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Abstract. We present a reduction from cost-sensitive classification to
binary classification based on (a modification of) error correcting out-
put codes. The reduction satisfies the property that ε regret for binary
classification implies l2-regret of at most 2ε for cost estimation. This has
several implications:

1. Any regret-minimizing online algorithm for 0/1 loss is (via the re-
duction) a regret-minimizing online cost-sensitive algorithm. In par-
ticular, this means that online learning can be made to work for
arbitrary (i.e., totally unstructured) loss functions.

2. The output of the reduction can be thresholded so that ε regret for
binary classification implies at most 4

√
εZ regret for cost-sensitive

classification where Z is the expected sum of costs.

3. For multiclass problems, ε binary regret translates into l2-regret of
at most 4ε in the estimation of class probabilities. For classification,
this implies at most 4

√
ε multiclass regret.

1 Introduction

Background: The goal of classification is to predict labels on test examples
given a set of labeled training examples. Binary classification, where the number
of labels is two, is the most basic learning task as it involves predicting just a
single bit for each example. Due to this simplicity, binary learning is (perhaps)
better understood theoretically than any other prediction task, and several em-
pirically good binary learning algorithms exist.

Practical machine learning, on the other hand, often requires predicting more
than one bit. Furthermore, each prediction may generally have a different asso-
ciated loss, and ignoring this information can make the problem more difficult.1

1 For example, consider the following problem: Given some relevant information, we
must predict which of several routes to take. It is easy to design a problem where
there are several paths that are typically good but occasionally very slow. If there is
another path that is never the best but never slow, it may provide the best expected
time of all choices. If the problem is altered into a multiclass problem of predicting
the best route, this path will never be taken.
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Motivation: Reductions allow us to translate performance on well-studied bi-
nary problems into performance on the more general problems arising in practice.
We provide a reduction (called SECOC) from cost-sensitive classification to bi-
nary classification with the property that small regret on the created binary
problem(s) implies small regret on the original cost-sensitive problem. This is
particularly compelling because any loss function on single examples can be ex-
pressed with cost-sensitive classification. Therefore, this reduction can be used
(at least theoretically) to solve a very broad set of learning problems. In addition,
there is convincing empirical evidence that SECOC works well in practice, which
gives further support to this style of analysis. Experiments in Section 7 show that
SECOC results in superior performance on all tested multiclass learning algo-
rithms and problems, compared to several other commonly used algorithms.

The basic SECOC reduction can be reused in several ways.

1. General Online Learning: Any regret-minimizing online algorithm for
0/1 loss is (via the reduction) a regret-minimizing online cost sensitive algo-
rithm. In particular, this means that online learning can be made to work
for arbitrary (i.e., totally unstructured) loss functions.

2. Cost Sensitive Classification: The output of the reduction can be
thresholded so that a small regret for binary classification implies a small re-
gret for cost-sensitive classification. This implies that any consistent binary
classifier is a consistent cost-sensitive classifier.

3. Multiclass Problems: Using the canonical embedding of multiclass clas-
sification into cost-sensitive classification, this reduction implies that small
binary regret translates into small l2 error in the estimation of class proba-
bilities. By thresholding the estimates, we get a bound on multiclass regret.
Note that this implies that any consistent binary classifier is (via the reduc-
tion) a consistent multiclass classifier. This is particularly important because
generalization of SVMs to multiple classes have been done wrong, as shown
in [8].

These applications are discussed in Section 4.

General Comment: It is important to understand that analysis here is or-
thogonal to the sample complexity analysis in, for example, PAC learning [12]
or uniform convergence [14]. We consider measures over sets of examples and
analyze the transformation of losses under mappings between these measures
induced by the algorithms. This allows us to avoid making assumptions (which
cannot be verified or simply do not hold in practice) necessary to prove sample
complexity bounds. Instead, we show relative guarantees in an assumption-free
setting – we bound the performance on general problems arising in practice in
terms of performance on basic problems that are better understood.

Context: SECOC is a variation of error-correcting output codes (ECOC) [3].
Later, in Section 5, we show that this variation is necessary in order to satisfy
a regret transform. The ECOC reduction works by learning a binary classifier,
which decides membership of a label in subsets of labels. Given a sequence of
subsets, each label corresponds to a binary string (or a codeword) defined by the
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inclusion of this label in the sequence of subsets. A multiclass prediction is made
by finding the codeword closest in Hamming distance to the sequence of binary
predictions on the test example.

For the ECOC reduction, a basic statement [5] can be made: with a good
code, for all training sets, the error rate of the multiclass classifier on the training
set is at most 4 times the average error rate of the individual binary classifiers.
The proof of this statement is essentially the observation that there exist codes
in which the distance between any two codewords is at least 1

2 . Consequently,
at least 1

4 of the classifiers must err to induce a multiclass classification error,
implying the theorem.

This theorem can be generalized [2] to quantify “for all measures” rather than
“for all training sets”. This generalization is not as significant as it might at first
seem, because the measure implicit in a very large training set can approximate
other measures (and it can do so arbitrarily well when the feature space is finite).
Nevertheless, it is convenient to quantify over all measures, so that the statement
holds for the process generating each individual example. Since there is always
some process generating examples, the result is applicable even to adversarial
processes.

The weighted all pairs algorithm [2] intuitively guarantees that a small er-
ror rate on created classification problems implies a small cost-sensitive loss.
The core result here is similar except that small binary regret implies small
cost-sensitive regret. Regret is the error rate minus the minimum error rate.
Consequently, the results here can have important implications even when, for
example, the binary error induced from a multiclass problem is 0.25. SECOC
does not supercede this result, however, because the regret bounds are weaker,
roughly according to ε error rate going to

√
ε regret.

ECOC was modified [1] to consider margins of the binary classifiers—numbers
internal to some classification algorithms that provide a measure of confidence
in a binary prediction. Decoding proceeds in the same way as for ECOC ex-
cept a “loss”-based2 distance is used instead of the Hamming distance. Roughly
speaking, SECOC uses the motivation behind this approach although not the
approach itself. Instead of working with margins, we define binary classifica-
tion problems, for which the optimal solution computes the relative expected
cost (rather than the margin) of choices. This approach allows us to accomplish
several things: First, we can use arbitrary classifiers rather than margin-based
classifiers. We also remove the mismatch between the margin and the motiva-
tions. Optimizations of hinge loss (for SVMs) or exponential loss (for Adaboost)
cause a distortion where the optimization increases the margin of small-margin
examples at the expense of the margin on large-margin examples. The efficacy of
Platt scaling [10] (i.e., fitting a sigmoid to a margin to get a probabilistic predic-
tion) can be thought of as strong empirical evidence of the deficiency of margins

2 “Loss” is in quotes because the notion of loss is a specification of the optimization
used by the binary learning algorithm rather than the loss given by the problem, as
is used in the rest of the paper.
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as probability estimates. Finally, we can generalize the approach to tackle all
cost-sensitive problems rather than just multiclass problems. This generaliza-
tion comes at no cost in multiclass performance.

2 The SECOC Reduction

We work in an assumption-free learning setting. The SECOC reduction reduces
cost-sensitive classification to importance weighted binary classification, which
in turn can be reduced to binary classification using the Costing reduction [16].
We first define all the problems involved.

Definition 1. An importance weighted binary classification problem is defined
by a measure D on a set X × {0, 1}× [0,∞), where X is some arbitrary feature
space, {0, 1} is the binary label, and [0,∞) is the importance of correct classi-
fication. The goal is to find a binary classifier b : X → {0, 1} which minimizes
the expected importance weighted loss, E(x,y,i)∼D [iI(b(x) �= y)], where I(·) is 1
when the argument is true and 0 otherwise.

Cost-sensitive classification defined below is sufficiently general to express any
loss function on a finite set.

Definition 2. A cost-sensitive k-class problem is defined by a measure D on
a set X × [0,∞)k, where X is some arbitrary feature space, and the additional
information [0,∞)k is the cost of each of the k choices. The goal is to find a
classifier h : X → {1, ..., k} which minimizes the expected cost, E(x,c)∼D

[
ch(x)

]
.

A cost-sensitive learning algorithm typically takes as input a sequence of training
examples in (X × [0,∞)k)∗ as advice in constructing h(x).

The SECOC reduction is a cost-sensitive learning algorithm that uses a given
binary learning algorithm as a black box. As with the ECOC reduction, SECOC
uses a code defined by an n × k binary coding matrix M with columns corre-
sponding to multiclass labels. For example, the columns can form a subset of
any k codewords of a Hadamard code of length n, which has the property that
any two distinct codewords differ in at least n/2 bit positions. Such codes are
easy to construct when k is a power of 2. Thus, for Hadamard codes, the number
n of classification problems needed is less than 2k.

For each subset s of labels, corresponding to a row of M , we create a set of
importance weighted classification problems parameterized by t ∈ [tmin, tmax],
where tmin = 0 and tmax = 1 are always correct, but significant efficiency im-
provements arise from appropriately chosen smaller ranges. Intuitively, the prob-
lem defined by the pair (s, t) is to answer the question “Is the cost of s greater
than t times the total cost?” From the optimal solution of these problems we can
compute the expected relative cost of each subset s. SECOC-Train (Algorithm 1)
has the complete specification.

We write Es to denote an expectation over s drawn uniformly from the rows
of M , and Et to denote expectation over t drawn uniformly from the interval
[tmin, tmax].
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Algorithm 1. SECOC-Train (Set of k-class cost-sensitive examples S, impor-
tance weighted binary classifier learning algorithm B, range [tmin, tmax] for t)

1. For each subset s defined by the rows of M :
(a) For (x, c) ∈ S, let |c| =

∑
y cy and cs =

∑
y∈s cy .

(b) For each t in [tmin, tmax]:
Let bst = B({(x, I(cs ≥ t|c|), |cs − |c|t|) : (x, c) ∈ S}).

2. return {bst}

Algorithm 2. SECOC-Predict (classifiers {bst}, example x ∈ X , label y)
return 2 (tmin + (tmax − tmin)EsEt [I(y ∈ s)bst(x) + I(y �∈ s)(1 − bst(x))]) − 1

To make a label cost estimate, SECOC-Predict (Algorithm 2) uses a formula
of the expected prediction of the subsets containing the label.

Single Classifier Trick: Multiple invocations of the oracle learning al-
gorithm B can be collapsed into a single call using a standard trick [2, 1]. The
trick is just to augment the feature space with the name of the call, and then
learn a classifier b on (a random subset of) the union of all training data. With
this classifier, we can define bst(x) ≡ b(〈x, s, t〉), and all of our results hold for
this single invocation classifier. The implication of this observation is that we
can view SECOC-Train as a machine that maps cost-sensitive examples to im-
portance weighted binary examples. We denote the learned binary classifier by
B(SECOC-Train(S)).

3 The Main Theorem

Before stating the theorem, we need to define loss and regret. Given any distri-
bution D on examples X × {0, 1} × [0,∞), the importance weighted error rate
of a binary classifier b is given by

e(D, b) = E(x,y,i)∼D [iI(b(x) �= y)] .

Similarly, given any distribution D on examples X × [0,∞)k, the cost-sensitive
loss of a multiclass classifier h is given by

e(D, h) = E(x,c)∼D

[
ch(x)

]
.

For each of these notions of loss, the regret is the difference between the achieved
performance and best possible performance:

r(D, h) = e(D, h) − min
h′

e(D, h′).

(Note that we mean the minimum over all classifiers h′ not over some class.)
The minimum loss classifier is also known as the “Bayes optimal classifier”.

We must also define how SECOC transforms its distribution D into a distri-
bution on the learned binary classifier. To draw a sample from this distribution,
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we first draw a cost-sensitive sample (x, c) from D, and then apply SECOC-
Train to the singleton set {(x, c)} to get a sequence of importance weighted
binary examples, one for each (s, t) pair. Now, we just sample uniformly from
this set, adding the index in the sequence as a feature. We overload and denote
the induced distribution by SECOC-Train(D).

Throughout the paper, for a cost vector c ∈ [0,∞)k and a subset of labels
s ⊆ {1, . . . , k}, let cs =

∑
y∈s cy. Also let |c| =

∑k
y=1 cy. The distribution D|x

is defined as D conditioned on x.

Theorem 1. (SECOC Regret Transform) For all importance weighted binary
learning algorithms B and cost-sensitive datasets S in (X × [0,∞)k)∗, let b =
B(SECOC-Train(S)). Then for all test distributions D on X × [0,∞)k, for all
labels y ∈ {1, . . . , k} :

E(x,c)∼D

(
SECOC-Predict(b, x, y)Ec′∼D|x [|c′|] − Ec′∼D|x

[
c′y

])2

≤ 8(tmax − tmin)2r(SECOC-Train(D), b),

where tmax = max(x,c):D(x,c)>0 maxs(cs/|c|) and tmin = min(x,c):D(x,c)>0

mins(cs/|c|).
This theorem relates the average regret of the created binary importance
weighted classifier to the relative estimation error.

For the proof, note that the dependence on B and S can be removed by
proving the theorem for all b, which is of equivalent generality.

Proof. We first analyze what happens when no regret is suffered, and then
analyze the case with regret. For any s and t, let D(s, t) be the distribu-
tion on X × {0, 1} × [0,∞) induced by drawing (x, c) from D and outputting
(x, I(cs ≥ t|c|), |cs − t|c||).

For any choice of s and t, the optimal classifier is given by

b∗st = arg min
b

E(x,y,i)∼D(s,t) [iI(b(x) �= y)]

= argmin
b

E(x,c)∼D [|cs − |c|t| · I (b(x) �= I(cs ≥ t|c|))] .
For any x, the optimal value of b(x) is either 0 or 1. When it is 0, the expected
cost is

Ec∼D|x max {(cs − t|c|), 0}. (1)

Otherwise, it is
Ec∼D|x max {(t|c| − cs), 0}. (2)

To simplify notation, let Zx = Ec∼D|x|c|. Equations 1 and 2 are continuous in t;
the first decreases while the second increases monotonically with t, so we need
only find the single equality point to describe the optimal behavior for all t. This
equality point is given by

Ec∼D|x max {(cs − t|c|), 0} = Ec∼D|x max {(t|c| − cs), 0},
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or
Ec∼D|x(cs − t|c|) = 0,

yielding

t =
Ec∼D|x [cs]

Zx
,

and thus b∗st(x) = I(Ec∼D|x [cs] ≥ tZx).
For any choice of s, we have

Et [b∗st(x)] = EtI
(
Ec∼D|x [cs] ≥ tZx

)
=

Ec∼D|x[cs]

Zx
− tmin

tmax − tmin

since Et∈[tmin,tmax]I(K ≥ t) = K−tmin
tmax−tmin

for all K ∈ [tmin, tmax].
Since decoding is symmetric with respect to all labels, we need analyze only

one label y. Furthermore, since SECOC-Predict (Algorithm 2) is symmetric with
respect to set inclusion or complement set inclusion, we can assume that y is in
every subset (i.e., complementing all subsets not containing y does not change
the decoding properties of the code.) Consequently,

ĉy = EsEt [b∗st(x)] (tmax − tmin) + tmin = Es

Ec∼D|x [cs]
Zx

=
1
2Ec∼D|x(cy + |c|)

Zx
=

1
2

(
Ec∼D|x [cy]

Zx
+ 1

)
,

where the third equality follows from the fact that every label other than y
appears in s half the time in expectation over s. Consequently, SECOC-Predict
outputs 1

Zx
Ec∼D|x [cy] for each y, when the classifiers are optimal.

Now we analyze the regret transformation properties. The remainder of this
proof characterizes the most efficient way that any adversary can induce estima-
tion regret with a fixed budget of importance weighted regret.

Examining equations 1 and 2, notice that the importance weighted loss grows
linearly with the distance of tZx from Ec∼D|x [cs], but on the other hand, each
error has equal value in disturbing the expectation in SECOC-Predict (Algo-
rithm 2). There are two consequences for an adversary attempting to disturb
the expectation the most while paying the least importance weighted cost.

1) It is “cheapest” for an adversary to err on the t closest to 1
Zx

Ec∼D|x [cs]
first. (Any adversary can reduce the importance weighted regret by swapping
errors at larger values of |t− 1

Zx
Ec∼D|x [cs] | for errors at smaller values without

altering the estimation regret.)
2) It is “cheapest” to have a small equal disturbance for each s rather than

a large disturbance for a single s. (The cost any adversary pays for disturb-
ing the overall expectation can be monotonically decreased by spreading errors
uniformly over subsets s.)

Consequently, the optimal strategy for an adversary wanting to disturb the
output of SECOC-Predict by ∆ is to disturb the expectation for each s by

∆
2(tmax−tmin) . The importance weighted regret of erring (with a “1”) for
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t = ∆
2(tmax−tmin) + 1

Zx
Ec∼D|x [cs] can be found by subtracting equation 2 from

equation 1:

Ec∼D|x(t|c| − cs)I(cs < t|c|) − Ec∼D|x(cs − t|c|)I(cs ≥ t|c|)

= Ec∼D|x

((
∆

2(tmax − tmin)
+

Ec∼D|x [cs]
Zx

)
|c| − cs

)

=
∆

2(tmax − tmin)
Zx.

The same quantity holds for t = − ∆
2(tmax−tmin) + Ec∼D|x[cs]

Zx
. By observation (1)

above, in order for the adversary to induce an estimation error of ∆ an error
must occur for every t ∈

[
Ec∼D|x[cs]

Zx
,

Ec∼D|x[cs]

Zx
+ ∆

2(tmax−tmin)

]
. If we consider a

limit as the discretization of t goes to 0, the average regret is given by an integral
of the differential regret according to:

∫ u= ∆Zx
2(tmax−tmin)

u=0

udu =
∆2Z2

x

8(tmax − tmin)2
.

Solving for ∆2Z2
x and taking an expectation over all x gives the theorem. �

4 Applications and Corollaries

In this section we discuss various uses of SECOC to solve problems other than
relative cost estimation and corollaries of the main theorem.

4.1 Reduction All the Way to Classification

The basic SECOC reduction above reduces to importance weighted binary clas-
sification. However, there are easy reductions from importance weighted binary
classification to binary classification. For example, the Costing reduction [16]
uses rejection sampling to alter the measure. When SECOC is composed with
this reduction we get the following corollary:

Corollary 1. (SECOC Binary Regret Transform) For any importance weighted
binary learning algorithm B and cost-sensitive dataset S in (X × [0,∞)k)∗, let
b = B(Costing(SECOC-Train(S))). Then for all test distributions D on X ×
[0,∞)k and all labels y ∈ {1, . . . , k} :

E(x,c)∼D

(
SECOC-Predict(b, x, y)Ec′∼D|x [|c′|] − Ec′∼D|x

[
c′y

])2

≤ 4(tmax − tmin)r(Costing(SECOC-Train(D)), b)E(x,c)∼D [|c|]
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Algorithm 3. SECOC-Hard-Predict (classifiers {bst}, example x ∈ X)
return arg miny SECOC-Predict({bst}, x, y)

Proof. The basic result from importance weighted analysis is that for every im-
portance weighted test measure D, we have

r(D, b) = r(Costing(D), b)E(x,y,i)∼D [i] ,

where the regret on the left is the importance weighted regret of b with respect
to D, and the regret on the right is the regret with respect to the induced binary
distribution.

Consequently, we need only compute an upper bound on the average impor-
tance over t and s. The average importance for fixed x and s is given by

1
tmax − tmin

∫ tmax

tmin

Ec∼D|x |t|c| − cs| dt.

This quantity is maximized (over all x and s) when Ec∼D|x [cs] = 0. In this

case the integral is (tmax−tmin)2

2(tmax−tmin)Ec∼D|x|c| = (tmax−tmin)
2 Ec∼D|x|c|. Taking the

expectation over x and s, we get the corollary. �

4.2 Cost Sensitive Classification

If we use the decoding function SECOC-Hard-Predict in Algorithm 3, we can
choose a class in a regret transforming manner.

Corollary 2. (Hard Prediction Regret Transform) For any importance weighted
binary learning algorithm B and multiclass dataset S in (X × {1, ..., k})∗, let
b = B(SECOC-Train(S)). Then for all test distributions D over X × {1, .., k}:

r (D, SECOC-Hard-Predict(b, x)) ≤ 4(tmax − tmin)
√

2r(SECOC-Train(D), b)

Proof. We can weaken Theorem 1 so that for all y:

E(x,y)∼D

∣
∣SECOC-Predict(b, x, y)Ec′∼D|x [|c′|] − Ec′∼D|x

[
c′y

]∣∣

≤ 2(tmax − tmin)
√

2r(SECOC-Train(D), b)

since for all X ,
√

E(X) ≥ E
√

X. When doing a hard prediction according to
these outputs, our regret at most doubles because the relative cost estimate of
the correct class can be increased by the same amount that the relative cost
estimate of the wrong class can be decreased. �
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Algorithm 4. PECOC-Train (Set of k-class multiclass examples S, impor-
tance weighted binary classifier learning algorithm B)
1. Let S′ = {(x,∀i ci = I(i �= y)) : (x, y) ∈ S}.
2. return SECOC-Train

(
S′, B,

[ � k
2 �−1

k−1
,
� k

2 �
k−1

])

Algorithm 5. PECOC-Predict (classifiers {bst}, example x ∈ X , label y)
return 1 − SECOC-Predict({bst}, x, y)(k − 1)

4.3 Multiclass Probability Estimation

SECOC can be used to predict the probability of class labels with the training
algorithm PECOC-Train (Algorithm 4) for any k a power3 of 2. Similarly, the
prediction algorithm PECOC-Predict (Algorithm 5) is a slight modification of
SECOC-Predict (Algorithm 2).

Corollary 3. (Multiclass Probability Regret Transform) For any importance
weighted binary learning algorithm B and a multiclass dataset S in (X × {1, ...,
k})∗ with k a power of 2, let b = B(PECOC-Train(S)). Then for all test distri-
butions D over X × {1, ..., k} and all labels y ∈ {1, . . . , k},

E(x,y)∼D (PECOC-Predict(b, x, y) − D(y|x))2 ≤ 8

(k − 1)2
r(PECOC-Train(D), b).

This corollary implies that probability estimates (up to l2 loss) are accurate
whenever the classifier has small regret. When we reduce all the way to classifi-
cation as in Corollary 1, the factor of 1/(k − 1)2 disappears so the l2 regret in
class probability estimation is independent of the number of classes.

Proof. The proof just uses Theorem 1. In this case |c| = k − 1, Ec′∼D|x
[
c′y

]
=

1 − D(y|x), and tmax − tmin = 1
k−1 .

E(x,y)∼D (SECOC-Predict(b, x, y)(k − 1) − (1 − D(y|x)))2

≤ 8
(k − 1)2

r(PECOC-Train(D), b).

Applying algebra finishes the corollary. �

4.4 Multiclass Classification

When a hard prediction is made with PECOC-Hard-Predict (Algorithm 6), we
achieve a simple algorithm that translates any consistent binary classifier into a
consistent multiclass classifier.

3 This limitation is not essential. See Section 6.
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Algorithm 6. PECOC-Hard-Predict (classifiers {bst}, example x ∈ X)
return arg maxy∈{1,...,k} PECOC-Predict({bst}, x, y)

Corollary 4. (Multiclass Classification Regret Transform) For any importance
weighted binary learning algorithm B and multiclass dataset S in (X×{1, ..., k})∗
with k a power of 2, let b = B(PECOC-Train(S)). For all test distributions D
over X × {1, ..., k}:

r (D, PECOC-Hard-Predict(b, x)) ≤ 4
k − 1

√
2r(PECOC-Train(D), b).

Note again that if we reduce to binary classification, the factor of k−1 is removed
and the result is independent of the number of classes.

This guarantee can not be satisfied by ECOC (as we show in Section 5). A
guarantee of this sort may be provable with other variants of ECOC (such as
[1]), but this seems to be the tightest known regret transform. Since consistent
generalization of binary classifiers to multiclass classifiers has historically been
problematic (see [8] for a fix for SVMs), this result may be of interest.

Proof. The regret of a multiclass prediction is proportional to the difference in
probability of the best prediction and the prediction made. Weakening corollary
3 gives, for all y,

E(x,y)∼D |PECOC-Predict(b, x, y) − D(y|x)| ≤ 2
k − 1

√
2r(PECOC-Train(D), b)

since for all X ,
√

E(X) ≥ E
√

X. When doing a hard prediction according to
these outputs, our regret at most doubles because the probability estimate of the
correct class can be reduced by the same amount that the probability estimate
of the wrong class increases. �

4.5 Online Learning and Loss

Notice that all basic transformations are applied to individual examples, as in
line 1(b) of SECOC-Train. Consequently, the transformation can be done online.
The theorems apply to any measure on (x, c), so they also apply to the uniform
measure over past examples; thus online regret minimizing binary predictors can
be used with SECOC to minimize cost-sensitive regret online.

In particular, this means that SECOC can be used with online learning al-
gorithms such as weighted majority [9] in order to optimize regret with respect
to any loss function.

Note that the notion of regret in online learning is typically defined with
respect to some set of “experts” rather than the set of all possible experts as
here. This distinction is not essential, because the weighted majority algorithm
can be applied to an arbitrary measure over the set of all experts.
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5 ECOC Can Not Transform Regret

Is it possible to get similar guarantees with ECOC? The answer is no. It is easy
to show that even when ECOC is supplied with an optimal binary classifier, the
reduction fails to provide an optimal multiclass classifier.

Theorem 2. (ECOC Inconsistency) For all k > 2, there exists a distributions
D over multiclass test examples (x, y) such that for all codes M , with c∗ =
arg minc r(ECOC-Train(D), c),

r(D, ECOC-Predict(c∗)) >
1
8

where ECOC-Train and ECOC-Predict are as defined in the introduction.

Proof. The proof is constructive. We choose a D which places probability on
three labels: ‘1’, ‘2’, and ‘3’.

A few observations about symmetry simplify the proof. First, since only three
labels have positive probability, we can rewrite any code M as a new weighted
code M ′ over the three labels where each subset has a weight ws corresponding
to the number of times the subset of the three labels exists in M after projection.
The second observation is that the symmetry with respect to complementarity
implies that each row (and each codeword) has one ‘1’ in it.

These observations imply that ECOC essentially uses the binary classifier to
ask, “Is the probability of label i > 0.5?” for each i ∈ {1, 2, 3}. These answers
are then combined with a weighted sum. If we let the probability of one label be
0.5 − ε and the probability of the other two labels be 0.25 + ε

2 each, the answer
to every question will be “no”.

Since we have a weighted sum, the exact weighting determines the outcome
(possibly with randomization to break ties). The exact distribution therefore
picks a label at random to have probability 0.5− ε, encodes that choice in the x
value, and then draws the label from this associated distribution.

Under any code, the probability of predicting the label with greatest prob-
ability is at most 1

3 implying a regret of 2
3 (0.5 − ε − (0.25 + ε

2 )), which can be
made arbitrarily close to 1

6 . �

A margin-based version of ECOC [1] has the same lower bound whenever the
coding matrices are limited to “-1” and “1” entries. This is because consistent
binary classifiers might have margin 1 or −1 for each example, and the proof
above holds.

However, this version of ECOC also allows “don’t cares” in the coding matrix.
The existence of “don’t cares” allows questions of the form, “Is the probability
of this label greater than that label?” In general, these are sufficiently powerful
to support regret transformation consistency, with the exact quantity of regret
transformation efficiency dependent on the coding matrix. We are not aware of
any margin based code with “don’t cares” with a better regret transform than
SECOC with the Hadamard Code.
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Take as an example the all-pairs code, which is consistent with margin-based
ECOC. The all-pairs code creates a classifier for every pair of classes deciding
(for an optimal classifier) “Is class i more probable than class j?” The problem
with this question is that the classifier is applied when class i and class j each
have zero probability. In this situation, an adversarial classifier can choose to
report either pi > pj or pj > pi without paying any regret. Consequently, an
adversarial binary classifier could make some label with 0 conditional probability
beat all labels except for the correct label for free. This is not robust, because
one error in one classifier (out of k − 1 active classifiers) can alter the result.
Consequently, the regret transform for this code scales with k.

6 Discussion

Variants. There are several variants of the basic SECOC algorithm.

Random Code. One simple variant code is “pick a random subset s and pick a
random t”. This code has essentially the same analysis as the Hadamard code
presented here in expectation over the random choices.

Optimal codes. For small values of k (the number of classes), it is possible to
derive a better regret transform with other codes. For example, when k = 2 there
is only one useful subset (up to symmetry in complementation), so the prediction
algorithm can simply output the cost estimate for that one subset rather than 2
times the average predicted cost, minus 1. This removes a factor of 2 loosening
in the last paragraph of the proof of the main theorem. When used for class
probability prediction the above observation improves on the regret transform
analysis of the probing algorithm [7] by a factor of

√
2. The reason for this

improvement is (essentially) the use of a unified measure over the classification
problem rather than many different measures for different problems.

Varying interval. The range of t can be made dependent on s. This is useful when
embedding multiclass classification into cost-sensitive classification for k not a
power of 2. Roughly speaking, allowing the range of t to vary with s eliminates
the use of classifiers for which the correct prediction is “always 0” or “always
1”. Eliminating these classifiers improves the regret transform by reducing the
size of the set over which regret is averaged.

Clipping. Our prediction algorithms can output relative costs or probability es-
timates above “1” or below “0”. In such cases, clipping the prediction to the
interval [0, 1] always reduces regret.

Why Regret Isn’t Everything. Other work [2] defines a reduction with the
property that small error on the subproblem implies small error on the original
problem. The definition of regret we use here is superior because the theorems
can apply nontrivially even on problems with large inherent noise. However,
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the mathematical form of the regret transforms is weaker, typically by ε loss
changing to

√
εregret. Tightening the regret transform by removal of the square

root seems to require a different construction.

Difficulty of Created Learning Problems. A natural concern when using
any reduction is that it may create hard problems for the oracle. And in fact,
learning to distinguish a random subset may be significantly harder than learning
to distinguish (say) one label from all other labels, as in the One-Against-All
(OAA) reduction, as observed in [1, 5]. The best choice of code is a subtle affair.
The method here is general and can be used with sparser coding matrices as
well. Nevertheless, there is some empirical evidence in support of SECOC with
Hadamard codes (presented in the next section).

7 Experimental Results

We compared the performance of SECOC, ECOC and One-Against-All (OAA)
on several multiclass datasets from the UCI Machine Learning Repository [11]
(ecoli, glass, pendigits, satimage, soybean, splice, vowel, and yeast). Hadamard
matrices were used for both SECOC and ECOC. As oracles, we used a decision
tree learner (J48), a (linear) support vector machine learner (SMO) and logistic
regression (denoted LR), all available from Weka [15]. Default parameters were
used for all three learners in all experiments. For datasets that do not have a
standard train/test split, we used a random split with 2/3 for training and 1/3
for testing. The figures below show test error rates of SECOC plotted against
those of ECOC and OAA (the axes are labeled).
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For SECOC, we used six thresholds for each row of the matrix. SECOC
resulted in superior (or equal) performance on every dataset tested, for every
learner used. We do not report any statistical significance tests because the
assumptions they are based on are not satisfied by the datasets. Instead we re-
port all experiments performed; we believe that the observed consistency across
different datasets and learners gives sufficient empirical evidence in support of
SECOC. The code is available from the authors.
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