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Abstract. This paper resolves the problem of predicting as well as the
best expert up to an additive term o(n), where n is the length of a
sequence of letters from a finite alphabet. For the bounded games the
paper introduces the Weak Aggregating Algorithm that allows us to
obtain additive terms of the form C

√
n. A modification of the Weak

Aggregating Algorithm that covers unbounded games is also described.

1 Introduction

This paper deals with the problem of prediction with expert advice. We consider
the on-line prediction protocol, where outcomes ω1, ω2, . . . occur in succession
while a prediction strategy tries to predict them. Before seeing an event ωt the
prediction strategy produces a prediction γt. We are interested in the case of a
discrete outcome space, i.e., ω1, ω2, . . . ∈ Ω such that |Ω| < +∞.

We use a loss function λ(ω, γ) to measure the discrepancies between predic-
tions and outcomes. A loss function and a prediction space (a set of possible
predictions) Γ specify the game, i.e., a particular prediction environment. The
performance of a learner S w.r.t. a game is measured by the cumulative loss
suffered on the sequence of outcomes ω1, ω2, . . . , ωn

LossS(ω1, ω2, . . . , ωn) =
n∑

t=1

λ(ωt, γt) . (1)

In the problem of prediction with expert advice we have N prediction strategies
E1, E2, . . . , EN that try to predict elements of the same sequence. Their predic-
tions become available to the merging prediction strategy M every time before
M outputs its own prediction. The goal of M is to predict nearly as well as
the best expert, i.e., to suffer loss that is little bigger than the smallest of the
experts’ losses.
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This problem has been studied intensively; see, e.g., [CBFH+97, HKW98].
Papers [Vov90, Vov98] propose the Aggregating Algorithm that allows M to
achieve loss satisfying the inequality

LossM(ω1, ω2, . . . , ωn) ≤ cLossEi
(ω1, ω2, . . . , ωn) + a ln N (2)

for all i = 1 . . . , N and all possible sequences of outcomes ω1, ω2, . . . , ωn, n =
1, 2, . . ., where the constants c and a are optimal and are specified by the game.
Note that neither c nor a depend on n.

If we can take c equal to 1, the game is called mixable. It is possible to provide
a geometrical characterisation of mixable games in terms of the so called sets
of superpredictions. The Aggregating Algorithm fully resolves the problem of
predicting as well as the best expert up to an additive constant.

There are interesting games that are not mixable, e.g., the absolute loss game
introduced in Sect. 2. The Aggregating Algorithm still works for some of such
games, but it only allows us to achieve values of c greater than 1.

In this paper we take a different approach to non-mixable games. We fix
c = 1 but consider a(n) that can grow when the length n of the sequence
increases. We study the problem of predicting as well as the best expert up
to o(n) as n → +∞, where n is the length of the sequence. Sect. 3 introduces
the corresponding concept of weak mixability. The main result of this paper,
Theor. 1, shows that weak mixability is equivalent to a very simple geometric
property of the set of superpredictions, namely, the convexity of its finite part.

If the loss function is bounded, it is possible to predict as well as the best
expert up to an additive term of the form C

√
n, provided the finite part of the

set of superpredictions is convex. This result follows from a recent paper [HP04].
We shall present our own construction, which is based on ideas from [CBFH+97].

If the game is not bounded, our construction can be applied in a different
form to predict as well as the best expert up to o(n).

2 Preliminaries

2.1 On-line Prediction

A game G is a triple 〈Ω,Γ, λ〉, where Ω is an outcome space, Γ is a predic-
tion space, and λ : Ω × Γ → [0,+∞] is a loss function. We assume that Ω
is a finite set of cardinality M < +∞; we will refer to elements of Ω as to
ω(0), ω(1), . . . , ω(M−1). In the simplest binary case M = 2 and Ω may be identi-
fied with B = {0, 1}. We also assume that Γ is a compact topological space and
λ is continuous w.r.t. the extended topology of [−∞,+∞]. Since we treat Ω as a
discrete space, the continuity of λ in two arguments is the same as continuity in
the second argument. These assumption hold throughout the paper except for
Remark 1, where negative losses are discussed.

The square-loss game, the absolute-loss game, and the logarithmic game with
the outcome space Ω = B, prediction space Γ = [0, 1], and loss functions
λ(ω, γ) = (ω − γ)2, λ(ω, γ) = |ω − γ|, and
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λ(ω, γ) =
{− log(1 − γ) if ω = 0 ,
− log γ if ω = 1 ,

respectively, are examples of (binary) games. A slightly different example is
provided by the simple prediction game with Ω = Γ = B = {0, 1} and λ(ω, γ) = 0
if ω = γ and λ(ω, γ) = 1 otherwise.

It is essential to allow λ to accept the value +∞; this assumption is necessary
in order to take into account the logarithmic game as well as other unbounded
games. However we impose the following restriction: if λ(ω0, γ0) = +∞ for some
ω0 ∈ Ω and γ0 ∈ Γ , then there is a sequence γn ∈ Γ such that γn → γ0 and
λ(ω, γn) is finite for all ω ∈ Ω and all positive integers n. In order words, any
prediction that leads to infinite loss on some outcomes can be approximated by
predictions that can only lead to finite loss no matter what outcome occurs.
This restriction allows us to exclude some degenerate cases and to simplify the
statements of theorems.

Suppose that λ can be computed by an oracle. We assume that the oracle
is capable of more than just outputting the values of λ, e.g., it can solve some
simple inequalities involving λ (see Sect. 6 for more details). All natural loss
functions specified by simple analytical expression satisfy these requirements.

A prediction strategy S works according to the following protocol:

(1) FOR t = 1, 2, . . .
(2) S chooses a prediction γt ∈ Γ
(3) S observes the actual outcome ωt ∈ Ω
(4) END FOR

One can identify a prediction strategy with a function from Ω∗ to Γ . Over the
first n trials, the strategy S suffers the total loss

LossG
S(ω1, ω2, . . . , ωn) =

n∑

t=1

λ(ωt, γt) .

By definition, put LossS(Λ) = 0, where Λ denotes the empty string.

2.2 Expert Advice

The problem of prediction with expert advice involve a pool of N experts
E(1), E(2), . . . , E(N), which are working according to the aforementioned proto-
col. On trial t they output predictions γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t . A merging strategy M

is allowed to observe the experts’ prediction before outputting its own, i.e., it
works according to the following protocol:

(1) FOR t = 1, 2, . . .

(2) E(1), E(2), . . . , E(N) output predictions γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t ∈ Γ

(3) M chooses a prediction γt ∈ Γ
(4) M observes the actual outcome ωt ∈ Ω
(5) END FOR
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The goal of the merging strategy is to suffer loss that is not much worse than
the loss of the best expert. By the best expert after trial t we mean the expert
that has suffered the smallest loss over t trials.

One may think of a merging strategy as of a function

M :
+∞⋃

N=0

+∞⋃

t=1

(
Ωt−1 × (

ΓN
)t

)
→ Γ . (3)

Here N is the number of experts and t is the number of a trial; the information
available to M before making a prediction on trial t consists of t − 1 previous
outcomes and t arrays each consisting of N experts’ predictions.

When we speak about computability, we assume that the algorithm comput-
ing M receives experts’ predictions as inputs. The experts do not have to be
computable in any sense. The learner has no access to their internal ‘mechanics’;
the only thing it knows about them is their predictions.

2.3 Geometric Interpretation of a Game

Take a game G = 〈Ω,Γ, λ〉 such that Ω = {ω(0), ω(1), . . . , ω(M−1)} and |Ω| = M .
We say that an M -tuple (s0, s1, . . . , sM−1) ∈ (−∞,+∞]M is a superpredic-
tion if there is γ ∈ Γ such that the inequalities λ(ω(i), γ) ≤ si hold for ev-
ery i = 0, 1, 2, . . . ,M − 1. The set of superpredictions S is an important object
characterising the game.

3 Weak Mixability

One may wonder whether the learner can predict as well as the best expert up to
an additive constant, i.e., to suffer loss within an additive constant range of the
loss of the best expert. It is possible for the so called mixable games; for more
details see [Vov90, Vov98]. Examples of mixable games include the square-loss
game and the logarithmic game; the simple prediction game and the absolute-loss
game are not mixable.

For non-mixable games it is not possible to predict as well as the best expert
up to an additive constant. Let us relax this requirement and ask whether it is
possible to predict as well as the best expert up to a larger term.

In the worst case, loss grows linearly in the length of the sequence. Therefore
all terms of slower growth can be considered small as compared to loss. This
motivates the following definition.

A game G is weakly mixable if there is a function f : N → R such that
f(n) = o(n) as n → +∞ and a merging strategy M such that, for every finite
set of experts E(1), E(2), . . . , E(N) (N = 1, 2, . . .), the inequality

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) + f(n) (4)

holds for all i = 1, 2, . . . , N and every finite sequence ω1, ω2, . . . , ωn ∈ Ω, n =
1, 2, . . . .
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The following theorem is the main result of the paper.

Theorem 1. A game G = 〈Ω,Γ, λ〉 with the set of superpredictions S is weakly
mixable if and only if the finite part of S, the set S ∩ R

M , is convex.

The merging strategy in the definition of weak mixability is polynomial-time
computable modulo the oracle computing λ (see Sect. 6).

The examples of the weakly mixable games are the logarithmic and the
square-loss game, which are also mixable, and the absolute-loss game, which
is not mixable. The simple prediction game is not weakly mixable.

The rest of the paper contains the proof of the theorem. The ‘only if’ part
follows from Theor. 2 that is proved in Appendix A.

The ‘if’ splits into two parts, for bounded and for unbounded games. The
‘if’ part for bounded games follows from [HP04]. In Sect. 4 we shall give an
alternative derivation, which gives a slightly better value of the constant C in
the additive term C

√
n. The unbounded case is described in Sect. 5.

Remark 1. Let us allow (within this remark) λ to accept negative values; they
can be interpreted as ‘gain’ or ‘reward’. If λ accepts the value −∞, the expression
for the total loss may include the sum (−∞)+(+∞), which is undefined. In order
to avoid this ambiguity, it is natural to prohibit λ to take the value −∞. Since
λ is assumed to be continuous, this implies that λ is bounded from below, i.e.,
there is a > −∞ such that λ(ω, γ) ≥ a for all values of ω and γ.

Consider another game with the loss function λ′(ω, γ) = λ(ω, γ) + a, which
is nonnegative. A merging strategy working with nonnegative loss functions can
be easily adapted to work with the original game: let the learner just imagine
that it is playing the game with λ′. The losses w.r.t. the two games on a string
ω1ω2 . . . ωn will differ by an and the upper bounds of the type (4) will be pre-
served. On the other hand, the sets of superpredictions for the two games will
differ by a shift, which preserves convexity. Therefore Theor. 1 remains true for
games with loss functions bounded from below.

4 ‘If’ Part for Bounded Games

4.1 Weak Aggregating Algorithm

In this subsection we formulate the Weak Aggregating Algorithm (WAA). Let
G = 〈Ω,Γ, λ〉 be a game such that |Ω| = M < +∞ and let N be the number of
experts. Let Ω = {ω(0), ω(1), . . . , ω(M−1)}.

We describe the WAA using pseudo-code. The WAA accepts N initial nor-
malised weights q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1 and a positive

number c as parameters. The role of c is similar to that of the learning rate in
the theory of prediction with expert advice. Let βt = e−c/

√
t, t = 1, 2, . . ..

(1) l
(i)
1 := 0, i = 1, 2, . . . , N

(2) FOR t = 1, 2, . . .
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(3) w
(i)
t := qiβ

l
(i)
t

t , i = 1, 2, . . . , N

(4) p
(i)
t := w

(i)
t∑ N

j=1 w
(j)
t

, i = 1, 2, . . . , N

(5) read experts’ predictions γ
(1)
t , γ

(2)
t , . . . , γ

(N)
t

(6) gk :=
∑N

j=1 λ
(
ω(k), γ

(j)
t

)
p
(j)
t , k = 0, 1, . . . ,M − 1

(7) output γt ∈ Γ such that λ(ω(k), γt) ≤ gk for all
k = 0, 1, . . . ,M − 1

(8) observe ωt

(9) l
(i)
t+1 := l

(i)
t + λ

(
ωt, γ

(i)
t

)
, i = 1, 2, . . . , N

(10) END FOR

The variable l
(i)
t stores the loss of the i-th expert E(i), i.e., after trial t we have

l
(i)
t+1 = LossG

E(i)(ω1, ω2, . . . , ωt). The values w
(i)
t are weights assigned to experts

during the work of the algorithm; they depend on the loss suffered by experts
and initial weights qi. The values p

(i)
t are obtained by normalising w

(i)
t . Note

that it is sufficient to have only one set of variables p(i), i = 1, 2, . . . , N , one set
of variables w(i), i = 1, 2, . . . , N , and one set of variables l(i), i = 1, 2, . . . , N to
save memory. The subscript t has been added in order to simplify referring to
these variables in the proofs below.

This algorithm is applicable if the set of superpredictions S has a convex
finite part S ∩ R

M . If this is the case, then the point (g0, g1, . . . , gM−1) belongs
to S and thus γt can be found on step (7).

A game G = 〈Ω,Γ, λ〉 is bounded if and only if λ is bounded, i.e., there is
L ∈ (0,+∞) such that λ(ω, γ) ≤ L for each ω ∈ Ω and γ ∈ Γ . Examples of
bounded games include the square-loss game, the absolute-loss game, and the
simple prediction game. The logarithmic game is unbounded.

For bounded games the following lemma holds.

Lemma 1. For every L > 0, every game G = 〈Ω,Γ, λ〉 such that |Ω| < +∞
and λ(ω, γ) ≤ L for all ω ∈ Ω and γ ∈ Γ , and every finite set of experts
E(1), E(2), . . . , E(N) (N = 1, 2, . . .), the merging strategy M following the WAA
with initial weights q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1 and c > 0

achieves loss satisfying

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) +

(
cL2 +

1
c

ln
1
qi

)√
n

for every i = 1, 2, . . . , N and every finite sequence ω1, ω2, . . . , ωn ∈ Ω.

The proof of Lemma 1 is given in Appendix B.

Remark 2. It is easy to see that the result of Lemma 1 will still hold for a
countable pool of experts E1, E2, . . . We take weights

∑+∞
i=1 qi = 1; the sums in

lines (4) and (6) from the definition of the WAA become infinite but they clearly
converge.



194 Y. Kalnishkan and M.V. Vyugin

Let us take equal initial weights q1 = q2 = . . . = qN = 1/N in the WAA.
The additive term then reduces to (cL2 +(ln N)/c)

√
n. When c =

√
ln N/L this

expression reaches its minimum. We get the following corollary.

Corollary 1. Under the conditions of Lemma 1, there is a merging strategy M
achieving loss satisfying

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) + 2L

√
n ln N .

5 ‘If’ Part for Unbounded Games

5.1 Counterexample

The WAA can be applied even in the case of an unbounded game; indeed, the
only requirement is that the finite part of the set of superpredictions S is convex.
However we cannot guarantee that a reasonable upper bound on the loss of the
strategy using it will exist. The same applies to any strategy that uses a linear
combination in the same fashion as WAA.

Indeed, consider a game with an unbounded loss function λ. Let ω0 be such
that the function λ(ω0, γ) attains arbitrary large values.

Suppose that there are two experts E1 and E2 and on some trial they are
ascribed weights p(1) and p(2) such that p(2) > 0. Suppose that E1 outputs γ(1)

such that λ(ω0, γ
(1)) < +∞. The upper estimate on the loss of the learner in

the case when the outcome ω0 occurs is

g0 = p(1)λ(ω0, γ
(1)) + p(2)λ(ω0, γ

(2)) ,

where γ(2) is the prediction output by E2. Let us vary γ(2). The weights depend on
the previous behaviour of the experts and they cannot be changed. If λ(ω0, γ

(2))
tends to infinity, then g0 tends to infinity and therefore the difference g0 −
λ(ω0, γ

(1)) tends to infinity. Thus the learner cannot compete with the first
expert.

This example shows that the WAA cannot be straightforwardly generalised
to unbounded games. It needs to be altered.

5.2 Approximating Unbounded Games with Bounded

The following lemma allows us to ‘cut off’ the infinity at a small cost.

Lemma 2. Let G = 〈Ω,Γ, λ〉 be a game such that |Ω| < +∞. Then for every
ε > 0 there is L > 0 with the following property. For every γ ∈ Γ there is γ∗ ∈ Γ
such that λ(ω, γ∗) ≤ L and λ(ω, γ∗) ≤ λ(ω, γ) + ε for all ω ∈ Ω.

The proof of Lemma 2 is given in Appendix C.
We assume that the game is such that the numbers L = Lε can be computed

efficiently for every ε and that γ∗ can be computed efficiently given γ ∈ Γ . This
is a restriction we impose on games.
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E1
WAA

λ(ω0, γ
(2))λ(ω0, γ

(1))
g0

E2

Fig. 1. A counterexample for un-
bounded games in dimension 2

D

C + ε

D + ε

C

L1

L0

Fig. 2. Computing Lε in the case of
two outcomes

In the case of two outcomes |Ω| = 2 computations are particularly straight-
forward. See Fig. 2, where

C = inf
γ∈Γ

λ(ω(0), γ) and D = inf
γ∈Γ

λ(ω(1), γ);

we can take Lε = max(L0, L1). If γ is such that the point (λ(ω(0), γ), λ(ω(1), γ))
falls into the area to the right of the straight line x = L0, we can take γ∗ such
that (λ(ω(0), γ∗), λ(ω(1), γ∗)) = (L0,D + ε).

5.3 Merging Experts in the Unbounded Case

Consider an unbounded game G = 〈Ω,Γ, λ〉 and N experts E1, E2, . . . , EN .
Fix some ε > 0. Let Lε be as above. After obtaining experts’ predictions
γ

(1)
t , γ

(2)
t , . . . , γ

(N)
t we can find γ

(1)∗
t , γ

(2)∗
t , . . . , γ

(N)∗
t as in Lemma 2 and then

apply the results for the bounded case to them. By proceeding in this fashion, a
strategy M suffers loss such that

LossG
M(ω1, ω2, . . . , ωn) ≤ LossG

E(i)(ω1, ω2, . . . , ωn) + Cε

√
n + εn (5)

for all i = 1, 2, . . . , N and ω1, ω2, . . . , ωn ∈ Ω, n = 1, 2, . . ., where Cε = 2L2
ε

√
ln N

(we are applying WAA with equal weights).
This inequality does not allow us to prove Theor. 1. In order to achieve an

extra term of the order o(n) we will vary ε.
Take a strictly increasing sequence of integers Nk, k = 1, 2, . . ., and a sequence

εk > 0, k = 0, 1, 2, . . .. Consider the merging strategy M defined as follows. The
strategy first takes ε0 and merges the experts’ predictions using the WAA and ε0

in the fashion described above. This continues while n, the length of the sequence
of outcomes, is less than or equal to N1. Then the strategy switches to ε1 and
applies the WAA and ε1 until n exceeds N2 etc (see Fig. 4). Note that each time
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n passes through a limit Ni, the current invocation of the WAA terminates and
a completely new invocation of the WAA starts working. It does not have to
inherit anything from previous invocations.

In Appendix D we show how to choose the sequences εk and Nk in such a
way as to achieve the desired extra term.

6 Computability Issues

In this section we summarise the properties that an oracle computing λ should
satisfy. The general principle is that the oracle should be capable of answering
all ‘reasonable’ questions that can be easily answered for a loss function specified
by a simple analytical expression. Thus these requirements are not particularly
restrictive.

First, the oracle should be able to evaluate the values λ(ω, γ), where ω ∈ Ω
and γ ∈ Γ . Secondly, given x1, x2, . . . , xn ∈ [−∞,+∞], it should be able to find
γ (if any) such that λ(ω(i), γ) ≤ xi, i = 1, 2, . . . , N . Thirdly, the oracle should
be able to compute numbers Lε and to find γ∗ by γ ∈ Γ (see Subsect. 5.2).

When we say that the oracle is supplied with a number x ∈ [−∞,+∞], we
assume that it is given a sequence of rational intervals Ii that shrinks to x, i.e.,
x = ∩+∞

i=1 Ii. A rational interval is one of the intervals [−∞, p], [p, q], or [q,+∞],
where p and q are rational.

If we say that the oracle outputs x ∈ [−∞,+∞], we mean that it outputs a
sequence of rational intervals that shrinks to x. We assume that elements γ ∈ Γ
can be approximated and dealt with in a similar fashion.
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Appendix A. Proof: ‘Only If’ Part

Here we will derive a statement that is slightly stronger than that required by
Theor. 1.

Theorem 2. If a game G = 〈Ω,Γ, λ〉, |Ω| = M < +∞, has the set of super-
predictions S such that its finite part S ∩ R

M is not convex, then there are two
strategies S1 and S2 and a constant θ > 0 such that for any strategy S there is
a sequence ωn ∈ Ω, n = 1, 2, . . ., such that

max
i=1,2

(
LossG

S(ω1, ω2, . . . , ωn) − LossG
Si

(ω1, ω2, . . . , ωn)
)
≥ θn (6)

for all positive integers n.

If the loss function is computable, the strategies can be chosen to be com-
putable.

Proof. We will use vector notation. If X = (x1, . . . , xn), Y = (y1, . . . , yn) and
α ∈ R, then X +Y and αX are defined in the natural way. By 〈X,Y 〉 we denote
the scalar product

∑n
i=1 xiyi.

For brevity we will denote finite sequences by bold letters, e.g., x = ω1...ωn ∈
Ωn. Let |x| be the length of x, i.e., the total number of symbols in x. We will
denote the number of elements equal to ω(0) in a sequence x by �0x, the number
of elements equal to ω(1) by �1x etc. It is easy to see that

∑M−1
i=0 �ix = |x| for

every x ∈ Ω∗. The vector (�0x, �1x, . . . , �M−1x) will be denoted by �x.
There exists a couple of points B1 =

(
b
(0)
1 , b

(1)
1 , . . . , b

(M−1)
1

)
and B2 =

(
b
(0)
2 , b

(1)
2 , . . . , b

(M−1)
2

)
such that B1, B2 ∈ S∩R

M but the segment [B1, B2] con-
necting them is not a subset of S. Let α ∈ (0, 1) be such that C = αB1+(1−α)B2

does not belong to S (see Fig. 3). Since λ is continuous and Γ is compact, the
set S is closed and thus there is a small vicinity of C that is a subset of R

M \S.
Without restricting the generality one may assume that all coordinates of B1

and B2 are strictly positive. Indeed, the points B′
1 = B1 + t · (1, 1, . . . , 1) and

B′
2 = B2 + t · (1, 1, . . . , 1) belong to S for all positive t. If t > 0 is sufficiently
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S

l

B2

B1 A

C

Fig. 3. The drawing for the proof of
Theor. 2

length

Nk+1n

Mk

εk

Nk

Fig. 4. The sequences of Nk, Mk, and
εk

small, then C ′ = αB′
1 + (1 − α)B′

2 still belongs to the vicinity mentioned above
and thus C ′ does not belong to S.

Let us draw a half-line l starting from the origin through C. Let A =(
a(0), a(1), . . . , a(M−1)

)
be the intersection of l with the boundary ∂S. Such a

point really exists. Indeed, l = {X ∈ R
M | ∃t ≥ 0 : X = tC}. For sufficiently

large t all coordinates of tC are greater than the corresponding coordinates of
B1 and thus tC ∈ S. Now let t0 = inf{t ≥ 0 | tC ∈ S} and A = t0C. Since
C /∈ S, we get t0 > 1 and thus A = (1 + δ)C, where δ > 0.

We now proceed to constructing the strategies S1 and S2. There are pre-
dictions γ1, γ2 ∈ Γ such that λ(ω(i), γ1) ≤ b

(i)
1 and λ(ω(i), γ2) ≤ b

(i)
2 for all

i = 0, 1, 2, . . . ,M − 1. Let S1 be the oblivious strategy that always predicts
γ1, no matter what outcomes actually occur. Similarly, let S2 be the strategy
that always predicts γ2. Without loss of generality it can be assumed that S1

and S2 are computable. Indeed, the points B1 and B2 can be replaced by com-
putable points from their small vicinities. The definitions of S1 and S2 imply
the inequalities

LossS1(x) ≤
M−1∑

i=0

�ixb
(i)
1 = 〈B1, �x〉 and LossS2(x) ≤

M−1∑

i=0

�ixb
(i)
2 = 〈B2, �x〉

(7)
for all strings x ∈ B

∗.
Now let us consider an arbitrary strategy S and construct a sequence xn =

ω1ω2 . . . ωn satisfying the requirements of the theorem. The sequence is con-
structed by induction. Let x0 = Λ. Suppose that xn has been constructed. Let
γ be the prediction output by S on the (n + 1)-th trial, provided the previous
outcomes were elements constituting the strings xn in the correct order. There
is some ω(i0) ∈ Ω such that λ(ω(i0), γ) ≥ a(i0). Indeed, if this is not true and
the inequalities λ(ω(i), γ) < a(i) hold for all i = 1, 2, . . . ,M − 1, then there is a
vicinity of A that is a subset of S. This contradicts the definition of A. We let
xn+1 = xnωi0 . The construction implies
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LossS(xn) ≥
M−1∑

i=0

�ixna(i) = 〈A, �xn〉 . (8)

Let ε = minj=1,2; i=0,1,2,...,M−1 b
(i)
j > 0. We get 〈Bj ,x〉 =

∑M−1
i=0 b

(i)
j �ix ≥

ε|x| for all strings x ∈ B
∗ and j = 1, 2. Since A = (1 + δ)(αB1 + (1 − α)B2)

we get

〈A, �x〉 = (1 + δ)(α〈B1, �x〉 + (1 − α)〈B2, �x〉)
≥ α〈B1, �x〉 + (1 − α)〈B2, �x〉 + δε|x|

for all strings x. Let θ = δε; note that ε and δ do not depend on S. By combining
this inequality with (7) and (8) we obtain the inequality

LossS(xn) ≥ α LossS1(xn) + (1 − α) LossS2(xn) + θn

for all positive integers n.
It is easy to see that

LossS(xn) − LossS1(xn) ≥ (1 − α)(LossS2(x) − LossS1(x)) + θn ,

LossS(xn) − LossS2(xn) ≥ α(LossS1(x) − LossS2(x)) + θn .

If LossS2(x) ≥ LossS1(x) the former difference is greater than or equal to θn,
otherwise the latter difference is greater than or equal to θn. By combining these
facts we obtain (6). ��

Appendix B. Proof of Lemma 1

In this appendix we prove Lemma 1. We start with the following lemma.

Lemma 3. Let G = 〈Ω,Γ, λ〉 be a game such that |Ω| < +∞ and let N be the
number of experts. Let the finite part of the set of superpredictions S ∩ R

M be
convex. If M is a merging strategy following the WAA, then for every t = 1, 2, . . .
we get

β
LossG

M(ω1,...,ωt)
t ≥ β

∑ t
j=1 α(j)

t

N∑

i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t , (9)

where

α(j) = logβj

β
∑ N

i=1 λ(ωj ,γ
(i)
j )p

(i)
j

j

∑N
i=1 β

λ(ωj ,γ
(i)
j )

j p
(i)
j

(10)

for j = 1, 2, . . . , t, in the notation introduced above.

Proof (of Lemma 3). The proof is by induction on t. Let us assume that (9)
holds and then derive the corresponding inequality for the step t + 1.
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The function xα, where 0 < α < 1, is increasing in x, x ≥ 0. If is also concave
in x, x ≥ 0. For every set of weights pi ∈ [0, 1], i = 1, . . . , n such that

∑n
i=1 pi = 1

and every array of xi ≥ 0, i = 1, . . . , n, we get (
∑n

i=1 pixi)
α ≥ ∑n

i=1 pix
α
i .

Therefore (9) implies

β
LossG

M(ω1,...,ωt)
t+1 =

(
β

LossG
M(ω1,...,ωt)

t

)logβt
βt+1

(11)

≥
(

β
∑ t

j=1 α(j)

t

N∑

i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t

)logβt
βt+1

(12)

≥ β
∑ t

j=1 α(j)

t+1

N∑

i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t+1 (13)

Step (7) of the algorithm implies that λ(ωt+1, γt+1) ≤
∑N

i=1 λ
(
ωt+1, γ

(i)
t+1

)
p
(i)
t+1.

By exponentiating this inequality we get

β
λ(ωt+1,γt+1)
t+1 ≥ β

∑ N
i=1 λ

(
ωt+1,γ

(i)
t+1

)
p
(i)
t+1

t+1 (14)

=
β

∑ N
i=1 λ

(
ωt+1,γ

(i)
t+1

)
p
(i)
t+1

t+1

∑N
i=1 β

λ
(

ωt+1,γ
(i)
t+1

)

t+1 p
(i)
t+1

N∑

i=1

β
λ

(
ωt+1,γ

(i)
t+1

)

t+1 p
(i)
t+1 (15)

= β
α(t+1)
t+1

N∑

i=1

β
λ

(
ωt+1,γ

(i)
t+1

)

t+1 p
(i)
t+1 . (16)

Multiplying (13) by (16) and substituting

p
(i)
t+1 =

wt+1
∑N

j=1 w
(j)
t+1

=
qiβ

LossG

E(i) (ω1,...,ωt)

t+1

∑N
j=1 qjβ

LossG

E(j) (ω1,...,ωt)

t+1

completes the proof on the lemma. ��

By taking the logarithm of (9) we get

LossG
M(ω1, . . . , ωt) ≤

t∑

j=1

α(j) + logβt

N∑

i=1

qiβ
LossG

E(i) (ω1,...,ωt)

t

≤
t∑

j=1

α(j) + logβt
qi + LossG

E(i)(ω1, . . . , ωt)

for every i = 1, 2, . . . , N . We have logβt
qi = −

√
t

c ln qi. It remains to estimate
the first term.
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Recall that L is an upper bound on λ. By applying the inequality lnx ≤ x−1
we get

α(t) =
N∑

i=1

λ(ωt, γ
(i)
t )p(i)

t +
√

t

c
ln

N∑

i=1

β
λ(ωt,γ

(i)
t )

t p
(i)
t

≤
N∑

i=1

λ(ωt, γ
(i)
t )p(i)

t +
√

t

c

(
N∑

i=1

β
λ(ωt,γ

(i)
t )

t p
(i)
t − 1

)

By using Taylor’s series with Lagrange’s remainder term we obtain

β
λ(ωt,γ

(i)
t )

t = e−cλ(ωt,γ
(i)
t )/

√
t = 1 − cλ(ωt, γ

(i)
t )√

t
+

1
2

(
cλ(ωt, γ

(i)
t )√

t

)2

eξ ,

where ξ ∈ [−cλ(ωt, γ
(i)
t )/

√
t, 0] and thus

β
λ(ωt,γ

(i)
t )

t ≤ 1 − cλ(ωt, γ
(i)
t )√

t
+

c2L2

2t
.

Therefore α(t) ≤ cL2/2
√

t and summing yields

t∑

j=1

α(j) ≤
t∑

j=1

cL2

2
√

t
≤ cL2

2

∫ t

0

dx√
x

= cL2
√

t .

This completes the proof.

Appendix C. Proof of Lemma 2

Let |Ω| = M and Ω = {ω(0), ω(1), . . . , ω(M−1)}.
For every L > 0 let ΓL = {γ ∈ Γ | λ(ω, γ) ≤ L for all ω ∈ Ω} and let

PL =
{(

λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)
) | γ ∈ ΓL

}
. In other terms, PL =

P ∩ [0, L]M , where P = {(λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)
) | γ ∈ Γ} is the

set of all ‘predictions’. For every ε > 0 let UL,ε be the ε-vicinity of the set PL,
i.e., the union of all open balls of radius ε having points of PL as their centres.
Finally, let SL,ε = {X ∈ [−∞,+∞]M | X ≥ Y for some Y ∈ UL,ε}.

Now fix ε > 0. We have S ⊆ ⋃
L>0 SL,ε. Indeed, consider a point X =(

λ(ω(0), γ), λ(ω(1), γ), . . . , λ(ω(M−1), γ)
)

for some γ ∈ Γ . If all coordinates of X
are finite, X ∈ PL for some sufficiently large L. If some of the coordinates are
infinite, γ can still be approximated by predictions that can only lead to finite
loss and thus X belongs to some SL,ε.

The covering
⋃

L>0 SL,ε has a finite subcovering. Indeed, let us take some
β ∈ (0, 1) and apply the transformation Bβ specified by

Bβ(x0, x1, . . . , xM−1) = (βx0 , βx1 , . . . , βxM−1) .
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The set Bβ(S) is a compact set and all sets Bβ(SL,ε) are open if considered as
subsets of the space [0,+∞)M with the standard Euclidean topology.

Therefore there is L > 0 such that S ⊆ SL,ε. The lemma follows.

Appendix D. Choosing the Sequences

Take M0 = N1 and Mj = Nj+1 − Nj , j = 1, 2 . . .. Let a positive integer n be
such that Nk < n ≤ Nk+1 (see Fig. 4). Applying (5) yields

LossG
M(ω1, ω2, . . . , ωn) ≤ LossE(i)(ω1, ω2, . . . , ωn) + α(n)

for all i = 1, 2, . . . , N , where N is the number of experts and

α(n) =
k∑

j=0

Mjεj +
k∑

j=0

Cεj

√
Mj + εk(n − Nk) + Cεk

√
n − Nk ; (17)

note that the former two terms correspond to the previous invocations of WAA
and the later two correspond to the current invocation.

We will formulate conditions sufficient for the terms in (17) to be of o(n)
order of magnitude. First, note that

(1) limj→+∞ εj = 0

is sufficient to ensure that εk(n−Nk) = o(n) as n → +∞. Secondly, if, moreover,

(2) Mj is non-decreasing in j and

(3) εj is non-increasing,

then
∑k

j=0 Mjεj = o(n). Indeed, let m be a positive integer such that m ≤ k.
Condition (2) implies that Mm ≤ n/(k−m+1). Indeed, if Mm > n/(k−m+1),
then the same holds for all Mj , j ≥ m and thus

∑k
j=m Mj > n. We get

1
n

k∑

j=0

Mjεj =
1
n

m∑

j=0

Mjεj +
1
n

k∑

j=m+1

Mjεj

≤ (m + 1)Mmε0

n
+

εm+1

n

k∑

j=m+1

Mj ≤ (m + 1)ε0

k − m + 1
+ εm+1 .

If we let m =
√

k, both the terms tend to 0 as k tends to +∞, i.e., as n → +∞.
Thirdly, similar considerations imply that if, moreover,

(4) limj→+∞ Mj = +∞ and

(5) Cεj
≤ 8

√
Mj , j = 0, 1, 2, . . .,
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then
∑k

j=0 Cεj

√
Mj ≤ ∑k

j=0 Mj/M
3/8
j = o(n).

It remains to consider the last term in (17). There are two cases, either
n − Nk ≤ M

3/4
k or n − Nk > M

3/4
k . If the former case we get

1
n

Cεk

√
n − Nk ≤ M

1/8
k

√
n − Nk

Nk
≤ M

1/8
k M

3/8
k

Mk−1
=

√
Mk

Mk−1
,

while in the latter case we get

1
n

Cεk

√
n − Nk ≤ M

1/8
k

√
Mk

M
3/4
k

=
1

M
1/8
k

→ 0

as k → +∞. To ensure the convergence in the former case it is sufficient to have

(6) Mj−1 ≥ M
3/4
j , j = 1, 2, . . ..

Let us show that the conditions (1)–(6) are consistent, i.e., construct the se-
quences εj and Mj . Let M0 = max(2, �C8

ε0
�) and Mj+1 = �M4/3

j �, j = 0, 1, 2, . . ..
The sequence εj is constructed as follows. Suppose that all εj have been con-
structed for j ≤ k. If Cεk/2 ≤ M

1/8
k , we let εk+1 = εk/2; otherwise we let

εk+1 = εk. Since Mk → +∞ and Cε is finite for every ε > 0, we will be able to
divide εk by 2 eventually and thus ensure that εj → 0 as j → +∞.
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