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Abstract. A general model is proposed for studying ranking problems.
We investigate learning methods based on empirical minimization of the
natural estimates of the ranking risk. The empirical estimates are of the
form of a U -statistic. Inequalities from the theory of U -statistics and U -
processes are used to obtain performance bounds for the empirical risk
minimizers. Convex risk minimization methods are also studied to give
a theoretical framework for ranking algorithms based on boosting and
support vector machines. Just like in binary classification, fast rates of
convergence are achieved under certain noise assumption. General suffi-
cient conditions are proposed in several special cases that guarantee fast
rates of convergence.

1 Introduction

Motivated by various applications including problems related to document re-
trieval or credit-risk screening, the ranking problem has received increasing at-
tention both in the statistical and machine learning literature. In the ranking
problem one has to compare two (or more) different observations and decide
which one is “better”. For example, in document retrieval applications, one may
be concerned with comparing documents by degree of relevance for a particular
request, rather than simply classifying them as relevant or not.

In this paper we establish a statistical framework for studying such ranking
problems. We discuss a general model and point out that the problem may
be approached by empirical risk minimization methods thoroughly studied in
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statistical learning theory with the important novelty that natural estimates of
the ranking risk involve U -statistics. Therefore, the methodology is based on the
theory of U -processes. For an excellent account of the theory of U -statistics and
U -processes we refer to the monograph of de la Peña and Giné [9].

In this paper we establish basic performance bounds for empirical minimiza-
tion of the ranking risk. We also investigate conditions under which significantly
improved results may be given. We also provide a theoretical analysis of certain
nonparametric ranking methods that are based on an empirical minimization of
convex cost functionals over convex sets of scoring functions. The methods are in-
spired by boosting-, and support vector machine-type algorithms for classification.

The rest of the paper is organized as follows. In Section 2, the basic models
and the two versions of the ranking problem we consider are introduced. In
Sections 3 and 4, we provide the basic uniform convergence and consistency
results for empirical risk and convex risk minimizers. In Section 5 we describe
the noise assumptions which take advantage of the structure of the U -statistics
in order to obtain fast rates of convergence.

2 The Ranking Problem

Let (X,Y ) be a pair of random variables taking values in X × R where X is
a measurable space. The random object X models some observation and Y
its real-valued label. Let (X ′, Y ′) denote a pair of random variables identically
distributed with (X,Y ), and independent of it. Denote

Z =
Y − Y ′

2
.

In the ranking problem one observes X and X ′ but not necessarily their labels
Y and Y ′. We think about X being “better” than X ′ if Y > Y ′, that is, if Z > 0.
The goal is to rank X and X ′ such that the probability that the better ranked
of them has a smaller label is as small as possible. Formally, a ranking rule is
a function r : X × X → {−1, 1}. If r(x, x′) = 1 then the rule ranks x higher
than x′. The performance of a ranking rule is measured by the ranking risk

L(r) = P{Z · r(X,X ′) < 0} ,

that is, the probability that r ranks two randomly drawn instances incorrectly.
Observe that in this formalization, the ranking problem is equivalent to a binary
classification problem in which the sign of the random variable Z is to be guessed
based upon the pair of observations (X,X ′). Now it is easy to determine the
ranking rule with minimal risk. Introduce the notation

ρ+(X,X ′) = P{Z > 0 | X,X ′} , ρ−(X,X ′) = P{Z < 0 | X,X ′} .

Then we have the following simple fact:

Proposition 1. Define

r∗(x, x′) = 2I[ρ+(x,x′)≥ρ−(x,x′)] − 1
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and denote L∗ = L(r∗) = E{min(ρ+(X,X ′), ρ−(X,X ′))}. Then for any ranking
rule r, L∗ ≤ L(r).

The purpose of this paper is to investigate the construction of ranking rules of
low risk based on training data. We assume that given n independent, identically
distributed copies of (X,Y ), are available: Dn = (X1, Y1), . . . , (Xn, Yn). Given
a ranking rule r, one may use the training data to estimate its risk L(r) =
P{Z · r(X,X ′) < 0}. The perhaps most natural estimate is the U -statistic

Ln(r) =
1

n(n − 1)

∑

i�=j

I[Zi,j ·r(Xi,Xj)<0] where Zi,j =
Yi − Yj

2
.

U -statistics have been studied in depth and their behavior is well understood.
One of the classical inequalities concerning U -statistics is due to Hoeffding [14]
which implies that, for all t > 0, if σ2 = Var(I[Z·r(X,X′)<0]) = L(r)(1 − L(r)),
then

P{|Ln(r) − L(r)| > t} ≤ 2 exp
(
− �(n/2)�t2

2σ2 + 2t/3

)
. (1)

It is important noticing here that the latter inequality may be improved
by replacing σ2 by a smaller term. This is based on the so-called Hoeffding’s
decomposition described below.

Hoeffding’s Decomposition. Hoeffding’s decomposition (see [21] for more de-
tails) is a basic tool for studying U -statistics. Consider the i.i.d. random variables
X,X1, ...,Xn and denote by

Un =
1

n(n − 1)

∑

i�=j

q(Xi,Xj)

a U -statistic of order 2 where q (the so-called kernel) is a symmetric real-valued
function. Assuming that q(X1,X2) is square integrable, Un − EUn may be de-
composed as a sum Tn of i.i.d. r.v’s plus a degenerate U -statistic Wn. In order
to write this decomposition, consider the following function of one variable

h(Xi) = E(q(Xi,X) | Xi) − EUn ,

and the function of two variables

h̃(Xi,Xj) = q(Xi,Xj) − EUn − h(Xi) − h(Xj).

Then Un = EUn + 2Tn + Wn, where

Tn =
1
n

n∑

i=1

h(Xi), Wn =
1

n(n − 1)

∑

i �=j

h̃(Xi,Xj) .

Wn is called a degenerate U -statistic because E

(
h̃(Xi,X) | Xi

)
= 0 . Clearly,

Var(Tn) =
Var(E(q(X1,X) | X1))

n
.
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Note that Var(E(q(X1,X) | X1)) is less than Var(q(X1,X)) (unless q is al-
ready degenerate). Furthermore, the variance of the degenerate U -statistic Wn

is of the order 1/n2. Thus, Tn is the leading term in this orthogonal decomposi-
tion. Indeed, the limit distribution of

√
n(Un − EUn) is the normal distribution

N (0, 4Var(E(q(X1,X) | X1)). This suggests that inequality (1) may be quite
loose.

Indeed, exploiting further Hoeffding’s decomposition, de la Peña and Giné
[9] established a Bernstein’s type inequality of the form (1) but with σ2 replaced
by the variance of the conditional expectation (see Theorem 4.1.13 in [9]). This
remarkable improvement is not exploited in our “first-order” analysis (Sections
3 and 4) but will become crucial when establishing fast rates of convergence in
Section 5.

Remark 1. (a more general framework.) One may consider a generaliza-
tion of the setup described above. Instead of ranking just two observations X,X ′,
one may be interested in ranking m independent observations X(1), . . . , X(m).
In this case the value of a ranking function r(X(1), . . . , X(m)) is a permutation
π of {1, . . . , m} and the goal is that π should coincide with (or at least resemble
to) the permutation π for which Y (π(1)) ≥ · · · ≥ Y (π(m)). Given a loss function
� that assigns a number in [0, 1] to a pair of permutations, the ranking risk is
defined as

L(r) = E�(r(X(1), . . . , X(m)), π) .

In this general case, natural estimates of L(r) involve m-th order U -statistics.
All results of this paper extend in a straightforward manner to this general
setup. In order to lighten the notation, we restrict the discussion to the case
described above, that is, to the case when m = 2 and the loss function is
�(π, π) = I[π �=π].

Another formalization of this problem is the so-called ordinal regression ap-
proach (see Herbrich, Graepel, and Obermayer [13]) in which the relation be-
tween ranking and pairwise classification is also made clear. However, the fact
that a sequence of pairs (Xi,Xj) of i.i.d. individual data (Xi) is no longer inde-
pendent was not considered there.

Remark 2. (ranking and scoring.) In many interesting cases the ranking
problem may be reduced to finding an appropriate scoring function. These are
the cases when the joint distribution of X and Y is such that there exists a
function s∗ : X → R such that

r∗(x, x′) = 1 if and only if s∗(x) ≥ s∗(x′) .

A function s∗ satisfying the assumption is called an optimal scoring function.
Obviously, any strictly increasing transformation of an optimal scoring function
is also an optimal scoring function. Below we describe some important special
cases when the ranking problem may be reduced to scoring.
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Example 1. (the bipartite ranking problem.) In the bipartite ranking prob-
lem the label Y is binary, it takes values in {−1, 1}. Writing η(x)=P{Y =1|X =x},
it is easy to see that the Bayes ranking risk equals

L∗ = E min{η(X)(1 − η(X ′)), η(X ′)(1 − η(X))}
and also,

L∗ = Var
(

Y + 1
2

)
− 1

2
E |η(X) − η(X ′)| ≤ 1/4

where the equality L∗ = Var
(

Y +1
2

)
holds when X and Y are independent and

the maximum is attained when η ≡ 1/2. Observe that the difficulty of the bipar-
tite ranking problem depends on the concentration properties of the distribution
of η(X) = P{Y = 1 | X} through the quantity E{|η(X) − η(X ′)|} which is a
classical measure of concentration, known as Gini’s mean difference. It is clear
from the form of the Bayes ranking rule that the optimal ranking rule is given by
a scoring function s∗ which is any strictly increasing transformation of η. Then
one may restrict the search to ranking rules defined by scoring functions s, that
is, ranking rules of form r(x, x′) = 2I[s(x)≥s(x′)]−1. Writing L(s) def= L(r), one has

L(s) − L∗ = E
(|η(X ′) − η(X)| I[(s(X)−s(X′))(η(X)−η(X′))<0]

)
.

Observe that the ranking risk in this case is closely related to the auc criterion
which is a standard performance measure in the bipartite setting (see, e.g., [11]).
More precisely, we have:

AUC(s) = P (s(X) ≥ s(X ′) | Y = 1, Y ′ = −1) = 1 − 1
2p(1 − p)

L(s),

where p = P (Y = 1), so maximizing the AUC criterion is equivalent to minimiz-
ing the ranking risk.

Example 2. (a regression model). Assume now that Y is real-valued and the
joint distribution of X and Y is such that Y = m(X) + εσ(X) where m(x) =
E(Y |X = x) is the regression function and ε has a symmetric distribution around
zero and is independent of X. Then clearly the optimal ranking rule r∗ may be
obtained by a scoring function s∗ which may be taken as any strictly increasing
transformation of m.

3 Empirical Risk Minimization

Based on the empirical estimate Ln(r) of the risk L(r) of a ranking rule defined
above, one may consider choosing a ranking rule by minimizing the empirical
risk over a class R of ranking rules r : X × X → {−1, 1}. Define the empirical
risk minimizer, over R, by

rn = arg min
r∈R

Ln(r) .
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(Ties are broken in an arbitrary way.) In a “first-order” approach, we may study
the performance L(rn) = P{Z ·rn(X,X ′) < 0|Dn} of the empirical risk minimizer
by the standard bound (see, e.g., [10])

L(rn) − inf
r∈R

L(r) ≤ 2 sup
r∈R

|Ln(r) − L(r)| . (2)

This inequality points out that bounding the performance of an empirical min-
imizer of the ranking risk boils down to investigating the properties of U -
processes, that is, suprema of U -statistics indexed by a class of ranking rules.
In our first-order approach it suffices to use the next simple inequality which
reduces the problem to the study of ordinary empirical processes.

Lemma 1. Let qτ : X × X → R be real-valued functions indexed by τ ∈ T
where T is some set. If X1, . . . , Xn are i.i.d. then for any convex nondecreasing
function ψ,

Eψ

⎛

⎝sup
τ∈T

1
n(n − 1)

∑

i�=j

qτ (Xi,Xj)

⎞

⎠ ≤ Eψ

⎛

⎝sup
τ∈T

1
�n/2�

�n/2�∑

i=1

qτ (Xi,X�n/2�+i)

⎞

⎠ ,

assuming the suprema are measurable and the expected values exist.

The proof uses a similar trick Hoeffding’s above-mentioned inequality are
based on. The details are omitted.

Using the lemma with ψ(x) = eλx, we bound the moment generating func-
tion of the U -process by that of an ordinary empirical process. Then standard
methods of handling empirical processes may be used directly. For example, the
bounded differences inequality (see McDiarmid [20]) implies that

log E exp
(

λ sup
r∈R

|Ln(r) − L(r)|
)

≤ λE sup
r∈R

|L̃n(r) − L(r)| + λ2

4(n − 1)
,

where we have set L̃n(r) = 1
�n/2�

∑�n/2�
i=1 I[Zi,�n/2�+i·r(Xi,X�n/2�+i)<0]. The ex-

pected value on the right-hand side may now be bounded by standard methods.
For example, if the class R of indicator functions has finite vc dimension V ,
then

E sup
r∈R

1
�n/2�

∣∣∣∣∣∣

�n/2�∑

i=1

I[Zi,�n/2�+i·r(Xi,X�n/2�+i)<0] − L(r)

∣∣∣∣∣∣
≤ c

√
V

n

for a universal constant c (see, e.g., Lugosi [17]). By the Chernoff bound P{X >
t} ≤ E exp(λX − λt) we immediately obtain the following corollary:

Proposition 2. Let R be a class of ranking rules of vc dimension V . Then for
any t > 0,

P

{
sup
r∈R

|Ln(r) − L(r)| > c

√
V

n
+ t

}
≤ e−(n−1)t2 .
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A similar result is proved in the bipartite ranking case by Agarwal, Har-Peled,
and Roth ([1], [2]) with the restriction that their bound holds conditionally on
a label sequence. Their analysis relies on a particular complexity measure called
the rank-shatter coefficient but the core of the argument is the same (since they
implicitly make use of the permutation argument to recover a sum of independent
quantities).

The proposition above is convenient, simple, and, in a certain sense, not
improvable. However, it is well known from the theory of statistical learning and
empirical risk minimization for classification that the bound (2) is often quite
loose. In classification problems the looseness of such a “first-order” approach
is due to the fact that the variance of the estimators of the risk is ignored and
bounded uniformly by a constant. However, in the above analysis of the ranking
problem there is an additional weakness due to the fact that estimators based on
U -statistics have an even smaller variance as we pointed it out above. Observe
that all upper bounds obtained in this section remain true for an empirical risk
minimizer that, instead of using estimates based on U -statistics, estimates the
risk of a ranking rule by splitting the data set into two halves and estimate
L(r) by

1
�n/2�

�n/2�∑

i=1

I[Zi,�n/2�+i·r(Xi,X�n/2�+i)<0] .

(The same holds for the results of Section 4 as well.) Thus, in the analysis above
one looses the advantage of using U -statistics. In Section 5 it is shown that un-
der certain, not uncommon, circumstances significantly smaller risk bounds are
achievable. There it will have an essential importance to use the sharp exponen-
tial bounds for U -statistics.

4 Convex Risk Minimization

Several successful algorithms for classification, including various versions of boos-
ting and support vector machines are based on replacing the loss function by a
convex function and minimizing the corresponding empirical convex risk func-
tionals over a certain class of functions (typically over a ball in an appropriately
chosen Hilbert or Banach space of functions). This approach has important com-
putational advantages, as the minimization of the empirical convex functional is
often computationally feasible by gradient descent algorithms. Recently signifi-
cant theoretical advance has been made in understanding the statistical behavior
of such methods see, e.g., Bartlett, Jordan, and McAuliffe [4], Blanchard, Lugosi
and Vayatis [6], Breiman [8], Jiang [15], Lugosi and Vayatis [18], Zhang [23].

The purpose of this section is to extend the principle of convex risk minimiza-
tion to the ranking problem studied in this paper. Our analysis also provides a
theoretical framework for the analysis of some successful ranking algorithms
such as the RankBoost algorithm of Freund, Iyer, Schapire, and Singer [11]. In
what follows we adapt the arguments of Lugosi and Vayatis [18] (where a simple
binary classification problem was considered) to the ranking problem.



8 S. Clémençon, G. Lugosi, and N. Vayatis

The basic idea is to consider ranking rules induced by real-valued functions,
that is, ranking rules of the form

r(x, x′) =
{

1 if f(x, x′) > 0
−1 otherwise

where f : X × X → R is some measurable real-valued function. With a slight
abuse of notation, we will denote by L(f) def= P{sgn(Z) · f(X,X ′) < 0} = L(r)
the risk of the ranking rule induced by f . (Here sgn(x) = 1 if x > 0, sgn(x) =
−1 if x < 0, and sgn(x) = 0 if x = 0.) Let φ : R → [0,∞) a convex cost
function satisfying φ(0) = 1 and φ(x) ≥ I[x≥0]. Typical choices of φ include the
exponential cost function φ(x) = ex, the “logit” function φ(x) = log2(1 + ex),
or the “hinge loss” φ(x) = (1 + x)+. Define the cost functional associated to the
cost function φ by

A(f) = Eφ(− sgn(Z) · f(X,X ′)) .

We denote by A∗ = inff A(f) the “optimal” value of the cost functional where
the infimum is taken over all measurable functions f : X × X → R.

The most natural estimate of the cost functional A(f), based on the training
data Dn, is the empirical cost functional defined by the U -statistic

An(f) =
1

n(n − 1)

∑

i�=j

φ(− sgn(Zi,j) · f(Xi,Xj)) .

The ranking rules based on convex risk minimization we consider in this section
minimize, over a set F of real-valued functions f : X × X → R, the empirical
cost functional An, that is, we choose fn = arg minf∈F An(f) and assign the
corresponding ranking rule

rn(x, x′) =
{

1 if fn(x, x′) > 0
−1 otherwise.

By minimizing convex risk functionals, one hopes to make the excess convex
risk A(fn)−A∗ small. This is meaningful for ranking if one can relate the excess
convex risk to the excess ranking risk L(fn) − L∗. This may be done quite
generally by recalling a recent result of Bartlett, Jordan, and McAuliffe [4]. To
this end, introduce the function

H(ρ) = inf
α∈R

(ρφ(−α) + (1 − ρ)φ(α))

H−(ρ) = inf
α:α(2ρ−1)≤0

(ρφ(−α) + (1 − ρ)φ(α)) .

Defining ψ over R by ψ(x) = H− ((1 + x)/2) − H ((1 + x)/2), Theorem 3 of [4]
implies that for all functions f : X × X → R,

L(f) − L∗ ≤ ψ−1 (A(f) − A∗)

where ψ−1 denotes the inverse of ψ. Bartlett, Jordan, and McAuliffe show that,
whenever φ is convex, limx→0 ψ−1(x) = 0, so convergence of the excess convex
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risk to zero implies that the excess ranking risk also converges to zero. Moreover,
in most interesting cases ψ−1(x) may be bounded, for x > 0, by a constant
multiple of

√
x (such as in the case of exponential or logit cost functions) or

even by x (e.g., if φ(x) = (1 + x)+ is the so-called hinge loss).
Thus, to analyze the excess ranking risk L(f) − L∗ for convex risk min-

imization, it suffices to bound the excess convex risk. This may be done by
decomposing it into “estimation” and “approximation” errors as follows:

A(fn) − A∗(f) ≤
(

A(fn) − inf
f∈F

A(f)
)

+
(

inf
f∈F

A(f) − A∗
)

.

To bound the estimation error, assume, for simplicity, that the class F of func-
tions is uniformly bounded, say supf∈F,x∈X |f(x)| ≤ B. Then once again, we
may appeal to Lemma 1 and the bounded differences inequality which imply
that for any λ > 0,

log E exp

(
λ sup

f∈F
|An(f) − A(f)|

)
≤ λE sup

f∈F

(
Ãn(f) − A(f)

)
+

λ2B2

2(n − 1)
,

where Ãn(f) = 1
�n/2�

∑�n/2�
i=1 φ

(− sgn(Zi,�n/2�+i) · f(Xi,X�n/2�+i)
)
. Now it suf-

fices to derive an upper bound for the expected supremum appearing in the
exponent. This may be done by standard symmetrization and contraction in-
equalities. In fact, by mimicking Koltchinskii and Panchenko [16] (see also the
proof of Lemma 2 in Lugosi and Vayatis [18]), the expectation on the right-hand
side may be bounded by

4Bφ′(B)E sup
f∈F

⎛

⎝ 1
�n/2�

�n/2�∑

i=1

σi · f(Xi,X�n/2�+i)

⎞

⎠

where σ1, . . . , σ�n/2� are i.i.d. Rademacher random variables independent of Dn.
We summarize our findings:

Proposition 3. Let fn be the ranking rule minimizing the empirical convex risk
functional An(f) over a class of functions f uniformly bounded by −B and B.
Then, with probability at least 1 − δ,

A(fn) − inf
f∈F

A(f) ≤ 8Bφ′(B)Rn(F) +

√
2B2 log(1/δ)

2(n − 1)

where Rn(F) = E supf∈F
(

1
�n/2�

∑�n/2�
i=1 σi · f(Xi,X�n/2�+i)

)
.

Many interesting bounds are available for the Rademacher average of vari-
ous classes of functions. For example, in analogy of boosting-type classification
problems, one may consider a class FB of functions defined by

FB =

⎧
⎨

⎩f(x, x′) =
N∑

j=1

wjgj(x, x′) : N ∈ N,
N∑

j=1

|wj | = B, gj ∈ R
⎫
⎬

⎭
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where R is a class of ranking rules as defined in Section 3. In this case it is easy
to see that

Rn(FB) ≤ BRn(R) ≤ const.
BV√

n

where V is the vc dimension of the “base” class R.
Summarizing, we have shown that a ranking rule based on the empirical

minimization An(f) over a class of ranking functions FB of the form defined
above, the excess ranking risk satisfies, with probability at least 1 − δ,

L(fn) − L∗ ≤ ψ−1

(
8Bφ′(B)c

BV√
n

+

√
2B2 log(1/δ)

n
+

(
inf

f∈FB

A(f) − A∗
))

.

This inequality may be used to derive the universal consistency of such ranking
rules. For example, the following corollary is immediate.

Corollary 1. Let R be a class of ranking rules of finite vc dimension V such
that the associated class of functions FB is rich in the sense that

lim
B→∞

inf
f∈FB

A(f) = A∗

for all distributions of (X,Y ). Then if fn is defined as the empirical minimizer of
An(f) over FBn

where the sequence Bn satisfies Bn → ∞ and B2
nφ′(Bn)/

√
n → 0,

then
lim

n→∞L(fn) = L∗ almost surely.

Classes R satisfying the conditions of the corollary exist, we refer the reader
to Lugosi and Vayatis [18] for several examples.

Proposition 3 can also be used for establishing performance bounds for kernel
methods such as support vector machines. The details are omitted for the lack
of space.

5 Fast Rates

As we have mentioned at the end of Section 3, the bounds obtained there may be
significantly improved under certain conditions. It is well known (see, e.g., §5.2
in the survey [7] and the references therein) that tighter bounds for the excess
risk in the context of binary classification may be obtained if one can control
the variance of the excess risk by its expected value. In classification this can
be guaranteed under certain “low-noise” conditions combined with the fact that
the optimal (Bayes) classifier is in the class of candidate classification rules (see,
e.g., Massart and Nédélec [19], Tsybakov [22]).

The purpose of this section is to examine possibilities of obtaining such im-
proved performance bounds for empirical ranking risk minimization. The main
message is that in the ranking problem one also may obtain significantly im-
proved bounds under some conditions that are analogous to the low-noise con-
ditions in the classification problem, though quite different in nature.
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Here we will greatly benefit from using U -statistics (as opposed to splitting
the sample) as the small variance of the U -statistics used to estimate the ranking
risk gives rise to sharper bounds.

Below we establish improved bounds for the excess risk for empirical ranking
risk minimization introduced in Section 3 above. Similar results also hold for the
estimator based on the convex risk A(s) though some assumptions may be more
difficult to interpret (see [6] for classification), and here we restrict our attention
to the minimizer rn of the empirical ranking risk Ln(r) over a class R of ranking
rules.

Set first

qr((x, y), (x′, y′)) = I[(y−y′)·r(x,x′)<0] − I[(y−y′)·r∗(x,x′)<0]

and consider the following estimate of the excess risk Λ(r) def= L(r) − L∗ =
Eqr((X,Y ), (X ′, Y ′)) given by:

Λn(r) def=
1

n(n − 1)

∑

i �=j

qr((Xi, Yi), (Xj , Yj)),

which is a U -statistic of degree 2 with symmetric kernel qr. Clearly, the minimizer
rn of the empirical ranking risk Ln(r) over R also minimizes the empirical excess
risk Λn(r). To study this minimizer, consider the Hoeffding decomposition of
Λn(r):

Λn(r) = Λ(r) + 2Tn(r) + Wn(r) ,

where

Tn(r) =
1
n

n∑

i=1

hr(Xi, Yi)

is a sum of i.i.d. random variables with hr(x, y) = Eqr((x, y), (X ′, Y ′))−Λ(r) and

Wn(r) =
1

n(n − 1)

∑

i�=j

h̃r((Xi, Yi), (Xj , Yj))

is a degenerate U -statistic with symmetric kernel

h̃r((x, y), (x′, y′)) = qr((x, y), (x′, y′)) − Λ(r) − hr(x, y) − hr(x′, y′) .

Now consider the estimator rn obtained as the minimizer of

Ln(r) =
1

n(n − 1)

∑

i �=j

I[(Yi−Yj)·r(Xi,Xj)<0]

over all r ∈ R.
In this section we work under the following basic assumptions:

(a) The class R of ranking rules has a finite vc dimension V .
(b) The optimal ranking rule r∗ is in the class R.
(c) For all r ∈ R,

Var(hr(X,Y )) ≤ cΛ(r)α

with some constants c > 0 and α ∈ [0, 1].



12 S. Clémençon, G. Lugosi, and N. Vayatis

The basic tools we need are an exponential inequality for U -processes in-
dexed by a vc class of degenerate kernels due to Arcones and Giné [3] and a
general inequality for empirical risk minimizers of Bartlett and Mendelson [5].
The Arcones-Giné inequality, simplified to the case we need states that there
exists a universal constant C such that, with probability at least 1 − δ,

sup
r∈R

|Wn(r)| ≤ CV

n − 1
log

(
1
δ

)
. (3)

Theorem 1. Consider the minimizer of the empirical ranking risk Ln(r) over a
class R of ranking rules and assume that conditions (a),(b), and (c) listed above
hold. Then there exists a universal constant C such that, with probability at least
1 − δ, the ranking risk of rn satisfies

L(rn) − L∗ ≤ C

(
V log(n/δ)

n

)1/(2−α)

.

sketch of proof. Let A be the event on which supr∈R |Wn(r)| ≤ ρ, where
ρ = CV

n−1 log
(

2
δ

)
and C denotes the constant in (3). Then by (3), P[A] ≥ 1− δ/2.

By the Hoeffding decomposition of the U -statistic Λn(r), it is clear that, on
A, rn is an ρ-minimizer of (1/n)

∑n
i=1 fr(Xi, Yi) over r ∈ R (in the sense that

the average calculated for r = rn exceeds the minimum by not more than ρ)
where, for every r ∈ R, we write fr(x, y) = Eqr((X,Y ), (x, y)). Define r̃n as rn

on A and an arbitrary minimizer of (1/n)
∑n

i=1 fr(Xi, Yi) on Ac. Then clearly,
with probability at least 1 − δ/2, L(rn) = L(r̃n) and r̃n is a ρ-minimizer of
(1/n)

∑n
i=1 fr(Xi, Yi). Thus, we can use a general result of Bartlett and Mendel-

son [5] to bound the excess ranking risk Λ(r̃n) = E(fr̃n
(X,Y )|Dn) of r̃n. To this

end, we need an estimate on the L2 covering numbers of the class of functions
{fr : r ∈ R}. Now observe that for any pair r, r′ ∈ R, by Jensen’s inequality,

d(fr, fr′) =
√

E(fr(X,Y ) − fr′(X,Y ))2

≤
√

E(I[(Y −Y ′)·r(X,X′)<0] − I[(Y −Y ′)·r′(X,X′)<0])2 .

Thus, the L2 covering numbers of the class {fr : r ∈ R} are not more than those
of the class of indicator functions {I[(y−y′)·r(x,x′)<0] : r ∈ R}. However, since R
has vc dimension V , by Haussler’s inequality [12], the covering numbers of this
class satisfy log N(ε) ≤ cV log(1/ε). Then an argument similar to Theorem 2.12
of [5] may be used to complete the proof.

The Bipartite Ranking Problem. Next we derive a simple sufficient con-
dition for achieving fast rates of convergence for the bipartite ranking prob-
lem. Recall that here it suffices to consider ranking rules of the form r(x, x′) =
2I[s(x)≥s(x′)] − 1 where s is a scoring function. With some abuse of notation we
write hs for hr.

Noise assumption. There exist constants c > 0 and α ∈ [0, 1] such that for all
x ∈ X ,

EX′(|η(x) − η(X ′)|−α) ≤ c . (4)
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Proposition 4. Under (4), we have, for all s ∈ F , Var(hs(X,Y )) ≤ cΛ(s)α.

proof.

Var(hs(X,Y ))

≤ EX

[(
EX′(I[(s(X)−s(X′))(η(X)−η(X′))<0])

)2
]

≤ EX

[
EX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0] |η(X) − η(X ′)|α)

×
(
EX′(|η(X) − η(X ′)|−α)

)]

(by the Cauchy-Schwarz inequality)
≤ c

(
EXEX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0] |η(X) − η(X ′)|))α

(by Jensen’s inequality and the noise assumption)
= cΛ(s)α .

Condition (4) is satisfied under quite general circumstances. If α = 0 then
clearly the condition poses no restriction, but also no improvement is achieved in
the rates of convergence. On the other hand, at the other extreme, when α = 1,
the condition is quite restrictive as it excludes η to be differentiable, for example,
if X has a uniform distribution over [0, 1]. However, interestingly, for any α < 1,
poses quite mild restrictions as it is highlighted in the following example:

Corollary 2. Consider the bipartite ranking problem and assume that η(x) =
P{Y = 1|X = x} is such that the random variable η(X) has an absolutely
continuous distribution on [0, 1] with a density bounded by B. Then for any
ε > 0,

EX′(|η(x) − η(X ′)|−1+ε) ≤ 2B

ε

and therefore, by Theorem 1 and Proposition 4, for every δ ∈ (0, 1) there is
a constant C such that the excess ranking risk of the empirical minimizer rn

satisfies

L(rn) − L∗ ≤ CBε−1

(
V log(n/δ)

n

)1/(1+ε)

.

proof. The corollary follows simply by checking that (4) is satisfied for any
α = 1 − ε < 1. The details are omitted.

The condition (4) of the corollary requires that the distribution of η(X) is
sufficiently spread out, for example it cannot have atoms or infinite peaks in its
density. Under such a condition a rate of convergence of the order of n−1+ε is
achievable for any ε > 0.

Regression Model with Noise. Now we turn to the general regression model
with heteroscedastic errors in which Y = m(X) + σ(X)ε for some (unknown)
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functions m : X → R and σ : X → R, where ε has a Gaussian density and is
independent of X. Set

∆(X,X ′) =
m(X) − m(X ′)√
σ2(X) + σ2(X ′)

.

We have again s∗ = m (or any strictly increasing transformation of it) and the
optimal risk is L∗ = EΦ (− |∆(X,X ′)|) whose maximal value is attained when
the regression function m(x) is constant. Furthermore, we have

L(s) − L∗ = E
(|2Φ (∆(X,X ′)) − 1| · I[(m(x)−m(x′))·(s(x)−s(x′))<0]

)

where Φ is the distribution function of ε.

Noise Assumption. There exist constants c > 0 and α ∈ [0, 1] such that for
all x ∈ X ,

EX′(|∆(x,X ′)|−α) ≤ c . (5)

Proposition 5. Under (5), we have, for all s ∈ F , Var(hs(X,Y )) ≤ (2Φ(c) −
1)Λ(s)α.

proof. By symmetry, |2Φ (∆(X,X ′)) − 1| = 2Φ (|∆(X,X ′)|) − 1. Then, using
the concavity of the distribution function Φ on R+, we have, by Jensen’s inequal-
ity,

EX′Φ(|∆(x,X ′)|−α) ≤ Φ(EX′ |∆(x,X ′)|−α) ≤ Φ(c) ,

where we have used (5) together with the fact that Φ is increasing. Now the
result follows following the argument given in the proof of Proposition 4.

The preceding noise condition is fulfilled in many cases, as illustrated by the
example below.

Corollary 3. Suppose that m(X) has a bounded density and the conditional
variance σ(x) is bounded over X . Then the noise condition 5 is satisfied for any
α < 1.
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Université Paris XI.

20. C. McDiarmid (1989). On the method of bounded differences. In Surveys in
Combinatorics 1989, pp. 148-188, Cambridge University Press.

21. R.J. Serfling (1980). Approximation theorems of mathematical statistics. John
Wiley & Sons.

22. A. Tsybakov (2004). Optimal aggregation of classifiers in statistical learning. An-
nals of Statistics, 32, pp. 135–166.

23. T. Zhang (2004). Statistical behavior and consistency of classification methods
based on convex risk minimization (with discussion). Annals of Statistics, 32, pp.
56–85.


	Introduction
	The Ranking Problem
	Empirical Risk Minimization
	Convex Risk Minimization
	Fast Rates
	References



