The hierarchical clustering Segment(A ∪B, 1) produces will be label-respecting.

Proof. The proof is inductive, starting with the inductive hypothesis that in any
invocation of Segment(S, �) where S contains at least two labels, the set S
equals Bv

�−1for some v. Therefore, we need to prove that Separate(A� ∩ S, S \
A�, k) = Separate(Av

� , Bv
� , k) will produce sets L and R that do not share labels.

For every (v, �), if i = arg maxi∈v σ�
i , our assumed separation guarantees that

label i satisfies

∀ j ∈ v − i : ‖µ�
i − µ�

j‖ ≥ σ�
i(1/w�

i + 1/w�
j)

1/2 + 4 max
xu∈Bv

�

‖PAv
�
(xu − µ�

u)‖ .
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While the above separation condition refers to the sample statistics of A�, when
we restrict our attention to Av

� , the samples means and standard deviations do
not change and the sample mixing weights only increase. Therefore, the require-
ments of Theorem 3 hold for Av

� , Bv
� concluding the proof. ��

Given the hierarchical clustering generated by Segment we must still deter-
mine which set of k−1 splits is correct. We will, in fact, solve a slightly more gen-
eral problem. Given an arbitrary function scoring subsets of B, score : 2B → R,
we will find the k-partition of the samples with highest total (sum) score. For
many distributions, such as Gaussians, there are efficient estimators of the likeli-
hood that a set of data was generated from the distribution and such estimators
can be used as the score function. For example, in cross training log-likelihood es-
timators, the subset under consideration is randomly partitioned into two parts.
First, the parameters of the distribution are learned using one part and then the
likelihood of the other part given these parameters is computed.

We will use dynamic programming to efficiently determine which subset set
of k− 1 splits corresponds to a k-partition for which the sum of the scores of its
parts is highest. As one of the options in the k−1 splits by labels, our result will
score at least as high as the latent partition. The dynamic program computes,
for every node S in the tree and integer i ≤ k, the quantity opt(S, i), the optimal
score gained by budgeting i parts to the subset S. If we let S = L ∪ R be the
cut associated with S, the dynamic program is defined by the rules

opt(S, 1) = score(S) and opt(S, i) = max
j<i

[opt(L, j) + opt(R, i − j)] .

We are ultimately interested in opt(B, k) which we can be computed efficiently
in a bottom up fashion in time O(k2 min(n, 2k)).

Finally, all of the techniques that we have used to partition B can be used
to partition A. We can divide B into k sets B1, . . . Bk to use as training in
the classification of A. For all but the most obtuse sets of samples, a random
partition into A and B will yield samples for which ‖µA

i − µB
j ‖ is minimized at

i = j allowing us to merge the partition of A with the partition of B. We avoid
stating a theorem generally about the combination of these three steps, but do
so in the next section with concrete distributions.

3 Results for Gaussian, Log-Concave, and Concentrated
Mixtures

We now examine how our results apply to specific distributions, such as Gaussian
and Log-concave distributions, as well as a more general class that we define
below. In fact, we will start with the more general class, and instantiate the
other two from it.

First, we say that a distribution x is f -concentrated for a function f : R → R

if for every unit vector v

Pr
[|vT (x − E[x])| > f(δ)

] ≤ δ . (11)
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In words, when we project the distribution onto any fixed line, a random sample
will be within f(δ) of the mean with probability 1 − δ. Second, we say that a
distribution is g-convergent for a function g : R → R if a sample of size g(δ) with
probability 1 − δ satisfies

‖µ − µ‖ ≤ σ/8 and σ/2 ≤ σ ≤ 2σ , (12)

where µ and σ2 denote the sample mean and the sample maximum directional
variance, respectively.

Before proceeding, we prove an extension of f -concentration to low dimen-
sional projections:

Lemma 1. Let x be a distribution that is f-concentrated. For any fixed k di-
mensional projection P ,

Pr
[
‖P (x − E[x])‖ > k1/2f(δ/k)

]
≤ δ .

Proof. Given any set of k orthogonal basis vectors v1, . . . , vk for the space asso-
ciated with P , we can write P =

∑
i viv

T
i . As the vi are orthonormal, we can

use the Pythagorean equality

‖P (x − E[x])‖2 = ‖
∑

i

viv
T
i (x − E[x])‖2 =

∑

i

|vT
i (x − E[x])|2 . (13)

Taking a union bound, the probability that any of the k terms in the last sum
exceeds f(δ/k)2 is at most δ, giving a squared distance of at most kf(δ/k)2 and
completing the proof. ��
With these definitions in hand, we now state and prove a result about the clas-
sification of concentrated, convergent distributions.

Theorem 5. Consider any mixture of k distributions where each distribution i
is fi-concentrated and gi-convergent. Assume that A contains at least

k × max
i

((
gi(δ/k2) + 8 log(k2/δ)

)
w−1

i

)

samples from the mixture and that B contains n samples. If

∀ i, ∀ j 	= i : ‖µi − µj‖ > 4σi(1/wi + 1/wj)1/2 + 4k1/2 max
σv<4σi

fv

(
δ

nk2k

)

then with probability at least 1 − 3δ, the hierarchical clustering produced by
Segment(A ∪ B, 1) will be label-respecting.

Proof. We argue that with probability 1 − 3δ the sets A1, . . . , Ak, B meet the
conditions of Theorem 4.

As A is broken uniformly into A1, . . . , Ak, each of these k sets will contain a
number of samples that is at least maxi

(
gi(δ/k2)/wi + 8 log(k2/δ)/wi

)
. Impor-

tantly, the first term is sufficient to ensure that with probability 1 − δ each of
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the mixtures in each of A� have “converged”, in the sense of (12). The second
term ensures that with probability 1 − δ we have w�

i ≥ wi/2 for each i, �.
Given these bounds relating the sample statistics to their limits, and letting

s = δ
nk2k to simplify notation, the assumed separation of ‖µi −µj‖ ensures that

for all �, for all i, and for all j 	= i,

‖µ�
i − µ�

j‖ > σ�
i(1/w�

i + 1/w�
j)

1/2 + 4 max
σu<4σi

(
k1/2fu(s) + ‖µu − µ�

u‖
)

(14)

As there are at most k2k matrices Av
� , the fi-concentration of the distributions

ensures that with probability at least 1 − δ, for all Av
� , Bv

�

max
xu∈Bv

�

‖PAv
�
(xu − µu)‖ ≤ k1/2 max

j∈v
fj(s) . (15)

By the triangle inequality and submultiplicativity,

max
xu∈Bv

�

‖PAv
�
(xu − µ�

u)‖ ≤ max
j∈v

(
k1/2fj(s) + ‖µj − µ�

j‖
)

. (16)

Now, for each �,v, from (12) we have that for any σ�
j ≤ σ�

i , it is the case that
σj ≤ 4σi. Specifically, considering i = arg maxi∈v σ�

i we have that

max
j∈v

(
k1/2fj (s) + ‖µj − µ�

j‖
)
≤ max

σu≤4σi

(
k1/2fu(s) + ‖µu − µ�

u‖
)

. (17)

Combining (15), (16), and (17) with (14), we see that for all �,v, if we let
i = arg maxi∈v σ�

i , then

∀j ∈ v − i ‖µ�
i − µ�

j‖ > σ�
i(1/w�

i + 1/w�
j)

1/2 + 4 max
xu∈Bv

�

‖PAv
�
(xu − µ�

u)‖ .

��

3.1 Gaussian and Log-Concave Mixtures

We now show that for mixtures of both Gaussian and Log-concave distributions,
Segment produces a hierarchical clustering that is label-respecting, as desired.
From this, using dynamic programming as discussed in Section 2.3, we can ef-
ficiently find the k-partition that maximizes any scoring function which scores
each part independently of the others. For example, in the case of Gaussians,
this allows us to find a k-partition with cross-training log-likelihood at least as
high as the latent partition in time O(k2 min(n, 2k)).

Theorem 6. Consider any mixture of k Gaussian distributions with parameters
{(µi, σi, wi)} and assume that n � k(d + log k)/wmin is such that

∀i ∀j : ‖µi − µj‖ ≥ 4σi(1/wi + 1/wi)1/2 + 4σi(k log(nk) + k2)1/2 .

Let A and B each contain n samples from the mixture and partition A = A1 ∪
. . . ∪ Ak randomly. With probability that tends to 1 as n → ∞, the hierarchical
clustering produced by Segment(A ∪ B, 1) will be label-respecting.
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Proof. Standard results show that any Gaussian is f -concentrated for f(δ) =
σ(2 log(1/δ))1/2. Using techniques from Soshnikov [7] describing concentration
of the median of σ�

i for various sample counts, one can show that a d-dimensional
Gaussian with maximum directional variance σ2 is g-convergent for g(δ) =
cd log(1/δ) for a universal constant c. ��

A recent related paper of Kannan et al. [8] shows that Log-concave distri-
butions, those for which the logarithm of the probability density function is
concave, are also reasonably concentrated and convergent.

Theorem 7. Given a mixture of k Log-concave distributions with parameters
{(µi, σi, wi)} assume that for some fixed n � k(d(log d)5 + log k)/wmin the fol-
lowing holds:

∀i ∀j : ‖µi − µj‖ ≥ 4σi(1/wi + 1/wi)1/2 + 4σik
1/2(log(nk) + k) .

Let A and B each contain n samples from the mixture and partition A = A1 ∪
. . . ∪ Ak randomly. With probability that tends to 1 as n → ∞, the hierarchical
clustering produced by Segment(A ∪ B, 1) will be label-respecting.

Proof. Lemma 2 of [8] shows that any Log-concave distribution is f -concentrated
for f(δ) = σ log(1/δ). Lemma 4 of [8] shows that for any Log-concave dis-
tribution there is a constant c such that the distribution is g-convergent for
g(δ) = cd(log(d/δ))5. ��

4 Lower Bounds

We now argue that for any set of mixing weights w1, . . . , wk, there is an arrange-
ment of identical Gaussians for which spectral projection is not an option. This
also demonstrates that the bound in Theorem 1 is tight.

Theorem 8. For any
∑

i wi = 1, there exists a mixture of Gaussians with
‖Ci‖ = σ2 satisfying

‖µi − µj‖ = σ(1/wi + 1/wj)1/2 (18)

for which the optimal rank k subspace for the distribution is arbitrary.

Proof. We choose the µi to be mutually orthogonal and of norm σ/w
1/2
i . To each

we assign the common covariance matrix C = σ2I − ∑
i wiµiµ

T
i . The optimal

rank k subspace for the distribution is the optimal rank k subspace for the
expected outer product of a random sample x from the mixture which is

E[xxT ] =
∑

i

wiµiµ
T
i +

∑

i

wiC = σ2I .

Since the identity matrix favors no dimensions for its optimal approximation,
the proof is complete. ��
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Remark: The theorem above only describes a mixture for which there is no
preference for a particular subspace. By diminishing the norms of the µi ever so
slightly, we can set the optimal rank k subspace arbitrarily and ensure that it
does not intersect the span of the means.

Remark: One can construct counterexamples with covariance matrices of great
generality, so long as they discount the span of the means

∑
i wiµiµ

T
i , and pro-

mote some other k dimensions. In particular, the d − 2k additional dimensions
can have 0 variance, demonstrating that the maximum variance σ2 = ‖C‖2

2 is
the parameter of interest, as opposed to the average variance ‖C‖2

F /d, or any
other function that depends on more than the first k singular values of C.

Remark: If one is willing to weaken Theorem 8 slightly by dividing the RHS
of (18) by 2, then we can take as the common covariance matrix C = 2σ2I −∑

i wiµiµ
T
i , which has eccentricity bounded by 2. Bounded eccentricity was an

important assumption of Dasgupta [2], who used random projections, but we see
here that it does not substantially change the lower bound.
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