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Abstract. The problem of ranking, in which the goal is to learn a real-valued
ranking function that induces a ranking or ordering over an instance space, has
recently gained attention in machine learning. We study generalization properties
of ranking algorithms, in a particular setting of the ranking problem known as the
bipartite ranking problem, using the notion of algorithmic stability. In particular,
we derive generalization bounds for bipartite ranking algorithms that have good
stability properties. We show that kernel-based ranking algorithms that perform
regularization in a reproducing kernel Hilbert space have such stability properties,
and therefore our bounds can be applied to these algorithms; this is in contrast
with previous generalization bounds for ranking, which are based on uniform
convergence and in many cases cannot be applied to these algorithms. A com-
parison of the bounds we obtain with corresponding bounds for classification
algorithms yields some interesting insights into the difference in generalization
behaviour between ranking and classification.

1 Introduction

A central focus in learning theory research has been the study of generalization prop-
erties of learning algorithms. Perhaps the first work in this direction was that of Vapnik
and Chervonenkis [1], who derived generalization bounds for classification algorithms
based on uniform convergence. Since then, a large number of different tools have been
developed for studying generalization, and have been applied successfully to analyze
algorithms for both classification (learning of binary-valued functions) and regression
(learning of real-valued functions), two of the most well-studied problems in machine
learning. Recently, a new learning problem, namely that of ranking, has gained atten-
tion in the machine learning community [2, 3, 4, 5]. In ranking, one learns a real-valued
function that assigns scores to instances, but the scores themselves do not matter; in-
stead, what is important is the relative ranking of instances induced by those scores.
This problem is distinct from both classification and regression, and it is natural to ask
what kinds of generalization properties hold for algorithms for this problem, and in
particular, whether tools that have been applied to study generalization properties of

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 32–47, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Stability and Generalization of Bipartite Ranking Algorithms 33

classification and regression algorithms can be adapted to study generalization proper-
ties of ranking algorithms. It has been shown recently that generalization bounds based
on uniform convergence can be obtained for ranking algorithms in a particular setting of
the ranking problem known as the bipartite ranking problem [5, 6]. In this paper, we ask
whether such a result can be obtained using the notion of algorithmic stability, which
has recently been used to derive generalization bounds for classification and regression
algorithms, and which offers a different viewpoint than uniform convergence [7, 8].

1.1 Previous Results

The question of the generalization behaviour of ranking algorithms has only recently
begun to be addressed. Generalization properties of algorithms for a distinct but closely
related problem, namely that of ordinal regression, were considered in [3]. The first
study of generalization in ranking was that of Freund et al. [5], in which generalization
bounds for the bipartite RankBoost algorithm were derived. These bounds were derived
from uniform convergence results for the classification error rate, and were expressed
in terms of the VC-dimension of a class of binary classification functions derived from
the class of ranking functions searched by RankBoost. More recently, Agarwal et al. [6]
have derived a uniform convergence bound for the bipartite ranking error (see Section 2)
which is expressed in terms of a new set of combinatorial parameters that measure
directly the complexity of the class of ranking functions searched by an algorithm.

Uniform convergence requires the empirical errors of all functions in the searched
class to converge to their expected errors. Generalization bounds based on uniform
convergence are therefore necessarily loose, as they depend only on properties of the
function class being searched, and do not take into account the manner in which the
function class is actually searched by the algorithm. In addition, these bounds can be
applied only to algorithms that search function classes of bounded complexity.

The notion of algorithmic stability, first studied for learning algorithms by Devroye
and Wagner [9], has been used recently to directly obtain generalization bounds, with-
out needing to show uniform convergence, for classification and regression algorithms
that satisfy certain stability conditions [7, 8]. In particular, a stable learning algorithm
is one whose output does not change much with small changes in the training sample;
the above works have shown that classification and regression algorithms that satisfy
this condition have good generalization properties. The stability-based bounds depend
on properties of the algorithm rather than the function class that is searched, and can
be applied also to algorithms that search function classes of unbounded complexity.
Algorithms that have been shown to be stable include, for example, kernel-based clas-
sification and regression algorithms such as support vector machines (SVMs), which
often cannot be analyzed using uniform convergence tools. In this paper, we show that
the notion of algorithmic stability can be used also to analyze the generalization be-
haviour of (bipartite) ranking algorithms.

1.2 Our Results

We define notions of stability for bipartite ranking algorithms, and use these notions to
analyze the generalization behaviour of such algorithms. In particular, we derive gener-
alization bounds for bipartite ranking algorithms that exhibit good stability properties.
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We show that kernel-based ranking algorithms that perform regularization in a repro-
ducing kernel Hilbert space (RKHS) have such stability properties, and therefore our
bounds can be applied to these algorithms; this is in contrast with previous generaliza-
tion bounds for ranking, which are based on uniform convergence and in many cases
cannot be applied to these algorithms. A comparison of the bounds we obtain with cor-
responding bounds for classification algorithms yields some interesting insights into the
difference in generalization behaviour between ranking and classification. In particular,
we find that for a training sample of M elements containing m positive and n = M−m
negative instances, the sample size M in the classification bounds is replaced with the
quantity mn/(m + n) in the ranking bounds. If we define the ‘positive skew’ of the
sample as the proportion of positive examples ρ = m/(m + n), then this means that
the‘effective’ sample size in ranking is reduced from M to ρ(1− ρ)M , with the reduc-
tion being more drastic as ρ departs from 1/2, i.e., as the balance between positive and
negative examples becomes more uneven. This further corroborates previous observa-
tions about the importance of the skew ρ in ranking [10, 6, 11].

1.3 Organization

We describe the bipartite ranking problem in detail in Section 2, and define notions of
stability for (bipartite) ranking algorithms in Section 3. Using these notions, we derive
generalization bounds for stable ranking algorithms in Section 4. In Section 5 we show
stability of kernel-based ranking algorithms that perform regularization in an RKHS,
and apply the results of Section 4 to obtain generalization bounds for these algorithms.
We conclude with a discussion in Section 6.

2 The Bipartite Ranking Problem

In the bipartite ranking problem [5, 6], instances come from two categories, positive and
negative; the learner is given examples of instances labeled as positive or negative, and
the goal is to learn a ranking in which positive instances are ranked higher than negative
ones. Such problems arise, for example, in information retrieval, where one is interested
in retrieving documents from some database that are ‘relevant’ to a given topic; in this
case, the training examples given to the learner consist of documents labeled as relevant
(positive) or irrelevant (negative), and the goal is to produce a list of documents that
contains relevant documents at the top and irrelevant documents at the bottom – in
other words, one wants a ranking of the documents such that relevant documents are
ranked higher than irrelevant documents.

Formally, the setting of the bipartite ranking problem can be described as follows.
There is an instance space X from which instances are drawn, and the learner is
given a training sample (S+, S−) ∈ Xm × Xn consisting of a sequence of positive
training examples S+ = (x+

1 , . . . , x+
m) and a sequence of negative training examples

S− = (x−
1 , . . . , x−

n ). The goal is to learn from these examples a real-valued ranking
function f : X→R that ranks future positive instances higher than negative ones, where
f is considered to rank an instance x higher than an instance x′ if f(x) > f(x′) and is
considered to rank x lower than x′ if f(x) < f(x′). We assume that positive instances
are drawn randomly and independently according to some (unknown) distribution
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D+ on the instance space X , and that negative instances are drawn randomly and
independently according to some (unknown) distribution D− on X . The quality of a
ranking function f : X→R is then measured by its expected ranking error, denoted by
R(f) and defined as follows:

R(f) = Ex+∼D+,x−∼D−

{
I{f(x+)<f(x−)} +

1
2
I{f(x+)=f(x−)}

}
, (1)

where I{·} denotes the indicator variable whose value is one if its argument is true
and zero otherwise. The expected error R(f) is the probability that a positive instance
drawn randomly according to D+ is ranked lower by f than a negative instance drawn
randomly according to D−, assuming that ties are broken uniformly at random. In
practice, since the distributions D+ and D− are unknown, the expected error of a
ranking function f must be estimated from an empirically observable quantity such as
its empirical ranking error with respect to a sample (S+, S−) ∈ Xm × Xn, denoted
by R̂(f ;S+, S−) and defined as follows:

R̂(f ;S+, S−) =
1

mn

m∑
i=1

n∑
j=1

{
I{f(x+

i )<f(x−
j )} +

1
2
I{f(x+

i )=f(x−
j )}

}
. (2)

This is simply the fraction of positive-negative pairs in (S+, S−) that are ranked incor-
rectly by f , assuming that ties are broken uniformly at random.

Although the bipartite ranking problem shares similarities with the binary classifi-
cation problem, it should be noted that the two problems are in fact distinct. In partic-
ular, it is possible for binary-valued functions obtained by thresholding different real-
valued functions to have the same classification errors, while the ranking errors of the
real-valued functions may differ significantly. For example, consider the following two
rankings on a sample consisting of 4 positive and 4 negative examples:

In both cases, the error of the best classification function that can be obtained by
applying a threshold is 2/8. However, the ranking error of f1 is 4/16, whereas that of
f2 is 8/16. For a detailed analysis of this distinction, see [10]1.

A bipartite ranking algorithm takes as input a training sample (S+, S−) ∈( ⋃∞
m=1 Xm

) × ( ⋃∞
n=1 Xn

)
and returns as output a ranking function fS+,S− : X→R.

For simplicity, we consider only deterministic algorithms. We are concerned in this pa-
per with generalization properties of such algorithms; in particular, we are interested in
bounding the expected error of a learned ranking function in terms of an empirically
observable quantity such as its empirical error on the training sample from which it is
learned. The following definitions will be useful in our study.

Definition 1 (Ranking loss function). A ranking loss function is a function � : R
X ×

X × X → R
+ ∪ {0} that assigns, for each f : X→R and x, x′ ∈ X , a non-negative

real number �(f, x, x′) interpreted as the loss of f in its relative ranking of x and x′.

1 In [10], the performance of a ranking function is measured in terms of the area under the ROC
curve (AUC); this quantity is simply equal to one minus the empirical ranking error.
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Definition 2 (Expected �-error). Let f : X→R be a ranking function on X . Let
� : R

X × X × X → R
+ ∪ {0} be a ranking loss function. Define the expected �-error

of f , denoted by R�(f), as follows:

R�(f) = Ex+∼D+,x−∼D−

{
�(f, x

+
, x−)

}
.

Definition 3 (Empirical �-error). Let f : X→R be a ranking function on X , and let
(S+, S−) ∈ Xm × Xn be a finite sample. Let � : R

X × X × X → R
+ ∪ {0} be a

ranking loss function. Define the empirical �-error of f with respect to S+ and S−,
denoted by R̂�(f ;S+, S−), as follows:

R̂�(f ;S+, S−) =
1

mn

m∑
i=1

n∑
j=1

�(f, x+
i , x−

j ) .

Comparing with Eqs. (1-2), we see that the ranking error can be expressed as the
�b-error, i.e., R ≡ R�b

and R̂ ≡ R̂�b
, where �b is the bipartite ranking loss given by

�b(f, x, x′) = I{f(x)<f(x′)} +
1
2
I{f(x)=f(x′)} . (3)

3 Stability of (Bipartite) Ranking Algorithms

A stable algorithm is one whose output does not change significantly with small
changes in the input. The input to a ranking algorithm is a training sample of the form
(S+, S−) ∈ Xm × Xn for some m,n ∈ N; we consider changes to such a sample
that consist of replacing a single element of the sample with a new instance. For any
i ∈ {1, . . . , m} and z ∈ X , we use Si,z

+ to denote the sequence obtained from S+ by
replacing x+

i with z; similarly, for any j ∈ {1, . . . , n} and z ∈ X , we use Sj,z
− to denote

the sequence obtained from S− by replacing x−
j with z.

Several different notions of stability have been used in the study of classification and
regression algorithms [9, 12, 7, 8, 13]. The notions of stability that we define for ranking
algorithms below are most closely related to those used by Bousquet and Elisseeff [7].

Definition 4 (Uniform loss stability). Let L be a bipartite ranking algorithm
whose output on a training sample (S+, S−) we denote by fS+,S− , and let
� : R

X × X × X → R
+ ∪ {0} be a ranking loss function. Let α : N × N→R,

β : N × N→R. We say that L has uniform loss stability (α, β) with respect to � if for
all m,n ∈ N, (S+, S−) ∈ Xm × Xn, z ∈ X , i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, we
have for all x+, x− ∈ X ,∣∣�(fS+,S− , x+, x−) − �(fSi,z

+ ,S− , x+, x−)
∣∣ ≤ α(m,n) ,∣∣�(fS+,S− , x+, x−) − �(fS+,Sj,z

−
, x+, x−)

∣∣ ≤ β(m,n) .
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Definition 5 (Uniform score stability). Let L be a bipartite ranking algorithm whose
output on a training sample (S+, S−) we denote by fS+,S− . Let µ : N×N→R, ν : N×
N→R. We say that L has uniform score stability (µ, ν) if for all m,n ∈ N, (S+, S−) ∈
Xm ×Xn, z ∈ X , i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, we have for all x ∈ X ,

∣∣fS+,S−(x) − fSi,z
+ ,S−(x)

∣∣ ≤ µ(m,n) ,∣∣fS+,S−(x) − fS+,Sj,z
−

(x)
∣∣ ≤ ν(m,n) .

4 Generalization Bounds for Stable Ranking Algorithms

In this section we derive generalization bounds for ranking algorithms that exhibit good
stability properties. Our methods are based on those of Bousquet and Elisseeff [7],
who derived such bounds for classification and regression algorithms. We start with the
following technical lemma.

Lemma 1. Let L be a symmetric bipartite ranking algorithm2 whose output
on a training sample (S+, S−) ∈ Xm × Xn we denote by fS+,S− , and let
� : R

X ×X ×X → R
+ ∪ {0} be a ranking loss function. Then for all i ∈ {1, . . . , m},

j ∈ {1, . . . , n}, we have

ES+,S−

{
R�(fS+,S−) − R̂�(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
.

Proof. We have,

ES+,S−

{
R̂�(fS+,S− ;S+, S−)

}
=

1
mn

m∑
i=1

n∑
j=1

ES+,S−

{
�(fS+,S− , x+

i , x−
j )

}
.

By symmetry, the term in the summation is the same for all i, j. Therefore, for each
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, we get

ES+,S−

{
R̂�(fS+,S− ;S+, S−)

}
= ES+,S−

{
�(fS+,S− , x+

i , x−
j )

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+

i , x−
j )

}
.

Interchanging the roles of x+
i with x+ and x−

j with x−, we get

ES+,S−

{
R̂�(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
�(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
.

Since by definition

ES+,S−

{
R�(fS+,S−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−)

}
,

the result follows. ��

2 A symmetric bipartite ranking algorithm is one whose output is independent of the order of
elements in the training sequences S+ and S−.
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Our main tool will be the following powerful concentration inequality of McDi-
armid [14], which bounds the deviation of any function of a sample for which a single
change in the sample has limited effect.

Theorem 1 (McDiarmid [14]). Let X1, . . . , XN be independent random variables,
each taking values in a set A. Let φ : AN→R be such that for each k ∈ {1, . . . , N},
there exists ck > 0 such that

sup
x1,...,xN∈A,x′

k∈A

∣∣φ(x1, . . . , xN ) − φ(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN )

∣∣ ≤ ck .

Then for any ε > 0,

P
{
φ(X1, . . . , XN ) − E

{
φ(X1, . . . , XN )

} ≥ ε
} ≤ e−2ε2/

∑ N
k=1 c2

k .

We are now ready to give our main result, which bounds the expected �-error of a
ranking function learned by an algorithm with good uniform loss stability in terms of
its empirical �-error on the training sample.

Theorem 2. Let L be a symmetric bipartite ranking algorithm whose output on a train-
ing sample (S+, S−) ∈ Xm×Xn we denote by fS+,S− , and let � : R

X×X×X →R
+∪

{0} be a ranking loss function such that 0 ≤ �(f, x, x′) ≤ B for all f : X→R and
x, x′ ∈ X . Let α : N × N→R, β : N × N→R be such that L has uniform loss stability
(α, β) with respect to �. Then for any 0 < δ < 1, with probability at least 1 − δ over
the draw of (S+, S−),

R�(fS+,S−) < R̂�(fS+,S− ;S+, S−) + α(m,n) + β(m,n)

+

√{
n(2mα(m,n) + B)2 + m(2nβ(m,n) + B)2

}
ln(1/δ)

2mn
.

Proof. Let φ : Xm ×Xn→R be defined as follows:

φ(S+, S−) = R�(fS+,S−) − R̂�(fS+,S− ;S+, S−) .

We shall show that φ satisfies the conditions of McDiarmid’s inequality (Theorem 1).
Let (S+, S−) ∈ Xm ×Xn, and let z ∈ X . For each i ∈ {1, . . . , m}, we have∣∣R�(fS+,S−) − R�(fSi,z

+ ,S−)
∣∣ =

∣∣Ex+,x−
{
�(fS+,S− , x+, x−) − �(fSi,z

+ ,S− , x+, x−)
}∣∣

≤ Ex+,x−
{∣∣�(fS+,S− , x+, x−) − �(fSi,z

+ ,S− , x+, x−)
∣∣}

≤ α(m,n) ,

and ∣∣R̂�(fS+,S− ;S+, S−) − R̂�(fSi,z
+ ,S− ;Si,z

+ , S−)
∣∣

≤ 1
mn

∑
i′ �=i

n∑
j=1

∣∣�(fS+,S− , x+
i′ , x

−
j ) − �(fSi,z

+ ,S− , x+
i′ , x

−
j )

∣∣

+
1

mn

n∑
j=1

∣∣�(fS+,S− , x+
i , x−

j ) − �(fSi,z
+ ,S− , z, x−

j )
∣∣

≤ α(m,n) +
B

m
.
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This gives ∣∣φ(S+, S−) − φ(Si,z
+ , S−)

∣∣ ≤ 2α(m,n) +
B

m
.

Similarly, it can be shown that for each j ∈ {1, . . . , n},

∣∣φ(S+, S−) − φ(S+, Sj,z
− )

∣∣ ≤ 2β(m,n) +
B

n
.

Thus, applying McDiarmid’s inequality to φ, we get for any ε > 0,

PS+,S−

{{
R�(fS+,S−) − R̂�(fS+,S− ;S+, S−)

}

− ES+,S−

{
R�(fS+,S−) − R̂�(fS+,S− ;S+, S−)

}
≥ ε

}

≤ e−2ε2/(m(2α(m,n)+B/m)2+n(2β(m,n)+B/n)2)

= e−2mnε2/(n(2mα(m,n)+B)2+m(2nβ(m,n)+B)2) .

Now, by Lemma 1, we have

ES+,S−

{
R�(fS+,S−) − R̂�(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}

= ES+,S−,x+,x−

{
�(fS+,S− , x+, x−) − �(f

Si,x+
+ ,S−

, x+, x−)

+ �(f
Si,x+

+ ,S−
, x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}

≤ ES+,S−,x+,x−

{∣∣∣�(fS+,S− , x+, x−) − �(f
Si,x+

+ ,S−
, x+, x−)

∣∣∣}

+ ES+,S−,x+,x−

{∣∣∣�(f
Si,x+

+ ,S−
, x+, x−) − �(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

∣∣∣}

≤ α(m,n) + β(m,n) .

Thus we get for any ε > 0,

PS+,S−

{
R�(fS+,S−) − R̂�(fS+,S− ;S+, S−) − (

α(m,n) + β(m,n)
) ≥ ε

}

≤ e−2mnε2/(n(2mα(m,n)+B)2+m(2nβ(m,n)+B)2) .

The result follows by setting the right hand side equal to δ and solving for ε. ��
Theorem 2 gives meaningful bounds when α(m,n) = o(1/

√
m) and β(m,n) =

o(1/
√

n). This means the theorem cannot be applied directly to obtain bounds on the
expected ranking error, since it is not possible to have non-trivial uniform loss stability
with respect to the bipartite ranking loss �b (except by an algorithm that picks the same
ranking function for all training samples of a given size m,n). However, for any ranking
loss � that satisfies �b ≤ �, Theorem 2 can be applied to ranking algorithms that have
good uniform loss stability with respect to � to obtain bounds on the expected �-error;
since in this case R ≤ R�, these bounds apply also to the expected ranking error. We
consider below a specific ranking loss that satisfies this condition.
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For γ > 0, let the γ ranking loss, denoted by �γ , be defined as follows:

�γ(f, x, x′) =

⎧⎨
⎩

1 if (f(x) − f(x′)) ≤ 0
1 − (f(x)−f(x′))

γ if 0 < (f(x) − f(x′)) < γ

0 if (f(x) − f(x′)) ≥ γ

. (4)

Clearly, for all γ > 0, we have �b ≤ �γ . Therefore, for any ranking algorithm that
has good uniform loss stability with respect to �γ for some γ > 0, Theorem 2 can be
applied to bound the expected ranking error of a learned ranking function in terms of its
empirical �γ-error on the training sample. The following lemma shows that, for every
γ > 0, a ranking algorithm that has good uniform score stability also has good uniform
loss stability with respect to �γ .

Lemma 2. Let L be a bipartite ranking algorithm whose output on a training sample
(S+, S−) we denote by fS+,S− . Let µ : N × N→R, ν : N × N→R be such that L
has uniform score stability (µ, ν). Then for every γ > 0, L has uniform loss stability
(αγ , βγ) with respect to the γ ranking loss �γ , where for all m,n ∈ N,

αγ(m,n) =
2µ(m,n)

γ
, βγ(m,n) =

2ν(m,n)
γ

.

Proof. By the definition of �γ in Eq. (4), we have that

�γ(f, x, x′) ≤ 1 − (f(x)−f(x′)
γ if (f(x) − f(x′)) ≤ 0 , (5)

�γ(f, x, x′) ≥ 1 − (f(x)−f(x′)
γ if (f(x) − f(x′)) ≥ γ . (6)

Now, let m,n ∈ N, (S+, S−) ∈ Xm×Xn, z ∈ X , i ∈ {1, . . . , m} and j ∈ {1, . . . , n},
and let x+, x− ∈ X . The case �γ(fS+,S− , x+, x−) = �γ(fSi,z

+ ,S− , x+, x−) is trivial.

Assume �γ(fS+,S− , x+, x−) 
= �γ(fSi,z
+ ,S− , x+, x−). Then, using the observations in

Eqs. (5-6), it can be verified that∣∣∣�γ(fS+,S− , x+, x−) − �γ(fSi,z
+ ,S− , x+, x−)

∣∣∣
≤

∣∣∣∣
(

1 − (fS+,S−(x+) − fS+,S−(x−))
γ

)
−

(
1 −

(fSi,z
+ ,S−(x+) − fSi,z

+ ,S−(x−))

γ

)∣∣∣∣
≤ 1

γ

(∣∣∣fS+,S−(x+) − fSi,z
+ ,S−(x+)

∣∣∣ +
∣∣∣fS+,S−(x−) − fSi,z

+ ,S−(x−)
∣∣∣)

≤ 2µ(m,n)
γ

.

Similarly, it can be shown that∣∣∣�γ(fS+,S− , x+, x−) − �γ(fS+,Sj,z
−

, x+, x−)
∣∣∣ ≤ 2ν(m,n)

γ
.

The result follows. ��
Putting everything together, we thus get the following result which bounds the ex-

pected ranking error of a learned ranking function in terms of its empirical �γ-error for
any ranking algorithm that has good uniform score stability.
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Theorem 3. Let L be a symmetric bipartite ranking algorithm whose output on a
training sample (S+, S−) ∈ Xm × Xn we denote by fS+,S− . Let µ : N × N→R,
ν : N × N→R be such that L has uniform score stability (µ, ν), and let γ > 0. Then
for any 0 < δ < 1, with probability at least 1 − δ over the draw of (S+, S−),

R(fS+,S−) < R̂�γ
(fS+,S− ;S+, S−) +

2µ(m,n)
γ

+
2ν(m,n)

γ

+

√√√√
{

n
( 4m µ(m,n)

γ + 1
)2 + m

( 4n ν(m,n)
γ + 1

)2
}

ln(1/δ)

2mn
.

Proof. The result follows by applying Theorem 2 to L with the ranking loss �γ (using
Lemma 2), which satisfies 0 ≤ �γ ≤ 1, and from the fact that R ≤ R�γ

. ��
We note that although our bounds above are derived for the case when a fixed num-

ber m of positive examples are drawn i.i.d. from D+ and a fixed number n of negative
examples are drawn i.i.d. from D−, the bounds can be extended easily to the case when
M examples are drawn i.i.d. from a joint distribution D over X × {−1, 1}. In partic-
ular, using exactly the same techniques as above, the same confidence intervals can be
derived for a draw conditioned on any fixed label sequence that contains m positive and
n = M−m negative labels. The conditioning can then be removed using an expectation
trick (see [6–Theorems 8 and 19]); in the resulting confidence intervals, the numbers m
and n are replaced by functions of the (random) label sequence that correspond to the
numbers of positive and negative labels drawn.

5 Stable Ranking Algorithms

In this section we show stability of certain ranking algorithms that select a ranking
function by minimizing a regularized objective function. We start by deriving a general
result for regularization-based ranking algorithms in Section 5.1. In Section 5.2 we use
this result to show stability of kernel-based ranking algorithms that perform regulariza-
tion in a reproducing kernel Hilbert space (RKHS). We show, in particular, stability of
an SVM-like ranking algorithm, and apply the results of Section 4 to obtain a general-
ization bound for this algorithm. A comparison with the uniform convergence bound of
[6] demonstrates the benefit of the stability analysis. Again, our methods are based on
those of Bousquet and Elisseeff [7], who showed similar results for classification and
regression algorithms.

5.1 General Regularizers

Given a ranking loss function � : R
X × X × X → R

+ ∪ {0}, a class F of real-valued
functions on X , and a regularization functional N : F→R

+ ∪ {0}, consider the
following regularized empirical �-error of a ranking function f ∈ F (with respect to a
sample (S+, S−) ∈ Xm ×Xn), with regularization parameter λ > 0:

R̂λ
� (f ;S+, S−) =

1
mn

m∑
i=1

n∑
j=1

�(f, x+
i , x−

j ) + λN(f) . (7)
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We consider bipartite ranking algorithms that minimize such a regularized objective
function, i.e., ranking algorithms that, given a training sample (S+, S−), output a
ranking function fS+,S− ∈ F that satisfies

fS+,S− = arg min
f∈F

R̂λ
� (f ;S+, S−)

= arg min
f∈F

{
R̂�(f ;S+, S−) + λN(f)

}
, (8)

for some fixed choice of ranking loss �, function class F , regularizer N , and regular-
ization parameter λ. We derive below a general result that will be useful for showing
stability of such regularization-based algorithms.

Definition 6 (σ-admissibility). Let � : R
X × X × X → R

+ ∪ {0} be a ranking loss
and F a class of real-valued functions on X . Let σ > 0. We say that � is σ-admissible
with respect to F if for all f1, f2 ∈ F and all x, x′ ∈ X , we have

∣∣�(f1, x, x′) − �(f2, x, x′)
∣∣ ≤ σ

(∣∣f1(x) − f2(x)
∣∣ +

∣∣f1(x′) − f2(x′)
∣∣) .

Lemma 3. Let � : R
X × X × X → R

+ ∪ {0} be a ranking loss such that �(f, x, x′)
is convex in f . Let F be a convex class of real-valued functions on X , and let σ > 0
be such that � is σ-admissible with respect to F . Let λ > 0, and let N : F→R

+ ∪ {0}
be a functional defined on F such that for all samples (S+, S−) ∈ Xm × Xn, the
regularized empirical �-error R̂λ

� (f ;S+, S−) has a minimum (not necessarily unique)
in F . Let L be a ranking algorithm defined by Eq. (8), and let (S+, S−) ∈ Xm × Xn,
z ∈ X , i ∈ {1, . . . , m}, and j ∈ {1, . . . , n}. For brevity, denote

f ≡ fS+,S− , f i,z
+ ≡ fSi,z

+ ,S− , f j,z
− ≡ fS+,Sj,z

−
,

and let
∆f+ =

(
f i,z
+ − f

)
, ∆f− =

(
f j,z
− − f

)
.

Then we have that for any t ∈ [0, 1],

N(f) − N(f + t∆f+) + N(f i,z
+ ) − N(f i,z

+ − t∆f+)

≤ tσ

λmn

n∑
j=1

(
|∆f+(x+

i )| + 2|∆f+(x−
j )| + |∆f+(z)|

)
,

N(f) − N(f + t∆f−) + N(f j,z
− ) − N(f j,z

− − t∆f−)

≤ tσ

λmn

m∑
i=1

(
|∆f−(x−

j )| + 2|∆f−(x+
i )| + |∆f−(z)|

)
.

The proof of this result makes use of techniques similar to those used in [7], and is
omitted for lack of space (see [15] for details). As we show below, this result can be
used to establish stability of certain regularization-based ranking algorithms.
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5.2 Regularization in Hilbert Spaces

Let F be an RKHS with kernel K. Then from the properties of an RKHS (see, for
example, [16]), we have for all f ∈ F and all x ∈ X ,

|f(x)| ≤ ‖f‖K

√
K(x, x) . (9)

Let N : F→R
+ ∪ {0} be the regularizer defined by

N(f) = ‖f‖2
K . (10)

We show below that, if the kernel K is such that K(x, x) is bounded for all x ∈ X ,
then a ranking algorithm that minimizes an appropriate regularized error over F , with
regularizer N as defined above, has good uniform score stability.

Theorem 4. Let F be an RKHS with kernel K such that for all x ∈ X ,
K(x, x) ≤ κ2 < ∞. Let � be a ranking loss such that �(f, x, x′) is convex in f
and � is σ-admissible with respect to F . Let λ > 0, and let N be given by Eq. (10). Let
L be a ranking algorithm defined by Eq. (8). Then L has uniform score stability (µ, ν),
where for all m,n ∈ N,

µ(m,n) =
4σκ2

λm
, ν(m,n) =

4σκ2

λn
.

Proof. Let m,n ∈ N, (S+, S−) ∈ Xm × Xn, z ∈ X , and i ∈ {1, . . . , m}. Since F
is a vector space, we have (using the notation of Lemma 3) that ∆f+ ∈ F . Applying
Lemma 3 with t = 1/2, we get that

1
2
‖∆f+‖2

K ≤ σ

2λmn

n∑
j=1

(
|∆f+(x+

i )| + 2|∆f+(x−
j )| + |∆f+(z)|

)
.

By Eq. (9), we thus get that

‖∆f+‖2
K ≤ 4σκ

λm
‖∆f+‖K ,

which gives
‖∆f+‖K ≤ 4σκ

λm
. (11)

Thus, by Eqs. (9) and (11), we have for all x ∈ X ,∣∣fS+,S−(x) − fSi,z
+ ,S−(x)

∣∣ = |∆f+(x)| ≤ 4σκ2

λm
.

Similarly, for each j ∈ {1, . . . , n}, we can show that∣∣fS+,S−(x) − fS+,Sj,z
−

(x)
∣∣ ≤ 4σκ2

λn
.

The result follows. ��

Consider now the following ranking loss function, which we refer to as the hinge
ranking loss due to its similarity to the hinge loss in classification:

�h(f, x, x′) =
{

1 − (f(x) − f(x′)) if (f(x) − f(x′)) < 1
0 if (f(x) − f(x′)) ≥ 1 . (12)
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We consider a ranking algorithm L that minimizes the regularized �h-error in an RKHS
F . Specifically, let L be a ranking algorithm which, given a training sample (S+, S−),
outputs a ranking function fS+,S− ∈ F that satisfies (for some fixed λ > 0)

fS+,S− = arg min
f∈F

{
R̂�h

(f ;S+, S−) + λ‖f‖2
K

}
. (13)

We note that this algorithm has an equivalent quadratic programming formulation
similar to SVMs in the case of classification (see [17, 15]). It can be verified that
�h(f, x, x′) is convex in f , and that �h is 1-admissible with respect to F . Thus, if
K(x, x) ≤ κ2 for all x ∈ X , then from Theorem 4 we get that L has uniform score
stability (µ, ν), where for all m,n ∈ N,

µ(m,n) =
4κ2

λm
, ν(m,n) =

4κ2

λn
.

Applying Theorem 3 with γ = 1, we then get that for any 0 < δ < 1, with probability
at least 1− δ over the draw of (S+, S−) ∈ Xm ×Xn, the expected ranking error of the
ranking function fS+,S− learned by the above algorithm L is bounded by

R(fS+,S−) < R̂�1(fS+,S− ; S+, S−) +
8κ2

λ

(
m + n

mn

)
+

(
1 +

16κ2

λ

)√
(m + n) ln(1/δ)

2mn
.

(14)

In particular, for the RKHS corresponding to the linear kernel defined on the unit ball
in R

d, so that K(x,x) ≤ 1 for all x, we have that with probability at least 1 − δ over
the draw of (S+, S−) ∈ Xm × Xn, the ranking function fS+,S− learned by the above
algorithm (defined by Eq. (13)) satisfies

R(fS+,S−) < R̂�1(fS+,S− ;S+, S−) +
8
λ

(m + n

mn

)
+

(
1 +

16
λ

)√
(m + n) ln(1/δ)

2mn
.

On the other hand, the confidence interval obtained for this algorithm using the uniform
convergence bound of [6] gives that, with probability at least 1 − δ,

R(fS+,S−) < R̂(fS+,S− ;S+, S−) +

√
8(m + n)

(
d(ln(8mn/d) + 1) + ln(4/δ)

)
mn

.

The above bounds are plotted in Figure 1 for δ = 0.01, λ = 1, and various values of d
and m/(m+n). As can be seen, directly analyzing stability properties of the algorithm
gives considerable benefit over the general uniform convergence based analysis. In par-
ticular, since the uniform convergence bound depends on the complexity of the function
class that is searched, the bound quickly becomes uninformative in high dimensions; on
the other hand, the stability bound is independent of the dimensionality of the space. In
the case of kernel spaces whose complexity cannot be bounded, e.g., the RKHS corre-
sponding to the Gaussian kernel, the uniform convergence bound cannot be applied at
all, while the stability analysis continues to hold.

Comparing the bound derived in Eq. (14) to the corresponding bound for classifica-
tion derived by Bousquet and Elisseeff [7], we find that if the total number of training
examples is denoted by M = m +n, then the sample size M in their bound is replaced
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Fig. 1. A comparison of our stability bound with the uniform convergence bound of [6] for the
kernel-based algorithm described in Section 5.2, with a linear kernel over the unit ball in R

d. The
plots are for δ = 0.01, λ = 1, and show how the confidence interval size ε given by the two
bounds varies with the sample size M = m + n, for various values of d and m/(m + n)

by the quantity mn/(m+n) in our bound.3 If we define the ‘positive skew’ of the sam-
ple as the proportion of positive examples ρ = m/(m + n), then this is equivalent to
replacing M in the classification bound with ρ(1 − ρ)M in our bound. The ‘effective’
sample size in ranking is thus reduced from M to ρ(1−ρ)M , the reduction being more
drastic as the skew ρ departs from 1/2. Interestingly, a similar observation holds for
the uniform convergence and large deviation bounds for the ranking error derived in [6]
when compared to corresponding bounds for the classification error.

As in the case of classification [7], the above results show that a larger regularization
parameter λ leads to better stability and, therefore, a tighter confidence interval in the
resulting generalization bound. In particular, one must have λ  √

(m + n)/mn in
order for the above bound to be meaningful.

3 The difference in constants in the two bounds is due in part to the difference in loss functions
in ranking and classification, and in part to a slight difference in definitions of stability; in
particular, our definitions are in terms of changes to a training sample that consist of replacing
one element in the sample with a new one, while the definitions of Bousquet and Elisseeff are
in terms of changes that consist of removing one element from the sample.
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6 Discussion

The main difference in the mathematical formulation of the (bipartite) ranking problem
as compared to the classification problem is that the loss function in ranking is ‘pair-
wise’ rather than ‘point-wise’. The general analysis of ranking is otherwise similar to
that for classification, and indeed, ranking algorithms often resemble ‘classification on
pairs’. However, generalization bounds from classification cannot be applied directly
to ranking, due to dependences among the instance pairs. Indeed, the bounds we have
obtained for ranking suggest that the effective sample size in ranking is not only smaller
than the number of positive-negative pairs mn, but is even smaller than the number of
instances M = m+n; the dependences reduce the effective sample size to ρ(1−ρ)M ,
where ρ = m/(m + n) is the ‘positive skew’ of the sample.

The notions of uniform stability studied in this paper correspond most closely to
those studied by Bousquet and Elisseeff [7]. These notions are strict in that they re-
quire changes in a sample to have bounded effect uniformly over all samples and re-
placements. Kutin and Niyogi [8] have derived generalization bounds (for classifica-
tion and regression algorithms) using a less strict notion of stability termed ‘almost-
everywhere’ stability; this requires changes in a sample to have bounded effect only
with high probability (over the draw of the sample and the replacement element). The
notion of almost-everywhere stability leads to a distribution-dependent treatment as op-
posed to the distribution-free treatment obtained with uniform stability, and it would
be particularly interesting to see if making distributional assumptions in ranking can
mitigate the reduced sample size effect discussed above.

An open question concerns the analysis of other ranking algorithms using the
algorithmic stability framework. It has been shown [18] that AdaBoost is stability-
preserving, in the sense that stability of base classifiers implies stability of the final
learned classifier. It would be interesting if a similar result could be shown for the bi-
partite RankBoost algorithm [5], which is based on the same principles of boosting as
AdaBoost.

Finally, it is also an open question to analyze generalization properties of ranking
algorithms in other settings of the ranking problem (i.e., other than bipartite).
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