
A New Perspective on an Old Perceptron Algorithm

Shai Shalev-Shwartz1,2 and Yoram Singer1,2

1 School of Computer Sci. & Eng., The Hebrew University, Jerusalem 91904, Israel
2 Google Inc., 1600 Amphitheater Parkway, Mountain View CA 94043, USA

{shais, singer}@cs.huji.ac.il

Abstract. We present a generalization of the Perceptron algorithm. The new al-
gorithm performs a Perceptron-style update whenever the margin of an example
is smaller than a predefined value. We derive worst case mistake bounds for our
algorithm. As a byproduct we obtain a new mistake bound for the Perceptron
algorithm in the inseparable case. We describe a multiclass extension of the algo-
rithm. This extension is used in an experimental evaluation in which we compare
the proposed algorithm to the Perceptron algorithm.

1 Introduction

The Perceptron algorithm [1, 15, 14] is a well studied and popular classification learn-
ing algorithm. Despite its age and simplicity it has proven to be quite effective in prac-
tical problems, even when compared to the state-of-the-art large margin algorithms [9].
The Perceptron maintains a single hyperplane which separates positive instances from
negative ones. Another influential learning paradigm which employs separating hyper-
planes is Vapnik’s Support Vector Machine (SVM) [16]. Learning algorithms for SVMs
use quadratic programming for finding a separating hyperplane attaining the maximal
margin. Interestingly, the analysis of the Perceptron algorithm [14] also employs the
notion of margin. However, the algorithm itself does not exploit any margin informa-
tion. In this paper we try to draw a connection between the two approaches by analyzing
a variant of the Perceptron algorithm, called Ballseptron, which utilizes the margin. As
a byproduct, we also get a new analysis for the original Perceptron algorithm.

While the Perceptron algorithm can be used as linear programming solver [4] and
can be converted to a batch learning algorithm [9], it was originally studied in the on-
line learning model which is also the main focus of our paper. In online learning, the
learner receives instances in a sequential manner while outputting a prediction after
each observed instance. For concreteness, let X = R

n denote our instance space and
let Y = {+1,−1} denote our label space. Our primary goal is to learn a classification
function f : X → Y . We confine most of our discussion to linear classification func-
tions. That is, f takes the form f(x) = sign(w·x) where w is a weight vector in R

n. We
briefly discuss in later sections how to use Mercer kernels with the proposed algorithm.
Online algorithms work in rounds. On round t an online algorithm receives an instance
xt and predicts a label ŷt according to its current classification function ft : X → Y . In
our case, ŷt = ft(xt) = sign(wt · xt), where wt is the current weight vector used by
the algorithm. The true label yt is then revealed and the online algorithm may update

P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559, pp. 264–278, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



A New Perspective on an Old Perceptron Algorithm 265

its classification function. The goal of the online algorithm is to minimize its cumula-
tive number of prediction mistakes which we denote by ε. The Perceptron initializes its
weight vector to be the zero vector and employs the update rule wt+1 = wt + τtytxt

where τt = 1 if ŷt �= yt and τt = 0 otherwise.
Several authors [14, 3, 13] have shown that whenever the Perceptron is presented

with a sequence of linearly separable examples, it suffers a bounded number of pre-
diction mistakes which does not depend on the length of the sequence of examples.
Formally, let (x1, y1), . . . , (xT , yT ) be a sequence of instance-label pairs. Assume that
there exists a unit vector u (‖u‖ = 1) and a positive scalar γ > 0 such that for all
t, yt(u · xt) ≥ γ. In words, u separates the instance space into two half-spaces such
that positively labeled instances reside in one half-space while the negatively labeled
instances belong to the second half-space. Moreover, the distance of each instance to
the separating hyperplane {x : u · x = 0}, is at least γ. We refer to γ as the margin
attained by u on the sequence of examples. Throughout the paper we assume that the
instances are of bounded norm and let R = maxt ‖xt‖ denote the largest norm of an
instance in the input sequence. The number of prediction mistakes, ε, the Perceptron
algorithm makes on the sequence of examples is at most

ε ≤
(

R

γ

)2

. (1)

Interestingly, neither the dimensionality of X nor the number of examples directly effect
this mistake bound. Freund and Schapire [9] relaxed the separability assumption and
presented an analysis for the inseparable case. Their mistake bound depends on the
hinge-loss attained by any vector u. Formally, let u be any unit vector (‖u‖ = 1).
The hinge-loss of u with respect to an instance-label pair (xt, yt) is defined as �t =
max{0, γ − ytu · xt} where γ is a fixed target margin value. This definition implies
that �t = 0 if xt lies in the half-space corresponding to yt and its distance from the
separating hyperplane is at least γ. Otherwise, �t increases linearly with −yt(u·xt). Let
D2 denote the two-norm of the sequence of hinge-losses suffered by u on the sequence
of examples,

D2 =

(
T∑

t=1

�2t

)1/2

. (2)

Freund and Schapire [9] have shown that the number of prediction mistakes the Percep-
tron algorithm makes on the sequence of examples is at most,

ε ≤
(

R + D2

γ

)2

. (3)

This mistake bound does not assume that the data is linearly separable. However, when-
ever the data is linearly separable with margin γ, D2 is 0 and the bound reduces to the
bound given in Eq. (1). In this paper we also provide analysis in terms of the one-norm
of the hinge losses which we denote by D1 and is defined as,

D1 =
T∑

t=1

�t . (4)



266 S. Shalev-Shwartz and Y. Singer

�
�

�
�

�

�
��w

+
−

�

��

��

�r
x

�
�

�
�

�

�
��w

+
−

�

��

��

�
r

x

�
�

�
�

�

�
��w

+
−

�

��

��

�r

x
�

x̂

Fig. 1. An illustration of the three modes constituting the Ballseptron’s update. The point x is
labeled +1 and can be in one of three positions. Left: x is classified correctly by w with a margin
greater than r. Middle: x is classified incorrectly by w. Right: x is classified correctly but the
ball of radius r is intersected by the separating hyper-plane. The point x̂ is used for updating w

While the analysis of the Perceptron employs the notion of separation with margin,
the Perceptron algorithm itself is oblivious to the absolute value of the margin attained
by any of the examples. Specifically, the Perceptron does not modify the hyperplane
used for classification even for instances whose margin is very small so long as the pre-
dicted label is correct. While this property of the Perceptron has numerous advantages
(see for example [8]) it also introduces some deficiencies which spurred work on algo-
rithms that incorporate the notion of margin (see the references below). For instance, if
we know that the data is linearly separable with a margin value γ we can deduce that
our current hyperplane is not optimal and make use of this fact in updating the current
hyperplane. In the next section we present an algorithm that updates its weight vector
whenever it either makes a prediction mistake or suffers a margin error. Formally, let
r be a positive scalar. We say that the algorithm suffers a margin error with respect to
r if the current instance xt is correctly classified but it lies too close to the separating
hyper-plane, that is,

0 < yt

(
wt

‖wt‖ · xt

)
≤ r . (5)

Analogously to the definition of ε, we denote by ε̃ the number of margin errors our
algorithm suffers on the sequence of examples.

Numerous online margin-based learning algorithms share similarities with the work
presented in this paper. See for instance [12, 10, 11, 2, 5]. Many of the algorithms can be
viewed as variants and enhancements of the Perceptron algorithm. However, the mistake
bounds derived for these algorithms are not directly comparable to that of the Percep-
tron, especially when the examples are not linearly separable. In contrast, under certain
conditions discussed in the sequel, the mistake bound for the algorithm described in
this paper is superior to that of the Perceptron. Moreover, our analysis carries over to
the original Perceptron algorithm.

The paper is organized as follows. We start in Sec. 2 with a description of our new
online algorithm, the Ballseptron. In Sec. 3 we analyze the algorithm using the mistake
bound model and discuss the implications on the original Perceptron algorithm. Next, in
Sec. 4, we describe a multiclass extension of the Ballseptron algorithm. This extension
is used in Sec. 5 in which we present few experimental results that underscore some of
the algorithmic properties of the Ballseptron algorithm in the light of its formal analysis.
Finally, we discuss possible future directions in Sec. 6.



A New Perspective on an Old Perceptron Algorithm 267

2 The Ballseptron Algorithm

PARAMETER: radius r
INITIALIZE: w1 = 0
For t = 1, 2, . . .

Receive an instance xt

Predict: ŷt = sign(wt · xt)
If yt(wt · xt) ≤ 0

Update: wt+1 = wt + ytxt

Else If yt(wt · xt)/‖wt‖ ≤ r
Set: x̂t = xt − ytrwt/‖wt‖
Update: wt+1 = wt + ytx̂t

Else // No margin mistake
Update: wt+1 = wt

End
Endfor

Fig. 2. The Ballseptron algorithm

In this section we present the Ballseptron algo-
rithm which is a simple generalization of the clas-
sical Perceptron algorithm. As in the Perceptron
algorithm, we maintain a single vector which is
initially set to be the zero vector. On round t, we
first receive an instance xt and output a prediction
according to the current vector, ŷt = sign(wt ·xt).
We then receive the correct label yt. In case of a
prediction mistake, i.e. ŷt �= yt, we suffer a unit
loss and update wt by adding to it the vector ytxt.
The updated vector constitutes the classifier to be
used on the next round, thus wt+1 = wt + ytxt.
In contrast to the Perceptron algorithm, we also
update the classifier whenever the margin attained
on xt is smaller than a pre-specified parameter r.
Formally, denote by B(xt, r) the ball of radius r
centered at xt. We impose the assumption that all
the points in B(xt, r) must have the same label as
the center xt (see also [6]). We now check if there is a point in B(xt, r) which is mis-
classified by wt. If such a point exists then wt intersects B(xt, r) into two parts. We
now generate a pseudo-instance, denoted x̂t which corresponds to the point in B(xt, r)
attaining the worst (negative) margin with respect to wt. (See Fig. 1 for an illustration.)
This is obtained by moving r units away from xt in the direction of −ytwt, that is
x̂t = xt − ytr

‖wt‖wt. To show this formally, we solve the following constrained mini-
mization problem,

x̂t = argmin
x∈B(xt,r)

yt(wt · x) . (6)

To find x̂t we recast the constraint x ∈ B(xt, r) as ‖x − xt‖2 ≤ r2. Note that both
the objective function yt(wt · x) and the constraint ‖x − xt‖2 ≤ r2 are convex in x.
In addition, the relative interior of the B(xt, r) is not empty. Thus, Slater’s optimality
conditions hold and we can find x̂t by examining the saddle point of the problem’s
Lagrangian which is, L(x, α) = yt(wt ·x)+α

(‖x − xt‖2 − r2
)
. Taking the derivative

of the Lagrangian w.r.t. each of the components of x and setting the resulting vector to
zero gives,

ytwt + 2α(x − xt) = 0 . (7)

Since yt(wt · xt) > 0 (otherwise, we simply undergo a simple Perceptron update)
we have that wt �= 0 and α > 0. Hence we get that the solution of Eq. (7) is x̂t =
xt − (yt/2α)wt. To find α we use the complementary slackness condition. That is,
since α > 0 we must have that ‖x− xt‖ = r. Replacing x− xt with −ytwt/(2α), the
slackness condition yields that, ‖wt‖

2α = r which let us express 1
2α as r

‖wt‖ . We thus get
that x̂t = xt − ytr

‖wt‖wt. By construction, if yt(wt · x̂t) > 0 we know that all the points
in the ball of radius r centered at xt are correctly classified and we set wt+1 = wt.



268 S. Shalev-Shwartz and Y. Singer

(See also the left-most plot in Fig. 1.) If on the other hand yt(wt · x̂t) ≤ 0 (right-most
plot in Fig. 1) we use x̂t as a pseudo-example and set wt+1 = wt + ytx̂t.

Note that we can rewrite the condition yt(wt · x̂t) ≤ 0 as yt(wt · xt)/‖wt‖ ≤ r.
The pseudocode of the Ballseptron algorithm is given in Fig. 2. and an illustration of
the different cases encountered by the algorithm is given in Fig. 1. Last, we would
like to note in passing that wt can be written as a linear combination of the instances,
wt =

∑t−1
i=1 αtxt, and therefore, wt ·xt =

∑t−1
i=1 αi(xi ·xt). The inner products xi ·xt

can be replaced with an inner products defined via a Mercer kernel, K(xi,xt), without
any further changes to our derivation. Since the analysis in the next section does not
depend on the dimensionality of the instances, all of the formal results still hold when
the algorithm is used in conjunction with kernel functions.

3 Analysis

In this section we analyze the Ballseptron algorithm. Analogous to the Perceptron
bounds, the bounds that we obtain do not depend on the dimension of the instances
but rather on the geometry of the problem expressed via the margin of the instances
and the radius of the sphere enclosing the instances. As mentioned above, most of our
analysis carries over to the original Perceptron algorithm and we therefore dedicate the
last part of this section to a discussion of the implications for the original Perceptron
algorithm. A desirable property of the Ballseptron would have been that it does not
make more prediction mistakes than the Perceptron algorithm. Unfortunately, without
any restrictions on the radius r that the Ballseptron algorithm employs, such a property
cannot be guaranteed. For example, suppose that the instances are drawn from R and
all the input-label pairs in the sequence (x1, y1), . . . , (xT , yT ) are the same and equal
to (x, y) = (1, 1). The Perceptron algorithm makes a single mistake on this sequence.
However, if the radius r that is relayed to the Ballseptron algorithm is 2 then the algo-
rithm would make T/2 prediction mistakes on the sequence. The crux of this failure
to achieve a small number of mistakes is due to the fact that the radius r was set to
an excessively large value. To achieve a good mistake bound we need to ensure that
r is set to be less than the target margin γ employed by the competing hypothesis u.
Indeed, our first theorem implies that the Ballseptron attains the same mistake bound as
the Perceptron algorithm provided that r is small enough.

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of instance-label pairs where
xt ∈ R

n, yt ∈ {−1,+1}, and ‖xt‖ ≤ R for all t. Let u ∈ R
n be a vector whose norm

is 1, 0 < γ ≤ R an arbitrary scalar, and denote �t = max{0, γ − ytu · xt}. Let D2

be as defined by Eq. (2). Assume that the Ballseptron algorithm is run with a parameter
r which satisfies 0 ≤ r < (

√
2 − 1) γ. Then, the number of prediction mistakes the

Ballseptron makes on the sequence is at most,
(

R + D2

γ

)2

.

Proof. We prove the theorem by bounding wT+1 ·u from below and above while com-
paring the two bounds. Starting with the upper bound, we need to examine three differ-
ent cases for every t. If yt(wt · xt) ≤ 0 then wt+1 = wt + ytxt and therefore,



A New Perspective on an Old Perceptron Algorithm 269

‖wt+1‖2 = ‖wt‖2 + ‖xt‖2 + 2yt(wt · xt) ≤ ‖wt‖2 + ‖xt‖2 ≤ ‖wt‖2 + R2 .

In the second case where yt(wt · xt) > 0 yet the Ballseptron suffers a margin mistake,
we know that yt(wt · x̂t) ≤ 0 and thus get

‖wt+1‖2 = ‖wt + ytx̂t‖2 = ‖wt‖2 + ‖x̂t‖2 + 2yt(wt · x̂t) ≤ ‖wt‖2 + ‖x̂t‖2 .

Recall that x̂t = xt − ytrwt/‖wt‖ and therefore,

‖x̂t‖2 = ‖xt‖2 + r2 − 2ytr(xt · wt)/‖wt‖ < ‖xt‖2 + r2 ≤ R2 + r2 .

Finally in the third case where yt(wt · x̂t) > 0 we have ‖wt+1‖2 = ‖wt‖2. We can
summarize the three different scenarios by defining two variables: τt ∈ {0, 1} which
is 1 iff yt(wt · xt) ≤ 0 and similarly τ̃t ∈ {0, 1} which is 1 iff yt(wt · xt) > 0 and
yt(wt · x̂t) ≤ 0. Unraveling the bound on the norm of wT+1 while using the definitions
of τt and τ̃t gives,

‖wT+1‖2 ≤ R2
T∑

t=1

τt + (R2 + r2)
T∑

t=1

τ̃t .

Let us now denote by ε =
∑T

t=1 τt the number of mistakes the Ballseptron makes and
analogously by ε̃ =

∑T
t=1 τ̃t the number of margin errors of the Ballseptron. Using the

two definitions along with the Cauchy-Schwartz inequality yields that,

wT+1 · u ≤ ‖wT+1‖ ‖u‖ = ‖wT+1‖ ≤
√

εR2 + ε̃(R2 + r2) . (8)

This provides us with an upper bound on wT+1 · u. We now turn to derive a lower
bound on wT+1 · u. As in the derivation of the upper bound, we need to consider three
cases. The definition of �t immediately implies that �t ≥ γ − ytxt · u. Hence, in the
first case (a prediction mistake), we can bound wt+1 · u as follows,

wt+1 · u = (wt + ytxt) · u ≥ wt · u + γ − �t ,

In the second case (a margin error) the Ballseptron’s update is wt+1 = wt+ytx̂t which
results in the following bound,

wt+1 · u = (wt + ytx̂t) · u =
(
wt + ytxt − r

wt

‖wt‖
)
· u

≥ wt · u + γ − �t − r

(
wt

‖wt‖ · u
)

.

Since the norm of u is assumed to be 1, by using Cauchy-Schwartz inequality we can
bound wt

‖wt‖ ·u by 1. We thus get that, wt+1 ·u ≥ wt ·u+γ−�t−r. Finally, on rounds
for which there was neither a prediction mistake nor a margin error we immediately get
that, wt+1 ·u = wt ·u. Combining the three cases while using the definitions of τt, τ̃t, ε
and ε̃ we get that,

wT+1 · u ≥ εγ + ε̃(γ − r) −
T∑

t=1

(τt + τ̃t)�t . (9)



270 S. Shalev-Shwartz and Y. Singer

We now apply Cauchy-Schwartz inequality once more to obtain that,

T∑
t=1

(τt + τ̃t)�t ≤
(

T∑
t=1

(τt + τ̃t)2
) 1

2
(

T∑
t=1

(�t)2
) 1

2

= D2

√
ε + ε̃ .

Combining the above inequality with Eq. (9) we get the following lower bound on
wT+1 · u,

wT+1 · u ≥ εγ + ε̃(γ − r) − D2

√
ε + ε̃ . (10)

We now tie the lower bound on wT+1 · u from Eq. (10) with the upper bound
from Eq. (8) to obtain that,

√
εR2 + ε̃(R2 + r2) ≥ εγ + ε̃(γ − r) − D2

√
ε + ε̃ . (11)

Let us now denote by g(ε, ε̃) the difference between the two sides of the above equation,
that is,

g(ε, ε̃) = εγ + ε̃(γ − r) −
√

εR2 + ε̃(R2 + r2) − D2

√
ε + ε̃ . (12)

Eq. (11) implies that g(ε, ε̃) ≤ 0 for the particular values of ε and ε̃ obtained by
the Ballseptron algorithm. We now use the this fact to show that ε cannot exceed
((R + D2)/γ)2. First note that if ε̃ = 0 then g is a quadratic function in

√
ε and there-

fore
√

ε is at most the positive root of the equation g(ε, 0) = 0 which is (R + D2)/γ.
We thus get,

g(ε, 0) ≤ 0 ⇒ ε ≤
(

R + D2

γ

)2

.

If ε̃ ≥ 1 and ε + ε̃ ≤ ((R + D2)/γ)2 then the bound stated in the theorem immediately
holds. Therefore, we only need to analyze the case in which ε̃ ≥ 1 and ε + ε̃ > ((R +
D2)/γ)2. In this case we derive the mistake bound by showing first that the function
g(ε, ε̃) is monotonically increasing in ε̃ and therefore g(ε, 0) ≤ g(ε, ε̃) ≤ 0. To prove
the monotonicity of g we need the following simple inequality which holds for a > 0,
b ≥ 0 and c > 0,

√
a + b + c −√

a + b =
c√

a + b + c +
√

a + b
<

c

2
√

a
. (13)

Let us now examine g(ε, ε̃ + 1) − g(ε, ε̃). Expanding the definition of g from Eq. (12)
and using Eq. (13) we get that,

g(ε, ε̃ + 1) − g(ε, ε̃) = γ − r −
√

εR2 + ε̃(R2 + r2) + R2 + r2

+
√

εR2 + ε̃(R2 + r2) − D2

√
ε + ε̃ + 1 + D2

√
ε + ε̃

≥ γ − r − R2 + r2

2R
√

ε + ε̃
− D2

2
√

ε + ε̃

= γ − r − R + D2 + r2/R

2
√

ε + ε̃
.



A New Perspective on an Old Perceptron Algorithm 271

We now use the assumption that ε + ε̃ > ((R + D2)/γ)2 and that γ ≤ R to get that,

g(ε, ε̃ + 1) − g(ε, ε̃) ≥ γ

(
1 − r

γ
− R + D2

2γ
√

ε + ε̃
− r2

2R(R + D2)

)

> γ

(
1 − r

γ
− 1

2
− 1

2

(
r

γ

)2
)

. (14)

The condition that r ≤ (
√

2−1) γ implies that the term 0.5−r/γ−0.5(r/γ)2 is strictly
positive. We have thus shown that g(ε, ε̃ + 1) − g(ε, ε̃) > 0 hence g is monotonically
increasing in ε̃. Therefore, from Eq. (11) we get that 0 ≥ g(ε, ε̃) > g(ε, 0). Finally, as
already argued above, the condition 0 ≥ g(ε, 0) ensures that ε ≤ ((R + D2)/γ)2. This
concludes our proof. 	

The above bound ensures that whenever r is less than (

√
2 − 1) γ, the Ballseptron

mistake bound is as good as Freund and Schapire’s [9] mistake bound for the Per-
ceptron. The natural question that arises is whether the Ballseptron entertains any ad-
vantage over the less complex Perceptron algorithm. As we now argue, the answer is
yes so long as the number of margin errors, ε̃, is strictly positive. First note that if
ε + ε̃ ≤ ((R + D2)/γ)2 and ε̃ > 0 then ε ≤ ((R + D2)/γ)2 − ε̃ which is strictly
smaller than the mistake bound from [9]. The case when ε+ ε̃ > ((R +D2)/γ)2 needs
some deliberation. To simplify the derivation let β = 0.5−r/γ−0.5 (r/γ)2. The proof
of Thm. 1 implies that g(ε, ε̃ + 1) − g(ε, ε̃) ≥ βγ. From the same proof we also know
that g(ε, ε̃) ≤ 0. We thus get that g(ε, 0) + ε̃βγ ≤ g(ε, ε̃) ≤ 0. Expanding the term
g(ε, 0) + ε̃βγ we get the following inequality,

εγ −
√

εR2 − D2

√
ε + ε̃βγ = εγ −√

ε(R + D2) + ε̃βγ ≤ 0 . (15)

The left-hand side of Eq. (15) is a quadratic function in
√

ε. Thus,
√

ε cannot exceed
the positive root of this function. Therefore, the number of prediction mistakes, ε, can
be bounded above as follows,

ε ≤
(

R + D2 +
√

(R + D2)2 − 4βγ2ε̃

2γ

)2

≤ (R + D2)2 + 2 (R + D2)
√

(R + D2)2 − 4βγ2ε̃ + (R + D2)2 − 4βγ2ε̃

4γ2

≤
(

R + D2

γ

)2

− βε̃ .

We have thus shown that whenever the number of margin errors ε̃ is strictly positive, the
number of prediction mistakes is smaller than ((R + D2)/γ)2, the bound obtained by
Freund and Schapire for the Perceptron algorithm. In other words, the mistake bound
we obtained puts a cap on a function which depends both on ε and on ε̃. Margin errors
naturally impose more updates to the classifier, yet they come at the expense of sheer
prediction mistakes. Thus, the Ballseptron algorithm is most likely to suffer a smaller
number of prediction mistakes than the standard Perceptron algorithm. We summarize
these facts in the following corollary.



272 S. Shalev-Shwartz and Y. Singer

Corollary 1. Under the same assumptions of Thm. 1, the number of prediction mistakes
the Ballseptron algorithm makes is at most,

(
R + D2

γ

)2

− ε̃

(
1
2
− r

γ
− 1

2

(
r

γ

)2
)

,

where ε̃ is the number of margin errors of the Ballseptron algorithm.

Thus far, we derived mistake bounds that depend on R,γ, and D2 which is the square-
root of the sum of the squares of hinge-losses. We now turn to an analogous mistake
bound which employs D1 instead of D2. Our proof technique is similar to the proof of
Thm. 1 and we thus confine the next proof solely to the modifications that are required.

Theorem 2. Under the same assumptions of Thm. 1, the number of prediction mistakes
the Ballseptron algorithm makes is at most,

(
R +

√
γ D1

γ

)2

.

Proof. Following the proof outline of Thm. 1, we start by modifying the lower bound
on wT+1 · u. First, note that the lower bound given by Eq. (9) still holds. In addition,
τt + τ̃t ≤ 1 for all t since on each round there exists a mutual exclusion between a
prediction mistake and a margin error. We can therefore simplify Eq. (9) and rewrite it
as, wT+1 · u ≥ εγ − ∑T

t=1 �t + ε̃(γ − r). Combining this lower bound on wT+1 · u
with the upper bound on wT+1 · u given in Eq. (8) we get that,

εγ + ε̃(γ − r) −
T∑

t=1

�t ≤
√

εR2 + ε̃(R2 + r2) . (16)

Similar to the definition of g from Thm. 1, we define the following auxiliary function,

q(ε, ε̃) = εγ + ε̃(γ − r) −
√

εR2 + ε̃(R2 + r2) − D1 .

Thus, Eq. (16) yields that q(ε, ε̃) ≤ 0. We now show that q(ε, ε̃) ≤ 0 implies that ε
cannot exceed ((R +

√
γD1)/γ)2. First, note that if ε̃ = 0 then q becomes a quadratic

function in
√

ε. Therefore,
√

ε cannot be larger than the positive root of the equation
q(ε, 0) = 0 which is,

R +
√

R2 + 4γD1

2γ
≤ R +

√
γD1

γ
.

We have therefore shown that,

q(ε, 0) ≤ 0 ⇒ ε ≤
(

R +
√

γD1

γ

)2

.

We thus assume that ε̃ ≥ 1. Again, if ε + ε̃ ≤ (R/γ)2 then the bound stated in the
theorem immediately holds. We are therefore left with the case ε + ε̃ > (R/γ)2 and



A New Perspective on an Old Perceptron Algorithm 273

ε̃ > 0. To prove the theorem we show that q(ε, ε̃) is monotonically increasing in ε̃.
Expanding the function q and using as before the bound given in Eq. (13) we get that,

q(ε, ε̃ + 1) − q(ε, ε̃) = γ − r −
√

εR2 + (ε̃ + 1)(R2 + r2) +
√

εR2 + ε̃(R2 + r2)

> γ − r − R2 + r2

2
√

(ε + ε̃)R2
= γ − r − R + r2/R

2
√

ε + ε̃
.

Using the assumption that ε + ε̃ > (R/γ)2 and that γ ≤ R let us further bound the
above as follows,

q(ε, ε̃ + 1) − q(ε, ε̃) > γ − r − γ

2
− γr2

2R2
≥ γ

(
1
2
− r

γ
− 1

2

(
r

γ

)2
)

.

The assumption that r ≤ (
√

2 − 1)γ yields that q(ε, ε̃ + 1) − q(ε, ε̃) ≥ 0 and therefore
q(ε, ε̃) is indeed monotonically increasing in ε̃ for ε + ε̃ > R2/γ2. Combining the
inequality q(ε, ε̃) ≤ 0 with the monotonicity property we get that q(ε, 0) ≤ q(ε, ε̃) ≤ 0
which in turn yields the bound of the theorem. This concludes our proof. 	

The bound of Thm. 2 is similar to the bound of Thm. 1. The natural question that arises
is whether we can obtain a tighter mistake bound whenever we know the number of
margin errors ε̃. As for the bound based on D2, the answer for the D1-based bound is
affirmative. Recall that we define the value of 1/2 − r/γ − 1/2(r/γ)2 by β. We now
show that the number of prediction mistakes is bounded above by,

ε ≤
(

R +
√

γD1

γ

)2

− ε̃β . (17)

First, if ε + ε̃ ≤ (R/γ)2 then the bound above immediately holds. In the proof of
Thm. 2 we have shown that if ε + ε̃ > (R/γ)2 then q(ε, ε̃ + 1) − q(ε, ε̃) ≥ βγ.
Therefore, q(ε, ε̃) ≥ q(ε, 0) + ε̃βγ. Recall that Eq. (16) implies that q(ε, ε̃) ≤ 0 and
thus we get that q(ε, 0) + ε̃βγ ≤ 0 yielding the following,

εγ − R
√

ε − D1 + ε̃βγ ≤ 0 .

The left-hand side of the above inequality is yet again a quadratic function in
√

ε. There-
fore, once more

√
ε is no bigger than the positive root of the equation and we get that,

√
ε ≤ R +

√
R2 + 4γD1 − 4γ2βε̃

2γ
,

and thus,

ε ≤ R2 + 2R
√

R2 + 4γD1 − 4γ2βε̃ + R2 + 4γD1 − 4γ2βε̃

4γ2

≤ R2 + 2R
√

γD1 + γD1

γ2
− βε̃ ,

which can be translated to the bound on ε from Eq. (17).



274 S. Shalev-Shwartz and Y. Singer

Summing up, the Ballseptron algorithm entertains two mistake bounds: the first is
based on the root of the cumulative square of losses (D2) while the second is based di-
rectly on the cumulative sum of hinge losses (D1). Both bounds imply that the Ballsep-
tron would make fewer prediction mistakes than the original Perceptron algorithm so
long as the Ballseptron suffers margin errors along its run. Since margin errors are likely
to occur for reasonable choices of r, the Ballseptron is likely to attain a smaller number
of prediction mistakes than the Perceptron algorithm. Indeed, preliminary experiments
reported in Sec. 5 indicate that for a wide range of choices for r the number of online
prediction mistakes of the Ballseptron is significantly lower than that of the Perceptron.

The bounds of Thm. 1 and Thm. 2 hold for any r ≤ (
√

2 − 1)γ, in particular for
r = 0. When r = 0, the Ballseptron algorithm reduces to the Perceptron algorithm.
In the case of Thm. 1 the resulting mistake bound for r = 0 is identical to the bound
of Freund and Schapire [9]. Our proof technique though is substantially different than
the one in [9] which embeds each instance in a high dimensional space rendering the
problem separable. Setting r to zero in Thm. 2 yields a new mistake bound for the
Perceptron with

√
γD1 replacing D2 in the bound. The latter bound is likely to be

tighter in the presence of noise which may cause large margin errors. Specifically, the
bound of Thm. 2 is better than that of Thm. 1 when

γ

T∑
t=1

�t ≤
T∑

t=1

�2t .

We therefore expect the bound in Thm. 1 to be better when �t is small and otherwise
the new bound is likely to be better. We further investigate the difference between the
two bounds in Sec. 5.

4 An Extension to Multiclass Problems

In this section we describe a generalization of the Ballseptron to the task of multiclass
classification. For concreteness we assume that there are k different possible labels and
denote the set of all possible labels by Y = {1, . . . , k}. There are several adaptations
of the Perceptron algorithm to multiclass settings (see for example [5, 7, 16, 17]), many
of which are also applicable to the Ballseptron. We now outline one possible multiclass
extension in which we associate a weight vector with each class. Due to the lack of
space proofs of the mistake bound obtained by our construction are omitted. Let wr

denote the weight vector associated with a label r ∈ Y . We also refer to wr as the
r’th prototype. As in the binary case we initialize each of the prototypes to be the zero
vector. The predicted label of an instance xt is defined as,

ŷt = argmax
r∈Y

wr
t · xt .

Upon receiving the correct label yt, if ŷt �= yt we perform the following update which
is a multiclass generalization of the Perceptron rule,

wyt

t+1 = wyt

t + xt ; wŷt

t+1 = wŷt

t − xt ; wr
t+1 = wr

t (∀r ∈ Y \ {yt, ŷt}) . (18)



A New Perspective on an Old Perceptron Algorithm 275

In words, we add the instance xt to the prototype of the correct label and subtract xt

from the prototype of ŷt. The rest of the prototypes are left intact. If ŷt = yt, we check
whether we still encounter a margin error. Let ỹt denote the index of the prototype
whose inner-product with xt is the second largest, that is,

ỹt = argmax
y �=yt

(wy
t · xt) .

Analogous to the definition of x̂t in the binary classification problem, we define x̂t as
the solution to the following optimization problem,

x̂t = argmin
x∈B(xt,r)

(
wyt

t · x − wŷt

t · x
)

. (19)

Note that if wyt

t · x̂t > wỹt

t · x̂t then all the points in B(xt, r) are labeled correctly and
there is no margin error. If this is the case we leave all the prototypes intact. If however
wyt

t · x̂t ≤ wỹt

t · x̂t we perform the update given by Eq. (18) using x̂t instead of xt and
ỹt instead of ŷt. The same derivation described in Sec. 2, yields that x̂t = xt +r(wỹt

t −
wyt

t )/‖wỹt

t − wyt

t ‖. The analysis of the Ballseptron from Sec. 3 can be adapted to the
multiclass version of the algorithm as we now briefly describe. Let {u1, . . . ,uk} be
a set of k prototype vectors such that

∑k
i=1 ‖ui‖2 = 1. For each multiclass example

(xt, yt) define the hinge-loss of the above prototypes on this example as,

�t = max
{

0 , max
y �=yt

(γ − (uyt − uy) · xt)
}

.

We now redefine D2 and D1 using the above definition of the hinge-loss. In addition,
we need to redefine R to be R =

√
2 maxt ‖xt‖. Using these definitions, it can be

shown that slightly weaker versions of the bounds from Sec. 3 can be obtained.

5 Experimental Results

In this section we present experimental results that demonstrate different aspects of the
Ballseptron algorithm and its accompanying analysis. In the first experiment we exam-
ine the effect of the radius r employed by the Ballseptron on the number of prediction
mistakes it makes. We used two standard datasets: the MNIST dataset which consists of
60, 000 training examples and the USPS dataset which has 7291 training examples. The
examples in both datasets are images of handwritten digits where each image belongs
to one of the 10 digit classes. We thus used the multiclass extension of the Ballseptron
described in the previous section. In both experiments we used a fifth degree polyno-
mial kernel with a bias term of 1/2 as our inner-product operator. We shifted and scaled
the instances so that the average instance becomes the zero vector and the average norm
over all instances becomes 1. For both datasets, we run the online Ballseptron algorithm
with different values for the radius r. In the two plots on the top of Fig. 3 we depict ε/T ,
the number of prediction mistakes ε divided by the number of online rounds T as a func-
tion of r. Note that r = 0 corresponds to the original Perceptron algorithm. As can be
seen from the figure, many choices of r result in a significant reduction in the number



276 S. Shalev-Shwartz and Y. Singer

0 0.05 0.1 0.15 0.2
0.03

0.035

0.04

0.045

0.05

0.055

r

ε 
/ T

0 0.1 0.2 0.3 0.4

0.045

0.05

0.055

0.06

0.065

0.07

0.075

r

ε 
/ T

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

η

ε 
/ T

Perceptron
D

1
 bound

D
2
 bound

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

σ

ε 
/ T

Perceptron
D

1
 bound

D
2
 bound

Fig. 3. Top plots: The fraction of prediction mistakes (ε/T ) as a function of the radius parameter
r for the MNIST (left) and USPS (right) datasets. Bottom plots: The behavior of the mistake
bounds as a function of a label noise rate (left) and an instance noise rate (right)

of online prediction mistakes. However, as anticipated, setting r to be excessively large
deteriorates the performance of the algorithm.

The second experiment compares the mistake bound of Thm. 1 with that of Thm. 2.
To facilitate a clear comparison, we set the parameter r to be zero hence we simply
confined the experiment to the Perceptron algorithm. We compared the mistake bound
of the Perceptron from Eq. (3) derived by Freund and Schapire [9] to the new mis-
take bound given in Thm. 2. For brevity we refer to the bound of Freund and Schapire
as the D2-bound and to the new mistake bound as the D1-bound. We used two syn-
thetic datasets each consisting of 10,000 examples. The instances in the two datasets,
were picked from the unit circle in R

2. The labels of the instances were set so that the
examples are linearly separable with a margin of 0.15. Then, we contaminated the in-
stances with two different types of noise, resulting in two different datasets. For the first
dataset we flipped the label of each example with probability η. In the second dataset
we kept the labels intact but added to each instance a random vector sampled from a
2-dimensional Gaussian distribution with a zero mean vector and a covariance matrix
σ2I . We then run the Perceptron algorithm on each of the datasets for different values
of η and σ. We calculated the mistake bounds given in Eq. (3) and in Thm. 2 for each of



A New Perspective on an Old Perceptron Algorithm 277

the datasets and for each value of η and σ. The results are depicted on the two bottom
plots of Fig. 3. As can be seen from the figure, the D1-bound is clearly tighter than the
D2-bound in the presence of label noise. Specifically, whenever the label noise level is
greater than 0.03, the D2-bound is greater than 1 and therefore meaningless. Interest-
ingly, the D1-bound is also slightly better than the D2-bound in the presence of instance
noise. We leave further comparisons of the two bounds to future work.

6 Discussion and Future Work

We presented a new algorithm that uses the Perceptron as its infrastructure. Our algo-
rithm naturally employs the notion of margin. Previous online margin-based algorithms
yielded essentially the same mistake bound obtained by the Perceptron. In contrast,
under mild conditions, our analysis implies that the mistake bound of the Ballseptron
is superior to the Perceptron’s bound. We derived two mistake bounds, both are also
applicable to the original Perceptron algorithm. The first bound reduces to the original
bound of Freund and Schpire [9] while the second bound is new and is likely to be
tighter than the first in many settings. Our work can be extended in several directions.
A few variations on the proposed approach, which replaces the original example with a
pseudo-example, can be derived. Most notably, we can update wt based on x̂t even for
cases where there is a prediction mistake. Our proof technique is still applicable, yield-
ing a different mistake bound. More complex prediction problems such as hierarchical
classification may also be tackled in a similar way to the proposed multiclass extension.
Last, we would like to note that the Ballseptron can be used as a building block for find-
ing an arbitrarily close approximation to the max-margin solution in a separable batch
setting.

Acknowledgments

We would like to thank the COLT committee members for their constructive comments.
This research was funded by EU Project PASCAL and by NSF ITR award 0205594.

References

1. S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics,
6(3):382–392, 1954.

2. J. Bi and T. Zhang. Support vector classification with input data uncertainty. In Advances in
Neural Information Processing Systems 17, 2004.

3. H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34:123–135, 1962. Reprinted in ”Neurocomputing” by Anderson and Rosenfeld.

4. A. Blum and J.D. Dunagan. Smoothed analysis of the perceptron algorithm for linear pro-
gramming. In SODA, 2002.

5. K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive algo-
rithms. In Advances in Neural Information Processing Systems 16, 2003.

6. K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin analysis of the LVQ
algorithm. In Advances in Neural Information Processing Systems 15, 2002.



278 S. Shalev-Shwartz and Y. Singer

7. K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems.
Jornal of Machine Learning Research, 3:951–991, 2003.

8. S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik-Chervonenkis
dimension. Machine Learning, 21(3):269–304, 1995.

9. Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296, 1999.

10. C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine
Learning Research, 2:213–242, 2001.

11. J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. In Advances in
Neural Information Processing Systems 14. MIT Press, 2002.

12. Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine Learning,
46(1–3):361–387, 2002.

13. M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. The
MIT Press, 1969.

14. A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium
on the Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

15. F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neurocomputing
(MIT Press, 1988).).

16. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
17. J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In

Proceedings of the Seventh European Symposium on Artificial Neural Networks, April 1999.


	Introduction
	The Ballseptron Algorithm
	Analysis
	An Extension to Multiclass Problems
	Experimental Results
	Discussion and Future Work
	Acknowledgments
	References



