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Abstract. We develop algorithms for a community of users to make
decisions about selecting products or resources, in a model characterized
by two key features:

– The quality of the products or resources may vary over time.
– Some of the users in the system may be dishonest, manipulating

their actions in a Byzantine manner to achieve other goals.

We formulate such learning tasks as an algorithmic problem based on the
multi-armed bandit problem, but with a set of users (as opposed to a
single user), of whom a constant fraction are honest and are partitioned
into coalitions such that the users in a coalition perceive the same ex-
pected quality if they sample the same resource at the same time. Our
main result exhibits an algorithm for this problem which converges in
polylogarithmic time to a state in which the average regret (per honest
user) is an arbitrarily small constant.

1 Introduction

Only a fool learns from his own mistakes. The wise man learns from the
mistakes of others.

— Otto von Bismarck

It is clear that leveraging trust or shared taste enables a community of users to
be more productive, as it allows them to repeat each other’s good decisions while
avoiding unnecessary repetition of mistakes. Systems based on this paradigm are
becoming increasingly prevalent in computer networks and the applications they
support. Examples include reputation systems in e-commerce (e.g. eBay, where
buyers and sellers rank each other), collaborative filtering (e.g. Amazon’s rec-
ommendation system, where customers recommend books to other customers),
and link analysis techniques in web search (e.g., Google’s PageRank, based on
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combining links — i.e. recommendations — of different web sites). Not surpris-
ingly, many algorithms and heuristics for such systems have been proposed and
studied experimentally or phenomenologically [5, 11, 12, 13, 15, 16, 17]. Yet well-
known algorithms (e.g. eBay’s reputation system, the Eigentrust algorithm [10],
the PageRank [5, 13] and HITS [11] algorithms for web search) have thus far not
been placed on an adequate theoretical foundation.

Our goal in this paper is to provide a theoretical framework for understanding
the capabilities and limitations of such systems as a model of distributed compu-
tation. We propose a new paradigm for addressing these issues, which is inspired
by online learning theory, specifically the multi-armed bandit problem [1]. Our
approach aims to highlight the following challenges which confront the users of
collaborative decision-making systems such as those cited above.

Malicious users. Since the Internet is open for anybody to join, the above sys-
tems are vulnerable to fraudulent manipulation by dishonest (”Byzantine”)
participants.

Distinguishing tastes. Agents’ tastes may differ, so that the advice of one
honest agent may not be helpful to another.

Temporal fluctuation. The quality of resources varies of time, so past expe-
rience is not necessarily predictive of future performance.

While our learning theory paradigm is different from prior approaches, the re-
sulting algorithms exhibit a resemblance to algorithms previously proposed in
the systems and information retrieval literature [5, 10, 11, 13] indicating that our
approach may be providing a theoretical framework which sheds light on the
efficacy of such algorithms in practice while suggesting potential enhancements
to these algorithms.

1.1 Our Approach

The problem we will consider is a generalization of the multi-armed bandit prob-
lem studied in [1]. In that problem there is a single learner and a set Y of m
resources. In each of T consecutive trials, the learner chooses one of the resources
while the adversary chooses a cost (taking values in [0, 1]) for each resource; after
the trial, the cost of the resource chosen by the learner is revealed, and this cost
is charged to the learner. We generalize this by considering a set X of n agents,
some of which (possibly, a majority) may be dishonest. In each trial, each of the
n agents chooses a resource, and the adversary chooses a cost for each resource.
Each agent then learns the cost of the resource it selected, and this cost is charged
to the agent. We assume that the honest agents belong to k coalitions, such that
agents in the same coalition who choose the same resource at the same time will
perceive the same expected cost. All agents may communicate with each other
between trials, to exchange information (or possibly disinformation, in the case
of dishonest agents) about the costs of resources they have sampled. However,
agents are unaware of which coalitions exist and which ones they belong to.

If an agent chooses to ignore the feedback from other agents, and simply
runs the multi-armed bandit algorithm by itself, then the classical analysis of
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the multi-armed bandit algorithm [1] ensures that for any constant δ > 0, if
T = Ω(m log m), then the expected average cost of the resources chosen by
that agent will exceed the average cost of the best resource in hindsight by no
more than δ. However, it is possible that the honest agents may require much
fewer than Ω(m log m) trials to achieve this goal, if they can find a way to pool
their information without being fooled by the bad advice from dishonest agents
and agents from other coalitions. Here, we show that this is in fact possible,
by presenting an algorithm whose convergence time is polynomial in k log(n),
assuming that a constant fraction of the agents are honest and that m = O(n).

Briefly, our algorithm works by having each agent select a resource in each
trial by taking a random walk on a “reputation network” whose vertex set is the
set of all agents and resources. Resources are absorbing states of this random
walk, while the transition probabilities at an agent x may be interpreted as the
probability that x would select a given resource y, or would ask a given other
agent x′ for advice. When an agent learns the cost of the resource chosen in a
given trial, it uses this feedback to update its transition probabilities according
to the multi-armed bandit algorithm. In this way, agents will tend to raise the
probability of asking for advice from other agents who have given good advice in
the past. In particular, though the initial transition probabilities do not reflect
the partition of the honest agents into coalitions, over time the honest agents
will tend to place greater weight on edges leading to other agents in the same
coalition, since the advice they receive from such agents is generally better, on
average, than the advice they receive from agents in other coalitions.

1.2 Comparison with Existing Work

Above, we cited the adversarial multi-armed bandit problem [1] which forms
the basis for our work, and we have indicated the ways in which our model
generalizes the existing multi-armed bandit model to the setting of collaborative
learning with dishonest users. Our work is also related to several other topics
which we now discuss.

Collaborative filtering — spectral methods: Our problem is similar, at
least in terms of motivation, to the problem of designing collaborative filtering
or recommendation systems. In such problems, one has a community of users
selecting products and giving feedback on their evaluations of these products.
The goal is to use this feedback to make recommendations to users, guiding them
to subsequently select products which they are likely to evaluate positively. The-
oretical work on collaborative filtering has mostly dealt with centralized algo-
rithms for such problems. Typically, theoretical solutions have been considered
for specific (e.g., stochastic) input models [7, 8, 9, 14, 4], In such work, the goal
is typically to reconstruct the full matrix of user preferences based on small
set of potentially noisy samples. This is often achieved using spectral methods.
In constrast, we consider a general, i.e. adversarial, input model. Matrix recon-
struction techniques do not suffice in our model. Firstly, they are vulnerable to
manipulation by dishonest users, as was observed in [3] and [2]. Dishonest users,
who may be in the overwhelming majority, may certainly disrupt the low rank
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assumption which is crucial in matrix reconstruction approaches. Alternatively,
they may report phony data so as to perturb the singular vectors of the matrix,
directing all the agents to a particularly bad action, e.g. an unscrupulous seller.

Collaborative filtering — random sampling methods: The only known
collaborative filtering algorithm which tolerates Byzantine behavior is the “Ran-
dom Advice Random Sample” algorithm in [2, 3]; it achieves a logarithmic learn-
ing time. The model in [2] deals with the static case, in which bad resources are
consistently bad and good resources are consistently good; the only changes in
the operating environment over time occur when resources arrive or depart. The
algorithm in [2] uses the notion of “recommendation”: once an agent finds a
good resource, it sticks to it forever and recommends it to others. As the time
elapses, progressively more agents ‘stick” with the good advice. The bounds
on regret and convergence time in [2] are analogous to ours, and are in fact
poly-logarithmically superior, to those in our Theorem 1. However, [2] does not
handle costs which evolve dynamically as a function of time, and is limited to
{0, 1}-valued rather than real-valued costs.

Reputation management in P2P networks: Kamvar et al [10] proposed an
algorithm, dubbed EigenTrust, for the problem of locating resources in peer-to-
peer networks. In this problem, users of a peer-to-peer network wish to select
other peers from whom to download files, with the aim of minimizing the number
of downloads of inauthentic files by honest users; the problem is made difficult
by the presence of malicious peers who may attempt to undermine the algo-
rithm. Like our algorithm, EigenTrust defines reputation scores using a random
walk on the set of agents, with time-varying transition probabilities which are
updated according to the agents’ observations. Unlike our algorithm, they use a
different rule for updating the transition probabilities, and they demonstrate the
algorithm’s robustness against a limited set of malicious exploits, as opposed to
the arbitrary adversarial behavior against which our algorithm is provably ro-
bust. The problem considered here is less general than the peer-to-peer resource
location problem considered in [10]; for instance, we assume that in each trial,
any agent may select any resource, whereas they assume that only a subset of
the resources are available (namely, those peers who claim to have a copy of
the requested file). Despite these differences, we believe that our work may shed
light on the efficacy of EigenTrust while suggesting potential enhancements to
make it more robust against Byzantine malicious users.

The rest of this paper is organized as follows. In Section 2 we specify our pre-
cise models and results. This is followed by a section specifying a general outline
of our approach. The precise specification of the main algorithm, TrustFilter,
appears in Section 3. The description of the algorithm is complete except for
a rather complicated subroutine, BBA, which is specified and analyzed in the
following section. Finally, in Section 5, we analyze the main algorithm, modulo
a random graph lemma which is proved in the full version of this paper.
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2 Statements of the Problem and the Results

The operating environment consists of a set X of n agents and a set Y of m
products. A subset H ⊆ X of the agents are honest, and the rest are dishonest.
Honest agents are assumed to obey the distributed protocol to be specified, and
to report their observations truthfully, while dishonest agents may behave in a
Byzantine manner, disobeying the protocol or reporting fictitious observations
as they wish. We will assume throughout that the number of honest agents is
at least αn, where α > 0 is a parameter which may be arbitrarily small. The
agents do not initially know which ones are honest and which are dishonest, nor
are they assumed to know the value of α.

In each of T consecutive rounds, a cost function Ct : X ×Y → [0, 1] is given.
We think of the cost Ct(x, y) as agent x’s perception of the cost of resource y. The
costs may be set by an adaptive adversary who is allowed to choose Ct based on
the agents’ actions in rounds 1, . . . , t−1 but not on their random decisions in the
present or future rounds; the adversary may also use randomization in determin-
ing Ct. Define two agents x1, x2 to be consistent if the costs Ct(x1, y), Ct(x2, y)
are random variables with the same expected value (conditional on the choices
of all agents in all rounds preceding t), for all y ∈ Y, 1 ≤ t ≤ T .1 We will assume
that the honest agents may be partitioned into k coalitions, such that two agents
belonging to the same coalition are consistent; the honest agents do not initially
know which coalitions the other honest agents belong to.

At the beginning of each round, each agent x ∈ X must choose a product
y = yt(x) ∈ Y . Any agent is allowed to choose any product in any round.
The cost of the choice is Ct(x, y), and this cost (but not the cost of any other
product) is revealed to x. The agents may communicate with each other between
rounds, and this communication may influence their decisions in future rounds.
To simplify the exposition we will assume all messages are exchanged using
a shared, synchronous, public channel. In any round t all agents (including the
Byzantine dishonest agents) must commit to their message on this channel before
being able to read the messages posted by other agents in round t. This public-
channel assumption is for expositional clarity only: in the full version of this
paper we will indicate how to achieve the same results (with slightly worse
bounds) in a message-passing model where agents may only exchange messages
bilaterally on point-to-point communication links, subject to the assumption
that all agents can synchronize clocks and have enough time to perform Ω(log n)
communication rounds in between consecutive decision rounds. (The Byzantine
agents may eavesdrop on all such communications, whereas honest agents may
not eavesdrop on any message if they are not the sender or receiver.) As might
be expected, some subtleties arise in the message-passing model, due to ability of
the Byzantine nodes to give differing advice to different parties, and to eavesdrop
on others’ messages.

1 The randomness of the variables Ct(x1, y), Ct(x2, y) is due to the adversary’s poten-
tial use of randomness in determining Ct.
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The goal of the algorithm is to minimize the total cost incurred by hon-
est agents. As is typical with online decision problems, we will evaluate the
algorithm’s performance by measuring the expected difference between the al-
gorithm’s total cost and the cost of the best assignment in which each agent
chooses a single fixed product and selects this product every time. This param-
eter is called regret and will be denoted by R.

R = E

[∑
x∈H

T∑
t=1

Ct(x, yt(x)) − min
y:H→Y

∑
x∈H

T∑
t=1

Ct(x, y(x))

]
. (1)

The following two parameters, closely related to R, are also of interest:

– The normalized individual regret R̂ = R/αnT is the regret per unit time
of the average honest agent. For all of the algorithms we will consider, R̂
converges to zero as T → ∞.

– The δ-convergence time of such an algorithm, denoted by T (δ), is defined as
the minimum value of T necessary to guarantee that R̂ = O(δ). Here, δ is a
positive constant which may be arbitrarily close to zero.

2.1 Our Results

We present a distributed algorithm, named TrustFilter, in Section 3. Let β =
1+m/n. We will typically be interested in the case where α, β, δ are all positive
constants. For ease of exposition, we will adhere to this assumption when stating
the theorems in this section, absorbing such constants into the O(·) notation. See
equations (11),(12),(13), (14) in Section 5 for bounds which explicitly indicate
the dependence on α, β, and δ; in all cases, this dependence is polynomial.

Theorem 1. Suppose the set of honest agents may be partitioned into k subsets
S1, S2, . . . , Sk, such that the agents in each subset are mutually consistent. Then
the normalized regret R̂ and δ-convergence time T (δ) of TrustFilter satisfy

R̂ = O

(
k · log4(n)

T 1/4

)
(2)

T (δ) = O(k4 log16(n)). (3)

The δ-convergence time bound follows from the regret bound. Typically we
are interested in the case where α, β, δ, k are constants, hence we will summarize
this result by saying that the algorithm has polylogarithmic convergence time.
This is the first distributed algorithm with polylogarithmic convergence time in
a dynamic environment.

3 The Algorithm TrustFilter

3.1 Intuition

As stated in the introduction, our algorithm is based on a Markov chain rep-
resenting a random walk in a directed graph, whose vertices represent the set
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of resources and agents. We refer to this directed graph as the “reputation net-
work.” At each time, each agent picks an outgoing edge in the reputation network
with appropriate probability, and then traverses this edge. If the edge leads to an
agent, “advice” is sought from that agent. Else, if the edge leads to a resource,
this resource is selected for sampling. Depending on the observed cost of the
sampled resource, the agent updates its transition probabilities.

As an aid in developing intuition, consider the special case of this algorithm
when the Markov chain is based on a random graph. Specifically, each agent picks
at random a small subset of other agents and a small subset of the resources,
and sets equal transition probabilities to all outgoing edges leading to members
of that subset. All other outgoing probabilities are zero. Assume that agents
adopt the following simple rule for updating their transition probabilities: if the
agent chooses an outgoing edge and it leads to a product with cost 0, assign
probability 1 permanently to that edge and probability 0 to all other edges;
otherwise leave the transition probabilities unchanged. It is easy to prove, that
for the static case with binary resource costs, this algorithm can be viewed as
an alternative to Random Advice Random Sample algorithm in [3]; like that
algorithm, it achieves logarithmic convergence time. The invariant used in the
proof is the fact that the set of agents who recommend the optimal resource
is growing exponentially with time. This invariant is proved by induction on
time. Indeed, with high probability there is an edge in the reputation network
from some honest agent to the optimal resource, and in constant time that
neighboring agent will either directly sample this resource, or will stumble on
an equivalent resource following advice of others. Consider the set S of honest
agents who “saw the light,” i.e., discovered the optimal resource. Note that the
set N of neighbors of S, namely nodes with outgoing edges leading into S, is
at least |N | = |S| · ρ where ρ is the expansion ratio of the underlying random
graph. Note that within constant time, a constant fraction of agents in N will
also discover the optimal resource by sampling nodes in S or following advice
to other equivalent resources. Thus, within expected logarithmic time, all the
agents discover the optimal resource.

Our algorithm for the case of dynamic costs looks quite different from the
algorithm for static costs presented in the preceding paragraph, but it is based on
the same intuition: by structuring the reputation network as a random graph, the
set of honest agents who are selecting an optimal or near-optimal resource will
grow exponentially over time. The main technical difference is that agents must
update their transition probabilities using the multi-armed bandit algorithm,
rather than shifting all of their probability mass to one outgoing edge as soon
as they discover a resource with zero cost. This modification is necessary in
order to deal with the fact that a resource which has zero cost at one time
may not have zero cost at future times. More subtly, when agents are using
the multi-armed bandit algorithm to update their transition probabilities, they
must use a modification of the classical multi-armed bandit algorithm which
we denote by BBA. This is because the agents do not know how many other
honest agents belong to their coalition, so they must potentially consider all βn
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other vertices of the reputation network as potential neighbors. (Recall from
Section 2 that β = (m + n)/n, so that βn is the cardinality X ∪ Y , the vertex
set of the reputation network.) Classical multi-armed bandit algorithms, e.g.
Exp3 [1], will have a convergence time of Ω(n log(n)) in such a scenario, whereas
we seek a polylogarithmic convergence time. Accordingly, we present a modified
bandit algorithm BBA whose salient feature is that it satisfies a significantly
better bound on regret when stopped at times T < n log(n). The details of
this algorithm will be explained in Section 4. For now, it is best for the reader
to consider it as a black box (instantiated separately by each agent x) which
outputs, at each time t, a probability distribution πt(x) on the set of all agents
and resources. We will use the notation πt(x, y) to denote the probability that
πt(x) assigns to the element y ∈ X ∪ Y.

3.2 The Algorithm

Here we present an algorithm TrustFilter which solves the collaborative learning
problem, establishing Theorem 1. We use, as a subroutine, the algorithm BBA
whose existence is asserted by Theorem 2. We defer the specification of this
subroutine until later.

At the beginning of each round t, each agent x queries its local bandit algo-
rithm BBA(x) to obtain a probability distribution πt(x) on the set of agents and
resources, and posts this distribution on the public channel. This enables each
agent to construct an (m + n)-by-(m + n) matrix Mt whose rows and columns
are indexed by the elements of X ∪ Y , and whose entries are given by:

(Mt)ij =

⎧⎨
⎩

πt(i, j) if i ∈ X
1 if i ∈ Y and j = i
0 if i ∈ Y and j �= i.

We may think of Mt as the transition matrix for a Markov chain with state
space X ∪ Y , in which elements of Y are absorbing states, and the transition
probabilities at an element x of X are determined by the bandit algorithm
BBA(x). This Markov chain corresponds to the intuitive notion of “taking a
random walk by following the advice of the bandit algorithm at each node.”

The random walk starting from x ∈ X will, with probability 1, be absorbed
by some state y ∈ Y ; this enables us to define a matrix At by

(At)ij = Pr(absorbing state is j | starting state is i).

Algebraically, At satisfies the equations MtAt = At and At1 = 1, where 1
represents a column vector whose components are all equal to 1.

To select a product y = yt(x) ∈ Y , x uses BBA(x) to choose a strategy
s = st(x) ∈ X∪Y . It then samples y randomly using the probability distribution
in the row of At corresponding to s, learns the cost Ct(y), and returns this
feedback score to BBA(x). The probability distribution from which y is drawn
can be determined either by computing At algebraically, or by simulating the
random walk with transition matrix Mt starting from state s until it hits an
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absorbing state. We call this probability distribution on Y harmonic measure
relative to x, by analogy with the harmonic measure defined on the boundary of
a bounded domain U ⊂ R

d according the hitting probability of Brownian motion
starting from a point x ∈ U .

4 The Biased Bandit Algorithm BBA

Our multi-agent learning algorithms require each agent to instantiate a single-
agent learning algorithm called the biased bandit algorithm, or BBA, which we
describe in this section. For a multi-armed bandit algorithm with strategy set
S = {1, 2, . . . ,K} (whose selection at time t is denoted by it ∈ S) define its
regret profile to be the function R(T, i) which specifies the algorithm’s regret
relative to strategy i ∈ S at time T ≥ 1, i.e.

R(T, i) = max

{
E

(
T∑

t=1

Ct(it) − Ct(i)

)}
,

the maximum being taken over the set of all adaptive adversarial policies assign-
ing costs Ct in [0, 1]. For example, the regret profile of the classical multi-armed
bandit algorithm Exp3 is known to satisfy R(T, i) = O(

√
TK log(K)); we call

this a uniform regret profile since the value of R(T, i) does not depend on i.
Which non-uniform regret profiles are achievable by multi-armed bandit algo-
rithms? The BBA supplies a non-trivial upper bound for this question.

Theorem 2. Let a strategy set S of size K be given, along with positive real
weights {wi}i∈S which sum to 1. There exists a multi-armed bandit algorithm
BBA whose regret profile satisfies

R(T, i) = O

(
1
wi

log2

(
1
wi

)
T 3/4

)
.

In fact, the theorem holds even if the feedback for choosing strategy i, rather
than being equal to Ct(i), is a random variable Xt(i) (taking values in [0, 1])
whose conditional expectation is bounded above by Ct(i). We call this the “noisy
feedback model”; see Section 4.1 for details.

When the BBA algorithm is applied as a subroutine in TrustFilter, its strategy
set is S = X ∪ Y , which has m + n elements. The weights assigned to these
elements are a random permutation of the set{

1
Hm+n

,
1

2Hm+n
, . . . ,

1
(m + n)Hm+n

}
.

(Here Hm+n represents the harmonic number
∑m+n

i=1 1/i.)
One way of interpreting BBA is as an anytime version of the multi-armed

bandit algorithm, in that it meets a non-trivial performance guarantee when
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stopped at any time T , even if T 
 K. This contrasts with traditional multi-
armed bandit algorithms such as Exp3 whose performance at time T = o(K)
is generally indistinguishable from random guessing. The anytime guarantee for
BBA can be made precise as follows. For any threshold λ > 0 let S(λ) = {i ∈
S : wi log−3(1/wi) > λ}. Theorem 2 establishes that by time T , the normalized
regret of BBA relative to the strategies in S(δ−1T−1/6) is at most δ. This set of
strategies may be quite large even when T 
 K, and grows to encompass all of
S as T → ∞.

We will now describe the algorithm BBA. The high-level idea of the algorithm
is to partition the strategy set into two subsets of approximately equal weight,
then to further partition each of these two subsets into two pieces of approxi-
mately equal weight, and so on, building a tree T whose leaves are labeled with
elements of the strategy set S. We will use, as a black box, the multi-armed
bandit algorithm Exp3 from [1]. An instance of Exp3 at the root of the tree is
responsible for deciding whether to select a strategy from the left or right sub-
tree; the task of picking a leaf of this subtree is recursively delegated to the
descendants of the root. Each node z of the tree is therefore running an instance
of Exp3, but gets feedback only for a random subset of the rounds, namely those
in which the chosen leaf lies in its subtree. The analysis of Exp3 in models such
as this, where the feedback is noisy or sporadic, is carried out in Appendix 4.1.
Applying the relevant bound on Exp3’s regret (Theorem 3) at each level of T,
we will obtain the desired global upper bound on regret. A subtlety which arises
in designing the algorithm is that we must ensure that each internal node z gets
feedback reasonably often, which necessitates devoting a small fraction of the
rounds to explicitly sampling a descendant of z.

To specify the tree T, we may assume without loss of generality that the
weights wi are powers of 2, say wi = 2−di . (If not, we may round each wi

down to the next-lowest power of 2, then round some of them up to restore
the property that their sum is 1.) Now define T to be the Huffman tree of the
distribution {wi} [6]. This tree has the property that for any node at depth d,
the combined weight of all leaves in its subtree is 2−d. For a node z of depth d
in T, let w̃(z) = 2−d · d−2; note that if z is a leaf corresponding to an element i,
then

1
w̃(z)

= O

(
1
wi

log2

(
1
wi

))
.

In the BBA algorithm, each internal node z of T maintains an instance Exp3(z)
of the multi-armed bandit algorithm, with a two-element strategy set identified
with the two children, zL and zR, of z in T. In each round t, each internal node
z chooses a child χt(z) according to the probability distribution supplied by
Exp3(z). These choices define a mapping 	t from the nodes of T to the leaves of
T, defined recursively by the rule that 	t(i) = i for a leaf i, and 	t(z) = 	t(χt(z))
for an internal node z. A random node zt ∈ T is sampled in round t according
to the distribution which assigns probability ρ(z) = T−1/4w̃(z) to each node
z other than the root r, and assigns all remaining probability mass to r. The
algorithm BBA chooses strategy it = 	t(zt). Let Pt denote the path in T from
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zt to it. After learning the cost Ct(it), each internal node z updates Exp3(z) by
attributing a feedback value Xt(z′) to its child z′ = χt(z) as follows.

Xt(z′) =
{

Ct(	t(z′)) if z = zt

0 otherwise,

4.1 Analysis of BBA

To prove Theorem 2 we must first recall some properties of the multi-armed
bandit algorithm Exp3 from [1] and extend the analysis of this algorithm to a
slightly more general setting, which we call the “noisy feedback model.”

Theorem 3 ([1]). For any ε > 0, there is a multi-armed bandit algorithm Exp3
with strategy set S = {1, 2, . . . ,K} whose regret relative to strategy i ∈ S, i.e.
the number

R = E

(
T∑

t=1

Ct(it) −
T∑

t=1

Ct(i)

)
,

satisfies R = O(
√

TK log(K)).

For the applications in this paper, we actually need to work with a slight
generalization of the model considered in [1]. This generalization, which we call
the “noisy feedback” model, is described as follows. In each round t, in addi-
tion to specifying a cost function Ct : S → [0, 1], the adversary specifies, for
each i ∈ S, a random variable Xt(i) which depends only on i1, i2, . . . , it−1 and
on some random bits independent of the algorithm’s random bits. This random
variable takes values in [0, 1] and satisfies E[Xt(i) ‖F<t] = Ct(i), where F<t

denotes the σ-field generated by all random variables revealed by the algorithm
and adversary prior to time t. Rather than receiving Ct(it) as feedback, the algo-
rithm’s feedback is Xt(it). The following easy proposition, whose proof appears
in the full version of this paper, demonstrates that the regret of algorithm Exp3
is unaffected by the noisy feedback.

Proposition 1. In the noisy feedback model, the regret R experienced by algo-
rithm Exp3 relative to strategy i still satisfies R = O(

√
TK log K). This bound

holds regardless of whether R is defined as RX := E
(∑T

t=1 Xt(it) − Ct(i)
)

or

as RC := E
(∑T

t=1 Ct(it) − Ct(i)
)

.

We are now ready to finish the analysis of the BBA algorithm.

Proof (Theorem 2). The analysis of BBA depends on a reduction to the noisy-
feedback bandit problem defined above. If z is a node of T and z′ is one of its
two children, define:

C̃t(z′) = ρ(z)Ct(	t(z′)).

Then C̃t(z′),Xt(z′) take values in [0, 1], and they are independent of Exp3(z)’s
random choices at times t, t + 1, . . . , T . Moreover, recalling that ρ(z) = Pr(z =
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zt ‖ F<t), we have E[Xt(z′) ‖ F<t] = C̃t(z′). Therefore, Exp3(z) is following the
algorithm Exp3 in the noisy feedback model with cost functions C̃t and random
feedback variables Xt(z′). Applying Proposition 1 with K = 2,

ρ(z)E

(
T∑

t=1

Ct(	t(z)) − Ct(	t(z′))

)
= O(

√
T ).

This inequality holds for every edge (z, z′) in T. Rescaling and summing over all
the edges on the path P from r to i, we obtain:

E

(
T∑

t=1

(Ct(	t(r)) − Ct(i))

)
=

∑
(z,z′)∈P

E

(
T∑

t=1

(Ct(	t(z)) − Ct(	t(z′)))

)

= O

(∑
z∈P

ρ(z)−1T 1/2

)

= O

(∑
z∈P

w̃(z)−1T 3/4

)

= O
(
w̃(i)−1T 3/4

)
= O

(
1
wi

log2

(
1
wi

)
T 3/4

)
. (4)

Finally, we may account for the cost of the steps in which zt �= r as follows:

E

(
T∑

t=1

Ct(it) − Ct(	t(r))

)
≤

T∑
t=1

Pr(it �= 	t(r))

≤
T∑

t=1

Pr(zt �= r)

= T ·
∑
z �=r

ρ(z) = O(T 3/4). (5)

Summing the bounds (4) and (5) we obtain the desired bound on the regret of
BBA:

R = E

(
T∑

t=1

Ct(it) − Ct(	t(r))

)
+ E

(
T∑

t=1

Ct(	t(r)) − Ct(i)

)

= O(T 3/4) + O

(
1
wi

log2

(
1
wi

)
T 3/4

)

= O

(
1
wi

log2

(
1
wi

)
T 3/4

)
.
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5 Analysis of Algorithm TrustFilter

In this section we complete the analysis of algorithm TrustFilter by proving The-
orem 1.

Proof (Theorem 1.). For x ∈ X, s ∈ X ∪ Y , let

C̃t(x, s) =
{

Ct(x, s) if s ∈ Y
E[Ct(x, yt(s))] if s ∈ X.

From the standpoint of agent x, the bandit algorithm BBA(x) is running in the
noisy feedback model with cost functions C̃t(x, ·) and random feedback variables
Xt(s) distributed according to the cost (Ct(x, y)) of a random product y ∈ Y
sampled according to the harmonic measure relative to s. It follows from the
analysis of BBA that for each pair of elements u, v in H ∪ Y ,

E

(
T∑

t=1

(C̃t(u, u) − C̃t(u, v))

)
= O

(
1

w(u, v)
log2

(
1

w(u, v)

)
T 3/4

)
. (6)

Here w(u, v) denotes the random weight assigned to strategy v by BBA(u) at
initialization time. Using the fact that 1/w(u, v) = O(βn log(βn)), and that
C̃(u, v) = C̃(v, v) when u, v are consistent, we may rewrite (6) as

E

[(
T∑

t=1

C̃t(u, u)

)
−

(
T∑

t=1

C̃t(v, v)

)]
= O

(
1

w(u, v)
T 3/4 log2(βn)

)
, (7)

provided that u and v are consistent. Let’s introduce the following notations:

C̄(u) = E

(
1
T

T∑
t=1

C̃t(u, u)

)

B = log3(βn)T−1/4

d(u, v) = (Hm+nw(u, v))−1.

Then (7) may be rewritten as

C̄(u) − C̄(v) = d(u, v) · O(B) (8)

Note that for a product y ∈ Y , C̄(y) is simply the average cost of y, and for
an agent x ∈ H, C̄(x) is the average cost of the products sampled by x. Let S
be a consistent cluster containing x, and let α(S) = |S|/n. Letting y∗ denote a
product with minimum average cost for members of S, and letting P denote a
shortest path from x to y∗ in the directed graph with vertex set S ∪Y and edge
lengths given by d(·, ·), we may sum up the bounds (8) over the edges of P to
obtain

C̄(x) − C̄(y∗) = O(length(P ) · B) (9)
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Observe that the left side is the expected normalized regret of agent x. The
random edge lengths d(u, v) on the m + n outgoing edges from u are simply
the numbers {1, 2, . . . ,m + n} in a random permutation. For graphs with ran-
dom edge lengths specified according to this distribution, the expected distance
between two given vertices is O((β/α) log n).2 We may conclude that the expec-
tation of the right side of (9) is

O((β/α(S)) log(n)B) = O((β/α(S)) log4(βn)T−1/4). (10)

It follows that the normalized regret and δ-convergence time for agents in the
cluster S satisfy

R̂ = O

((
β

α(S)

)
log4(βn)T−1/4

)
(11)

T (δ) = O

((
β

α(S)δ

)4

log16(βn)

)
. (12)

Note that (12) can be interpreted as saying that the large consistent clusters
learn to approximate the cost of the best resource much more rapidly than do the
small clusters, which accords with one’s intuition about collaborative learning.
To obtain Theorem 1, we must average over the k consistent clusters S1, . . . , Sk.
We may multiply the regret bound for a cluster S in (10) by the size of S, to
obtain an upper bound of O(βn log4(βn)T−1/4) on the aggregate regret of users
in S. Summing over k such clusters, the cumulative regret of all honest users is
O(kβn log4(βn)T−1/4), so the normalized regret and convergence time satisfy:

R̂ = O

(
k ·

(
β

α

)
log4(βn)T−1/4

)
(13)

T (δ) = O

(
k4 ·

(
β

αδ

)4

log16(βn)

)
. (14)

6 Open Problems

In this paper we have introduced and analyzed an algorithm for a simple model
of collaborative learning. A key feature of our model is the presence of a large
number of dishonest agents who are assumed to behave in an arbitrary Byzantine
manner. However, other aspects of our model are quite idealized, and there are
some very natural extensions of the model which more closely reflect the reality
of collaborative learning systems such as eBay’s reputation system and peer-to-
peer resource discovery systems. It would be desirable to identify algorithms for
some of the following extensions.

2 A proof of this random graph lemma appears in the full version of this paper.
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1. Study asynchronous collaborative learning, in which only a subset of the
agents act as decision-makers in each round and the rest are inactive.

2. Study cases in which agents are constrained to choose from a proper subset
of the resources, e.g. because the set of available resources is changing over
time or because of limitations on the set of resources that a given agent is
ever allowed to select.

3. Consider stronger models of collaborative filtering, by relaxing the consis-
tency condition for two agents x1, x2 to belong to the same cluster. For exam-
ple, consider the case where x1, x2 are consistent if |Ct(x1, y)−Ct(x2, y)| < ε
for all y, t, or consider the mixture model as in [9].

4. Study more structured collaborative decision-making problems, e.g. selecting
routing paths in a network, some of whose nodes are identified with the
agents.
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