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Abstract. The problem of ranking, in which the goal is to learn a real-valued
ranking function that induces a ranking or ordering over an instance space, has
recently gained attention in machine learning. We define a model of learnability
for ranking functions in a particular setting of the ranking problem known as the
bipartite ranking problem, and derive a number of results in this model. Our first
main result provides a sufficient condition for the learnability of a class of ranking
functions F : we show that F is learnable if its bipartite rank-shatter coefficients,
which measure the richness of a ranking function class in the same way as do the
standard VC-dimension related shatter coefficients (growth function) for classes
of classification functions, do not grow too quickly. Our second main result gives
a necessary condition for learnability: we define a new combinatorial parameter
for a class of ranking functions F that we term the rank dimension of F , and
show that F is learnable only if its rank dimension is finite. Finally, we investigate
questions of the computational complexity of learning ranking functions.

1 Introduction

Two decades ago, Valiant [1] proposed a theory of learnability for binary classifi-
cation functions defined on Boolean domains. His learning model (known now as
the Probably Approximately Correct (PAC) learning model), and several variants
and extensions thereof, have since been studied extensively, and have led to a rich
set of theoretical results on classes of functions that can and cannot be learned,
on algorithms that can be used to solve the learning problem, and on the com-
putational complexity of learning various function classes. In particular, we now
have a strong theoretical understanding of the learning problem for both classifi-
cation (learning of binary-valued functions) and regression (learning of real-valued
functions), two of the most well-studied problems in machine learning. Recently,
a new learning problem, namely that of ranking, has gained attention in the ma-
chine learning community [2, 3, 4, 5]. In ranking, one learns a real-valued function
that assigns scores to instances, but the scores themselves do not matter; instead,
what is important is the relative ranking of instances induced by those scores.
This problem is distinct from both classification and regression, and it is natu-
ral to ask whether a similar theoretical understanding can be developed for this
problem. This paper constitutes a first step in that direction.
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1.1 Previous Results

In the binary classification problem, the learner is given a finite sequence of labeled
training examples z = ((x1, y1), . . . , (xm, ym)), where the xi are instances in some
instance space X and the yi are labels in Y = {−1, 1}, and the goal is to learn a binary-
valued function h : X→Y that predicts accurately labels of future instances. In the PAC
model, a learning algorithm for a class H of binary classification functions on X is a
function L :

⋃∞
m=1(X ×Y )m→H with the following property: given any ε, δ ∈ (0, 1),

there is an integer m = m(ε, δ) such that for any distribution D on X and any target
function t ∈ H, given a random training sample z = ((x1, t(x1)), . . . , (xm, t(xm))) of
size m in which the xi are drawn i.i.d. according to D, with probability at least 1 − δ
the classification function h = L(z) output by L has prediction error Px∼D{h(x) �=
t(x)} < ε. The smallest such integer m(ε, δ) is called the sample complexity of L. A
class H is said to be learnable if there is a learning algorithm for H.

In a classic paper, Blumer et al. [6] showed that the PAC learnability of a class of
binary classification functions H is characterized by a single combinatorial parameter
of H, namely its Vapnik-Chervonenkis (VC) dimension, in the sense that H is learnable
if and only if its VC dimension is finite. This characterization comprised two distinct
results. The first made use of a uniform convergence result based on the work of Vap-
nik and Chervonenkis [7] to show the existence of a learning algorithm for H whose
sample complexity could be upper bounded via the shatter coefficients (growth func-
tion) of H, which in turn could be upper bounded in terms of the VC dimension of H;
this established that finiteness of the VC dimension is sufficient for learnability. The
second result made use of the probabilistic method to show that the sample complexity
of any learning algorithm for H is lower bounded by a linear function of the VC di-
mension of H; this established that finiteness of the VC dimension is also necessary for
learnability.

The PAC model assumes the existence of an underlying ‘target function’; this as-
sumption was removed in a generalization of the PAC model studied in [6, 8, 9], often
referred to as the ‘agnostic’ model. In this general model, examples are generated ac-
cording to an arbitrary joint distribution D over X × {−1, 1}, and a learning algorithm
is required to output with high probability a hypothesis h ∈ H with prediction error
P(x,y)∼D{h(x) �= y} close to the best possible within the class H. It has been shown
that the VC dimension characterizes learnability also in this general model. Questions
of the computational complexity of learning have been investigated for a large number
of function classes in both models, leading to efficient algorithms in some cases and
hardness results in others. For many common function classes, learning in the general
model is hard, but polynomial-time algorithms exist for learning in the PAC model.

The regression problem is similar to the classification problem, except that the labels
yi in this case come from Y = R or Y = [a, b] for some a, b ∈ R, and the goal is to
learn a real-valued function f : X→Y that approximates well labels of future instances.
An analogous theory of learnability has been developed for this problem, starting with
the work of Haussler [8] in which it was shown that finiteness of the pseudo-dimension
of a class of (bounded) real-valued functions F is sufficient for learnability of F in the
general learning model. As in the case of classification, this result made use of a uniform
convergence result of [10] to show the existence of a learning algorithm for F whose
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sample complexity could be upper bounded via the covering numbers of F , which in
turn could be upper bounded in terms of the pseudo-dimension of F . However, a lower
bound on the sample complexity remained elusive. Later, Kearns and Schapire [11]
introduced a new measure of the richness of a real-valued function class known now as
the fat-shattering dimension. It was then shown [11, 12, 13] that the sample complexity
of any learning algorithm for a real-valued function class F is lower bounded by a linear
function of the fat-shattering dimension of F , and that the covering numbers of F can
also be upper bounded in terms of this dimension, thus establishing a characterization of
learnability for real-valued functions in terms of the fat-shattering dimension. Questions
of the computational complexity of learning have also been investigated for classes of
real-valued functions, leading again to efficient algorithms in some cases and hardness
results in others.

1.2 Our Results

In the bipartite ranking problem [5, 14], described in detail in Section 2, the learner
is given a sequence of ‘positive’ training examples x+ = (x+

1 , . . . , x+
m) and a se-

quence of ‘negative’ training examples x− = (x−
1 , . . . , x−

n ), the x+
i and x−

j being
instances in some instance space X , and the goal is to learn a real-valued ranking
function f : X→R that ranks future positive instances higher than negative ones,
i.e., that assigns higher values to positive instances than to negative ones. We de-
fine a model of learnability for ranking functions in the setting of the bipartite
ranking problem, and derive a number of results in this model. Our first main re-
sult provides a sufficient condition for the learnability of a class of ranking func-
tions F : we show that F is learnable if its bipartite rank-shatter coefficients [14],
which measure the richness of a ranking function class in the same way as do
the standard VC-dimension related shatter coefficients for classes of classification
functions, do not grow too quickly. As in the case of classification and regres-
sion, the proof of this result makes use of a uniform convergence result of [14]
to show the existence of a learning algorithm for F whose sample complexity can
be upper bounded via the bipartite rank-shatter coefficients of F . Our second main
result gives a necessary condition for learnability: we define a new combinatorial
parameter for a class of ranking functions F that we term the rank dimension of
F , and show that F is learnable only if its rank dimension is finite. As in the case
of classification, the proof of this result makes use of the probabilistic method to
show that the sample complexity of any learning algorithm for F is lower bounded
by a linear function of the rank dimension of F . We use the above two results
to give examples of both learnable and non-learnable classes of ranking functions.
Finally, we investigate questions of the computational complexity of learning rank-
ing functions. As in classification, we find that for some common ranking function
classes, learning in a general ‘agnostic’ model is hard, but efficient algorithms can
be found for learning in a PAC-type model.

1.3 Organization

We describe the bipartite ranking problem in greater detail in Section 2, and formu-
late our model of learnability for ranking functions in the setting of this problem in
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Section 3. A sufficient condition for learnability in this model is derived in Section 4,
and a necessary condition in Section 5. We consider the computational complexity of
learning ranking functions in Section 6.

2 The Bipartite Ranking Problem

In the bipartite ranking problem [5, 14], the learner is given a training sample (x+, x−)
consisting of a sequence of ‘positive’ training examples x+ = (x+

1 , . . . , x+
m) and a

sequence of ‘negative’ training examples x− = (x−
1 , . . . , x−

n ), the x+
i and x−

j being
instances in some instance space X , and the goal is to learn a real-valued ranking func-
tion f : X→R that ranks future positive instances higher than negative ones, i.e., that
assigns higher values to positive instances than to negative ones. Such problems arise,
for example, in information retrieval, where one is interested in retrieving documents
from some database that are ‘relevant’ to a given topic. In this case, the training exam-
ples given to the learner consist of documents labeled as relevant (positive) or irrelevant
(negative), and the goal is to produce a list of documents that contains relevant docu-
ments at the top and irrelevant ones at the bottom; in other words, one wants a ranking
of the documents such that relevant documents are ranked higher than irrelevant ones.

We assume that positive instances are drawn randomly and independently accord-
ing to some (unknown) distribution D+ on X , and that negative instances are drawn
randomly and independently according to some (unknown) distribution D− on X . The
quality of a ranking function f : X→R is then measured by its expected ranking error
with respect to D+ and D−, denoted by RD+,D−(f) and defined as follows:

RD+,D−(f) = Ex+∼D+,x−∼D−

{
I{f(x+)<f(x−)} +

1
2
I{f(x+)=f(x−)}

}
, (1)

where I{·} denotes the indicator variable whose value is one if its argument is true
and zero otherwise. The expected ranking error RD+,D−(f) is the probability that a
positive instance drawn randomly according to D+ is ranked lower by f than a negative
instance drawn randomly according to D−, assuming that ties are broken uniformly at
random. A related quantity is the empirical ranking error of f with respect to a sample
(x+, x−) ∈ Xm × Xn, denoted by R̂x+,x−(f) and defined as follows:

R̂x+,x−(f) =
1

mn

m∑

i=1

n∑

j=1

{
I{f(x+

i )<f(x−
j )} +

1
2
I{f(x+

i )=f(x−
j )}

}
. (2)

This is simply the fraction of positive-negative pairs in (x+, x−) that are ranked incor-
rectly by f , assuming again that ties are broken uniformly at random.

Although the bipartite ranking problem shares similarities with the binary classifica-
tion problem, it should be noted that the two problems are in fact distinct. In particular,
it is possible for binary functions obtained by thresholding different real-valued func-
tions to have the same classification errors, while the ranking errors of the real-valued
functions differ significantly. For a detailed discussion of this distinction, see [15, 14]1.

1 In [15, 14], the performance of a ranking function is measured in terms of the area under the
ROC curve (AUC); this quantity is simply equal to one minus the empirical ranking error.
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3 Learnability

Since the goal of learning is to find a ranking function that ranks accurately future
instances, we would like a learning algorithm to find a ranking function with minimal
expected ranking error. More specifically, if a learning algorithm selects a ranking func-
tion from a class of ranking functions F , we would like it to output a ranking function
f ∈ F with expected error RD+,D−(f) close to the best possible within the class F ,
i.e., close to

R∗
D+,D−(F) = inf

g∈F
RD+,D−(g) . (3)

We formalize this idea below, following closely the notation and terminology of An-
thony and Bartlett [16]. In what follows, Q denotes the set of rationals and N the set of
positive integers.

Definition 1 (Learnability). Let F be a class of real-valued ranking functions on X .
A learning algorithm L for F is a function L :

( ⋃∞
m=1 Xm

) × ( ⋃∞
n=1 Xn

) →F with
the following property: given any ρ ∈ (0, 1) ∩ Q and any ε, δ ∈ (0, 1), there is an
integer M = M(ε, δ, ρ) such that m = ρM ∈ N, n = (1 − ρ)M ∈ N, and for any
distributions D+,D− on X ,

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) − R∗

D+,D−(F) ≥ ε
}
≤ δ .

The smallest such integer M(ε, δ, ρ) is called the sample complexity of L, denoted
ML(ε, δ, ρ). We say that F is learnable if there is a learning algorithm for F .

Notice the introduction of the additional parameter ρ in the above definition, which
was not required in classification. This parameter represents the ‘positive skew’, i.e.,
the proportion of positive examples. Its role will become clear in subsequent sections.

As in [16], our main model above corresponds to a general ‘agnostic’ model in
which no assumption is made on the distributions D+ and D−; we refer to this as the
standard model. We can also define a PAC-type model in which the distributions D+

and D− are restricted to correspond to an underlying target function; following [16],
we refer to this as the restricted model.

Definition 2 (Learnability in Restricted Model). Let F be a class of real-valued
ranking functions on X . A learning algorithm L for F in the restricted model is a
function L :

( ⋃∞
m=1 Xm

) × ( ⋃∞
n=1 Xn

) →F with the following property: given any
ρ ∈ (0, 1) ∩ Q and any ε, δ ∈ (0, 1), there is an integer M = M(ε, δ, ρ) such that
m = ρM ∈ N, n = (1 − ρ)M ∈ N, and for any distributions D+,D− on X for which
there is a target function t ∈ F such that RD+,D−(t) = 0,

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) ≥ ε

}
≤ δ .

The smallest such integer M(ε, δ, ρ) is called the sample complexity of L, denoted
ML(ε, δ, ρ). We say that F is learnable in the restricted model if there is a learning
algorithm for F in this model.
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Clearly, if a class of ranking functions F is learnable, then F is learnable in the
restricted model. Note that learnability of F in the restricted model is equivalent to
learnability of the class of classification functions H =

{
h : X→{−1, 1} | h(x) =

θ(f(x) + τ) for some f ∈ F , τ ∈ R
}
, where θ(u) = 1 for u > 0 and θ(u) = −1 for

u ≤ 0, in the restricted (PAC) model for classification. However, this equivalence does
not hold in the standard (agnostic) model.

4 Upper Bound on Sample Complexity

In this section we show that any algorithm that minimizes the empirical ranking error
over a class of ranking functions F is a learning algorithm for F if the bipartite rank-
shatter coefficients [14] of F do not grow too quickly, and obtain an upper bound on
the sample complexity of such an algorithm.

Definition 3 (Bipartite Rank Matrix [14]). Let f : X→R be a ranking function on
X , let m,n ∈ N, and let x = (x1, . . . , xm) ∈ Xm, x′ = (x′

1, . . . , x
′
n) ∈ Xn. The

bipartite rank matrix of f with respect to x, x′, denoted by Bf (x, x′), is defined to be
the matrix in {0, 1/2, 1}m×n whose (i, j)-th element is given by

[Bf (x, x′)]ij = I{f(xi)>f(x′
j)} +

1
2
I{f(xi)=f(x′

j)}

for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

Definition 4 (Bipartite Rank-Shatter Coefficient [14]). Let F be a class of real-
valued functions on X , and let m,n ∈ N. The (m,n)-th bipartite rank-shatter coef-
ficient of F , denoted by r(F ,m, n), is defined as follows:

r(F ,m, n) = max
x∈Xm,x′∈Xn

|{Bf (x, x′) | f ∈ F}| .

Definition 5 (Empirical Error Minimization (EEM) Algorithm). Let F be a class
of ranking functions on X . Define an empirical error minimization (EEM) algorithm
for F to be any function L :

(⋃∞
m=1 Xm

) × ( ⋃∞
n=1 Xn

) → F with the property that
for any m,n ∈ N and any (x+, x−) ∈ Xm × Xn,

R̂x+,x−(L(x+, x−)) = min
g∈F

R̂x+,x−(g) .

Theorem 1. Let F be a class of ranking functions on X , and let L be any EEM algo-
rithm for F . If there exist constants c1 > 0, c2 ≥ 0 such that r(F ,m, n) ≤ c1(mn)c2

for all m,n ∈ N, then L is a learning algorithm for F with sample complexity

ML(ε, δ, ρ) ≤
⌈

64
ρ(1 − ρ)ε2

(

4c2 ln
(

16
ε

)

+ c2 ln
(

c2
2

e2ρ(1 − ρ)

)

+ ln
(

4c1

δ

))⌉

ρ

,

where �u�ρ denotes the smallest integer M greater than or equal to u for which ρM ∈N.
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The proof of this result makes use of the following uniform convergence result for
the ranking error given in [14]2:

Theorem 2 ([14]). Let F be a class of ranking functions on X , and let m,n ∈ N. Then
for any distributions D+,D− on X and for any ε > 0,

Px+∼Dm
+ ,x−∼Dn

−

{
sup
f∈F

∣
∣
∣R̂x+,x−(f) − RD+,D−(f)

∣
∣
∣ ≥ ε

}

≤ 4 · r(F , 2m, 2n) · e−mnε2/8(m+n) .

Proof (of Theorem 1). It can be shown using standard techniques [16] that for any
m,n ∈ N, any (x+, x−) ∈ Xm × Xn and any distributions D+,D− on X ,

RD+,D−(L(x+, x−)) − R∗
D+,D−(F) ≤ 2 sup

f∈F

∣
∣
∣R̂x+,x−(f) − RD+,D−(f)

∣
∣
∣ .

Now, suppose there exist constants c1 > 0, c2 ≥ 0 such that r(F ,m, n) ≤ c1(mn)c2 for
all m,n ∈ N. Let ρ ∈ (0, 1) ∪ Q and ε, δ ∈ (0, 1), and let D+,D− be any distributions
on X . For any M ∈ N for which m = ρM ∈ N, n = (1 − ρ)M ∈ N, we then have

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) − R∗

D+,D−(F) ≥ ε
}

(4)

≤ Px+∼Dm
+ ,x−∼Dn

−

{
sup
f∈F

∣
∣
∣R̂x+,x−(f) − RD+,D−(f)

∣
∣
∣ ≥ ε/2

}

≤ 4 · r(F , 2ρM, 2(1 − ρ)M) · e−ρ(1−ρ)Mε2/32 (by Theorem 2)

≤ 4 · c1(4ρ(1 − ρ)M2)c2 · e−ρ(1−ρ)Mε2/32 .

Therefore, to make the probability in Eq. (4) smaller than δ, it is sufficient if

M ≥ 32
ρ(1 − ρ)ε2

(

2c2 ln M + c2 ln(4ρ(1 − ρ)) + ln
(

4c1

δ

))

.

Since ln u ≤ au − ln a − 1 for all a, u > 0, we have

64c2

ρ(1 − ρ)ε2
ln M ≤ 64c2

ρ(1 − ρ)ε2

(
ρ(1 − ρ)ε2

128c2
M − ln

(
ρ(1 − ρ)ε2

128c2

)

− 1
)

=
M

2
+

64c2

ρ(1 − ρ)ε2
ln

(
128c2

eρ(1 − ρ)ε2

)

.

Using this and simplifying terms, we get that

M ≥ 64
ρ(1 − ρ)ε2

(

4c2 ln
(

16
ε

)

+ c2 ln
(

c2
2

e2ρ(1 − ρ)

)

+ ln
(

4c1

δ

))

suffices to make the probability in Eq. (4) smaller than δ. The result then follows from
the definition of sample complexity (Definition 1). 
�

2 The uniform convergence result in [14] is given for the area under the ROC curve (AUC); as
mentioned previously, this quantity is simply equal to one minus the empirical ranking error.
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Notice that the upper bound on the sample complexity in ranking for given (ε, δ)
grows larger as the positive skew ρ departs from 1/2, i.e., as the balance between pos-
itive and negative examples becomes more uneven. Similar observations regarding the
role of the skew ρ in ranking have been made in different contexts in [15, 14]. Theo-
rem 1 can be used to show learnability of any class of ranking functions whose bipartite
rank-shatter coefficients can be bounded appropriately; we give some examples below.

Example 1 (Finite function classes). Let F be a finite class of ranking functions on
some instance space X . Then r(F ,m, n) ≤ |F| for all m,n ∈ N. Thus we have from
Theorem 1 that F is learnable; in particular, taking c1 = |F|, c2 = 0, we have that any
EEM algorithm L for F is a learning algorithm for F with sample complexity3

ML(ε, δ, ρ) ≤
⌈

64
ρ(1 − ρ)ε2

ln
(

4|F|
δ

)⌉

ρ

.

Example 2 (Linear ranking functions). Let Flin(d) be the class of linear ranking func-
tions on R

d. Then it can be shown [14] that r(Flin(d),m, n) ≤ (2emn/d)d for all
m,n ∈ N. Thus we have from Theorem 1 that Flin(d) is learnable; in particular, taking
c1 = (2e/d)d, c2 = d, we have that any EEM algorithm L for Flin(d) is a learning
algorithm for Flin(d) with sample complexity

ML(ε, δ, ρ) ≤
⌈

64
ρ(1 − ρ)ε2

(

4d ln
(

16
ε

)

+ d ln
(

2d

eρ(1 − ρ)

)

+ ln
(

4
δ

))⌉

ρ

.

Example 3 (Polynomial ranking functions). Let q ∈ N, and let Fpoly(d,q) be the class of
polynomial ranking functions on Rd with degree less than or equal to q. Then it can be
shown [14] that r(Fpoly(d,q),m, n) ≤ (2emn/C(d, q))C(d,q) for all m,n ∈ N, where

C(d, q) =
q∑

i=1

((
d

i

) q∑

j=1

(
j − 1
i − 1

))

.

Thus we have from Theorem 1 that Fpoly(d,q) is learnable; in particular, taking c1 =
(2e/C(d, q))C(d,q), c2 = C(d, q), we have that any EEM algorithm L for Fpoly(d,q) is
a learning algorithm for Fpoly(d,q) with sample complexity

ML(ε, δ, ρ) ≤
⌈

64

ρ(1 − ρ)ε2

(

4C(d, q) ln

(
16

ε

)

+ C(d, q) ln

(
2C(d, q)

eρ(1 − ρ)

)

+ ln

(
4

δ

))⌉

ρ

.

5 Lower Bound on Sample Complexity

In this section we define a new combinatorial parameter for a class of ranking functions
F that we term the rank dimension of F , and show that the sample complexity of any
learning algorithm for F is lower bounded by a linear function of its rank dimension.

3 It is in fact possible to obtain a slightly tighter upper bound in this case using a different
uniform convergence result of [14] for finite function classes.



24 S. Agarwal and D. Roth

Definition 6 (Rank-Shattering). Let F be a class of real-valued functions on X , let
r ∈ N, and let S = {(w1, w

′
1), . . . , (wr, w

′
r)} be a set of r pairs of instances in X . For

each i ∈ {1, . . . , r}, b ∈ {0, 1}r, define

wb+
i =

{
wi if bi = 1
w′

i if bi = 0 , wb−
i =

{
w′

i if bi = 1
wi if bi = 0 .

We say that F rank-shatters S if for each b ∈ {0, 1}r, there is a ranking function fb ∈ F
such that for all i, j ∈ {1, . . . , r}, fb(wb+

i ) > fb(wb−
j ).

Definition 7 (Rank Dimension). Let F be a class of real-valued functions on X . De-
fine the rank dimension of F , denoted by rank-dim(F), to be the largest positive integer
r for which there exists a set of r pairs of instances in X that is rank-shattered by F .

Theorem 3. Let F be a class of ranking functions on X with rank-dim(F) = r. Then
for any function L :

( ⋃∞
m=1 Xm

) × ( ⋃∞
n=1 Xn

) → F , any m,n ∈ N such that
m + n ≥ 2r, and any ε > 0, there exist distributions D+,D− on X such that

Ex+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) − R∗

D+,D−(F)
}

≥ 1
210

√
r

m + n

(
1 −

√
1 − e−(2m/(m+n)+1)

)2 (
1 −

√
1 − e−(2n/(m+n)+1)

)2

.

Proof (sketch). The proof makes use of ideas similar to those used to prove lower
bounds in the case of classification; specifically, a finite set of distributions is con-
structed, and it is shown, using the probabilistic method, that for any function L there
exist distributions in this set for which the above lower bound holds.

Let S = {(w1, w
′
1), . . . , (wr, w

′
r)} be a set of r pairs of instances in X that is rank-

shattered by F . We construct a family of 2r pairs of distributions {(Db+,Db−) : b ∈
{0, 1}r} on X as follows. For each b ∈ {0, 1}r, define

Db+(wi) =
{

(1 + α)/2r if bi = 1
(1 − α)/2r if bi = 0 Db−(wi) =

{
(1 − α)/2r if bi = 1
(1 + α)/2r if bi = 0

Db+(w′
i) =

{
(1 − α)/2r if bi = 1
(1 + α)/2r if bi = 0 Db−(w′

i) =
{

(1 + α)/2r if bi = 1
(1 − α)/2r if bi = 0

Db+(x) = 0 for x �= wi, w
′
i Db−(x) = 0 for x �= wi, w

′
i

Here α is a constant in (0, 1) whose value will be determined later. Using the notation
of Definition 6, it can be verified that for any f : X→R,

RDb+,Db−(f) =
(1 − α

2

)
+

α

r2

r∑

i=1

r∑

j=1

{

I{f(wb+
i )<f(wb−

j )} +
1
2
I{f(wb+

i )=f(wb−
j )}

}

.

Since S is rank-shattered by F , for each b ∈ {0, 1}r there is a function fb ∈ F such
that for all i, j ∈ {1, . . . , r}, fb(wb+

i ) > fb(wb−
j ). From the above equation this gives

R∗
Db+,Db−(F) =

(1 − α

2

)
.
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Therefore, for any f ∈ F , we have

RDb+,Db−(f) − R∗
Db+,Db−(F) =

α

r2

r∑

i=1

r∑

j=1

{

I{f(wb+
i )<f(wb−

j )} +
1

2
I{f(wb+

i )=f(wb−
j )}

}

.

Now, let L :
( ⋃∞

m=1 Xm
) × ( ⋃∞

n=1 Xn
) → F be any function, and for any x =

(x+, x−) ∈ Xm × Xn, denote by fx the ranking function L(x+, x−) ∈ F output by
L. Then we have for any b ∈ {0, 1}r,

Ex+∼Dm
b+,x−∼Dn

b−

{
RDb+,Db−(fx) − R∗

Db+,Db−(F)
}

=
α

r2

r∑

i=1

r∑

j=1

Ex+∼Dm
b+,x−∼Dn

b−

{

I{fx(wb+
i )<fx(wb−

j )} +
1
2
I{fx(wb+

i )=fx(wb−
j )}

}

.

We use the probabilistic method to show that the above quantity is greater than the
stated lower bound for at least one pair of distributions Db+,Db−. In particular, we
show that if b ∈ {0, 1}r is chosen uniformly at random, then the expected value of
the above quantity is greater than the stated lower bound; this implies that there is at
least one b ∈ {0, 1}r for which the bound holds. The techniques we use are similar to
those used in the case of classification (see, for example, [16–Chapter 5]); the details
are considerably more involved and are omitted for lack of space (see [17] for complete
details). Denoting the uniform distribution over {0, 1}r by U , what we get is that for
any α > 0,

Eb∼U
{
Ex+∼Dm

b+,x−∼Dn
b−

{
RDb+,Db−(fx) − R∗

Db+,Db−(F)
}}

≥ α

210

(
1 −

√
1 − e−(2m/r+1)α2/(1−α2)

)2(
1 −

√
1 − e−(2n/r+1)α2/(1−α2)

)2

.

Setting α2 = r/(m + n) and assuming m + n ≥ 2r then gives

Eb∼U
{
Ex+∼Dm

b+,x−∼Dn
b−

{
RDb+,Db−(fx) − R∗

Db+,Db−(F)
}}

≥ 1
210

√
r

m + n

(
1 −

√
1 − e−(2m/(m+n)+1)

)2(
1 −

√
1 − e−(2n/(m+n)+1)

)2

. 
�

Corollary 1. Let F be a class of ranking functions on X with rank-dim(F) = r, and
let L be any learning algorithm for F . Then L has sample complexity

ML(ε, δ, ρ) ≥ r

220(ε + δ)2
(
1 −

√
1 − e−(2ρ+1)

)4 (
1 −

√
1 − e−(2(1−ρ)+1)

)4

.

Proof. Let ρ ∈ (0, 1) ∪ Q and ε, δ ∈ (0, 1). Let M = ML(ε, δ, ρ), and let m = ρM ,
n = (1 − ρ)M . Then for all distributions D+,D− on X ,

Px+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) − R∗

D+,D−(F) ≥ ε
}
≤ δ .
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Using the fact that any [0, 1]-valued random variable Z satisfies E{Z} ≤ P{Z ≥ ε}+ε
for all ε ∈ (0, 1), we thus get that for all distributions D+,D− on X ,

Ex+∼Dm
+ ,x−∼Dn

−

{
RD+,D−(L(x+, x−)) − R∗

D+,D−(F)
}
≤ ε + δ .

Theorem 3 then implies that

ε + δ ≥ 1
210

√
r

M

(
1 −

√
1 − e−(2ρ+1)

)2 (
1 −

√
1 − e−(2(1−ρ)+1)

)2

.

Solving for M gives the desired result. 
�
As in the case of the upper bound, the lower bound on sample complexity grows

larger as the proportion of positive examples ρ departs from 1/2.

Corollary 2. Let F be a class of ranking functions on X . If F is learnable, then
rank-dim(F) is finite.

Proof. This follows directly from Corollary 1. 
�

Example 4. Let F be the class of all ranking functions f : R→R on R. Then clearly,
F rank-shatters arbitrarily large sets of pairs of instances in R. The rank dimension of
F is therefore infinite, and hence by Corollary 2, F is not learnable.

Remark 1. We note that since the distributions constructed in the proof of Theorem 3
do not correspond to a target function, the lower bound on sample complexity and
the necessary condition for learnability derived above do not apply to learning in the
restricted model of Definition 2.

6 Computational Complexity

So far, we have viewed a learning algorithm as simply a function that maps training
samples to ranking functions, and have focused only on the sample complexity of this
function. However, in order to be of practical use, this function must also be com-
putable, i.e., the learning algorithm must truly be an algorithm that takes as input a
training sample and returns as output a ranking function. Moreover, the learning algo-
rithm must be computationally efficient.

In order to study the computational complexity of learning algorithms for ranking,
we need to consider learning at a somewhat broader level than we have done above.
In particular, a learning algorithm is usually defined for sets of ranking functions over
domains of arbitrary dimension (e.g., a learning algorithm for the class of linear ranking
functions over R

d for any d), and it is then of interest to study how the computational
complexity of the algorithm grows with the dimension. As in [16, 6], we formalize
this by defining learning algorithms for graded function classes. For each d ∈ N, let
Xd be a subset of R

d, and let Fd be a set of ranking functions on Xd. We refer to
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the union F =
⋃Fd as a graded class of ranking functions. A learning algorithm

for F is then a function L :
⋃∞

d=1

(( ⋃∞
m=1 Xm

d

) × ( ⋃∞
n=1 Xn

d

)) → F such that if
(x+, x−) ∈ Xm

d ×Xn
d , then L(x+, x−) ∈ Fd, and for each d, L is a learning algorithm

for Fd (in the sense of Definition 1). Assuming that learning algorithms are computable
functions, we can now ask how the computational complexity of a learning algorithm
L for a graded class of ranking functions F =

⋃Fd grows with d.

Definition 8 (Efficient Learnability). Let F =
⋃Fd be a graded class of ranking

functions and let L be a learning algorithm for F . We say that L is efficient if

(i) the worst-case time complexity TL(m,n, d) of L on samples (x+, x−) ∈ Xm
d ×Xn

d

is polynomial4 in m, n and d, and
(ii) the sample complexity ML(ε, δ, ρ, d) of L on Fd is polynomial in 1/ε, 1/δ, 1/ρ(1−

ρ) and d (up to an �·�ρ operation).

We say F is efficiently learnable if there is an efficient learning algorithm for F .

Efficient learnability in the restricted model can be defined in a similar manner. The
sufficient and necessary conditions for learnability established in Sections 4 and 5 can
be extended to efficient learnability as follows.

Definition 9 (Efficient EEM Algorithm). Let F =
⋃Fd be a graded class of ranking

functions. An efficient EEM algorithm for F is an algorithm that takes as input a sample
(x+, x−) ∈ Xm

d ×Xn
d , and in time polynomial in m, n and d, returns a ranking function

f ∈ Fd such that R̂x+,x−(f) = ming∈Fd
R̂x+,x−(g) .

Theorem 4. Let F =
⋃Fd be a graded class of ranking functions, and suppose

that there exist functions c1 : N→R
+, c2 : N→R

+ ∪ {0} such that r(Fd,m, n) ≤
c1(d)(mn)c2(d) for all d,m, n ∈ N, and such that c2(d) is polynomial in d. Then any
efficient EEM algorithm for F is an efficient learning algorithm for F .

Proof. Suppose that L is an efficient EEM algorithm for F . Then

(i) by Theorem 1, L is a learning algorithm for Fd for each d and therefore a learning
algorithm for F ,

(ii) by Definition 9, the time complexity TL(m,n, d) of L on Fd is polynomial in m,
n and d, and

(iii) by Theorem 1, the sample complexity ML(ε, δ, ρ, d) of L on Fd is polynomial in
1/ε, 1/δ, 1/ρ(1 − ρ) and d (up to an �·�ρ operation).

Thus, L is an efficient learning algorithm for F . 
�

Theorem 5. Let F =
⋃Fd be a graded class of ranking functions. If there is an effi-

cient learning algorithm for F , then rank-dim(Fd) is polynomial in d.

4 In the logarithmic cost model of computation [18], the time complexity is also allowed to
depend polynomially on the number of bits required to represent the input.
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Proof. This follows directly from Definition 8 and Corollary 1. 
�
Next we define the following decision problem associated with a graded ranking

function class F =
⋃Fd. As in the case of classification [16], it can be shown that if

this problem is NP-hard, then, assuming RP �= NP, F is not efficiently learnable. The
proof is similar to that for classification; we omit the details.

F -FIT

Instance: (x+, x−) ∈ Xm
d × Xn

d and an integer k ∈ {1, . . . , mn}.
Question: Is there f ∈ Fd such that R̂x+,x−(f) ≤ k/mn?

Theorem 6. Let F be a graded class of ranking functions. If there is an efficient learn-
ing algorithm for F , then there is a polynomial-time randomized algorithm for F -FIT,
i.e., F -FIT is in RP.

We now have the formal tools necessary to study the computational complexity of
learning ranking functions. Below we use these tools to investigate the computational
complexity of learning for the commonly used classes of linear and polynomial ranking
functions. Our first result is a hardness result for linear ranking functions.

Theorem 7. Let Flin =
⋃Flin(d), where Flin(d) is the class of linear ranking functions

on R
d. If RP �= NP, then Flin is not efficiently learnable.

Proof. We show that Flin-FIT is NP-hard; the result then follows by Theorem 6. To
show that Flin-FIT is NP-hard, we give a reduction from an NP-hard classification
problem to Flin-FIT. For each d ∈ N, let Hlin(d) =

{
h : R

d→{−1, 0, 1} | h(x) =
sign(

∑d
l=1wlxl + θ) for some w ∈ R

d, θ ∈ R
}

. Given a function h ∈ Hlin(d) and a
sample z = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1, 1})m, define the empirical error
of h with respect to z, denoted by êrz(h), as follows:

êrz(h) =
1
m

m∑

i=1

{
I{h(xi) �=0}I{h(xi) �=yi} +

1
2
I{h(xi)=0}

}
.

Let Hlin =
⋃Hlin(d), and define the following decision problem associated with Hlin:

Hlin-FIT

Instance: z = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1, 1})m and an integer k′ ∈
{1, . . . , m}.
Question: Is there h ∈ Hlin(d) such that êrz(h) ≤ k′/m?

Using exactly the same construction as that used to show the NP-hardness of a similar
decision problem relating to linear threshold functions for binary classification [16],
it can be shown that the problem Hlin-FIT defined above is NP-hard. We give now a
reduction from Hlin-FIT to Flin-FIT.

Let z = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1, 1})m, k′ ∈ {1, . . . , m} be an
instance of Hlin-FIT. We construct from z, k′ an instance (x+, x−) ∈ (Rd+1)m ×
(Rd+1), k ∈ {1, . . . , m} of Flin-FIT as follows. For each i ∈ {1, . . . , m}, define
x+

i = (xi, 1) ∈ R
d+1 if yi = 1, and x+

i = (−xi,−1) ∈ R
d+1 if yi = −1. De-

fine x−
1 = 0 ∈ R

d+1. Let x+ = (x+
1 , . . . , x+

m), x− = (x−
1 ), and k = k′. We claim that
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there exists h ∈ Hlin(d) with êrz(h) ≤ k′/m if and only if there exists f ∈ Flin(d+1)

with R̂x+,x−(f) ≤ k/m.
First, suppose there exists h ∈ Hlin(d) with êrz(h) ≤ k′/m, given by h(x) =

sign(
∑d

l=1 wlxl + θ) for some w ∈ R
d, θ ∈ R. Define f : R

d+1→R as f(x) =
∑d

l=1 wlxl + θxd+1 for all x ∈ R
d+1. Then clearly, f ∈ Flin(d+1), and it can be

verified that R̂x+,x−(f) = êrz(h) ≤ k′/m = k/m. Conversely, suppose there exists

f ∈ Flin(d+1) with R̂x+,x−(f) ≤ k/m, given by f(x) =
∑d+1

l=1 wlxl + θ for some

w ∈ R
d+1, θ ∈ R. Define h : R

d→{−1, 0, 1} as h(x) = sign(
∑d

l=1 wlxl + wd+1) for
all x ∈ R

d. Then clearly, h ∈ Hlin(d), and it can be verified that êrz(h) = R̂x+,x−(f) ≤
k/m = k′/m.

Since the time required to construct the instance (x+, x−), k from z, k′ is polyno-
mial in the size of z, k′, we conclude that Flin-FIT is NP-hard. 
�

Our next result shows that Flin is efficiently learnable in the restricted learning
model. We first specialize Definition 9 and Theorem 4 to the restricted model case.

Definition 10 (Efficient Consistent-Hypothesis-Finder). Let F =
⋃Fd be a graded

class of ranking functions. An efficient consistent-hypothesis-finder for F is an algo-
rithm L such that, given any sample (x+, x−) ∈ Xm

d × Xn
d for which there exists a

target function t ∈ Fd satisfying R̂x+,x−(t) = 0, L halts in time polynomial in m, n

and d and returns a ranking function f ∈ Fd such that R̂x+,x−(f) = 0.

Theorem 8. Let F =
⋃Fd be a graded class of ranking functions, and suppose

that there exist functions c1 : N→R
+, c2 : N→R

+ ∪ {0} such that r(Fd,m, n) ≤
c1(d)(mn)c2(d) for all d,m, n ∈ N, and such that c2(d) is polynomial in d. Then any
efficient consistent-hypothesis-finder for F is an efficient learning algorithm for F in
the restricted model.

Theorem 9. The class of linear ranking functions Flin =
⋃Flin(d) is efficiently learn-

able in the restricted model.

Proof (sketch). As discussed in Example 2 (Section 4), r(Flin(d),m, n) ≤ (2emn/d)d

for all d,m, n ∈ N. Therefore, by Theorem 8, it suffices to show the existence of an
efficient consistent-hypothesis-finder for Flin. This can be done by formulating a linear
program such that, given a training sample (x+, x−) ∈ (Rd)m × (Rd)n for which
there exists a target function t ∈ Flin(d) satisfying R̂x+,x−(t) = 0, the solution of the

linear program gives a ranking function f ∈ Flin(d) such that R̂x+,x−(f) = 0 (see [17]
for details). Solving the linear program using a polynomial-time linear programming
algorithm such as Karmarkar’s [19] then constitutes an efficient consistent-hypothesis-
finder for Flin. 
�

Remark 2. We note that since the polynomial time bound for linear programming algo-
rithms such as Karmarkar’s holds only in the logarithmic cost model of computation,
the above proof establishes efficient learnability of Flin in the restricted learning model
only under this model of computation.
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Remark 3. In the above proof, we could also have used a linear program that finds a
classification function h ∈ Hlin(d) of the form h(x) = sign(

∑d
l=1 wlxl + θ) such

that L̂S(h) = 0, where S = ((x+
1 , 1), . . . , (x+

m, 1), (x−
1 ,−1), . . . , (x−

n ,−1)), and then
taken f to be the linear function f(x) =

∑d
l=1 wlxl.

Finally, we show that learning linear ranking functions over Boolean domains is
hard even in the restricted model.

Theorem 10. Let Fb
lin =

⋃Fb
lin(d), where Fb

lin(d) is the class of linear ranking functions

on {0, 1}d. If RP �= NP, then Fb
lin is not efficiently learnable in the restricted model.

Proof (sketch). Let, if possible, Fb
lin be efficiently learnable in the restricted model.

Then there is an efficient randomized consistent-hypothesis-finder A for Fb
lin (see [16,

17]). Clearly, A can be used to construct an efficient randomized consistent-hypothesis-
finder for Hb

lin =
⋃Hb

lin(d), where Hb
lin(d) is the class of Boolean threshold functions on

{0, 1}d. This, in turn, implies the existence of an efficient learning algorithm for Hb
lin in

the restricted (PAC) model (see [16]). Since the problem of learning Boolean threshold
functions in the PAC model is known to be NP-hard [20], this implies RP = NP. Thus,
if RP �= NP, then Fb

lin is not efficiently learnable in the restricted model. 
�
The techniques used above can be used also to establish that for any q ∈ N, the class

Fpoly(q) =
⋃Fpoly(d,q), where Fpoly(d,q) is the class of polynomial ranking functions

on R
d with degree at most q, is not efficiently learnable in the standard model, but is

efficiently learnable in the restricted model, and that the class Fb
poly(q) =

⋃Fb
poly(d,q),

where Fb
poly(d,q) is the class of polynomial ranking functions on {0, 1}d with degree at

most q, is not efficiently learnable even in the restricted model.

7 Conclusion and Open Questions

Our goal in this paper has been to initiate a formal study of learnability for ranking
functions. There are several questions to be answered. First, is there a single quantity
that characterizes learnability of a class of ranking functions, analogous to the VC di-
mension for classification and the fat-shattering dimension for regression? For example,
based on our results, an upper bound of the form r(F ,m, n) = O((mn)rank-dim(F))
on the bipartite rank-shatter coefficients would establish the rank dimension as such a
quantity. Second, can the rank dimension be related to previous quantities (such as the
VC-dimension or pseudo-dimension), or is it a fundamentally new quantity? So far, we
have not been able to find a relation to earlier dimensions. Third, for what other classes
of ranking functions can efficient learning algorithms or hardness results be shown?
Finally, for what other settings of the ranking problem can learnability be studied?
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