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Abstract. Differential cryptanalysis and linear cryptanalysis are the
most widely used techniques for block ciphers cryptanalysis. Several at-
tacks combine these cryptanalytic techniques to obtain new attacks, e.g.,
differential-linear attacks, miss-in-the-middle attacks, and boomerang at-
tacks.

In this paper we present several new combinations: we combine dif-
ferentials with bilinear approximations, higher-order differentials with
linear approximations, and the boomerang attack with linear, with
differential-linear, with bilinear, and with differential-bilinear attacks.
We analyze these combinations and present examples of their usefulness.
For example, we present a 6-round differential-bilinear approximation of
s5DES with a bias of 1/8, and use it to attack 8-round s5DES using
only 384 chosen plaintexts. We also enlarge a weak key class of IDEA by
a factor of 512 using the higher-order differential-linear technique. We
expect that these attacks will be useful against larger classes of ciphers.

1 Introduction

In a differential attack [5], the attacker seeks a fixed input difference that prop-
agates through the nonlinear parts of the cipher to some fixed output difference
with usually high (or zero) probability. Such pair of differences with the corre-
sponding probability is called a differential. In the attack, the attacker asks for
the encryption of pairs of plaintexts with the input difference given by the dif-
ferential, and checks whether the output difference predicted by the differential
occurs (with the predicted probability).

In a linear attack [30], the attacker seeks a linear approximation between
the parity of a subset of the plaintext bits and the parity of a subset of the
ciphertext bits with a biased probability. The attacker asks for the encryption of
many plaintexts, and checks whether the linear relation predicted by the linear
approximation is satisfied or not.
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In 1994, Langford and Hellman [28] showed that both kinds of cryptanalysis
can be combined together by a technique called differential-linear cryptanalysis,
in which the differential is used to obtain a linear approximation (between two
encryptions) with bias 1/2. The technique was improved in [8, 27], allowing the
usage of differentials with probability lower than 1, thus making the technique
applicable to a larger set of block ciphers.

The differential-linear technique was applied to analyze several (reduced ver-
sions of) block ciphers, such as: DES [32] (attacked in [28, 8]), IDEA [26] (at-
tacked in [13, 20]), Serpent [1] (attacked in [9]), and COCONUT98 [35] (attacked
in [8]). Some of the attacks are the best known attacks against the respective
versions of the ciphers. It was also shown that the ciphertext-only extensions of
differential and linear cryptanalysis work with differential-linear cryptanalysis
as well [10].

Langford and Hellman’s technique is an example for devising the distinguisher
(to be used in the attack) as a combination of two much simpler parts. In this
case, a combination of a differential and a linear approximation. Such combina-
tions were later used in other cryptanalytic techniques, e.g., cryptanalysis using
impossible differentials [6, 7] (miss in the middle), and boomerang attacks [36],
both using combinations of differentials.

In this paper we present several new combinations of the differential, the
higher-order differential, the boomerang, the linear, and the bilinear techniques.
All of these combinations treat the distinguished part of the cipher as a cascade
of two (or even three) sub-ciphers.

First, we show how to combine the differential cryptanalysis with the bilinear
cryptanalysis [14]. Bilinear cryptanalysis is a generalization of linear cryptanal-
ysis specially designed for Feistel block ciphers. In bilinear cryptanalysis the
attacker studies relations between bilinear functions of the bits of the plaintext
and bilinear functions of the bits of the ciphertext. Usually, the results of bi-
linear cryptanalysis are comparable with those of ordinary linear cryptanalysis.
However, there are ciphers that are relatively strong against linear cryptanalysis
but are vulnerable to bilinear cryptanalysis. For example, s5DES [21] is stronger
than DES against linear cryptanalysis while the best 3-round bilinear approxi-
mation of s5DES has a bias of 1/4, which is much larger than the corresponding
linear approximation for DES.

We show that bilinear approximations can be combined with differentials
essentially in the same way as ordinary linear approximations are combined.
However, there are some differences between a regular differential-linear attack
and a differential-bilinear attack. We explore the similarities and the differences
between the two attacks, and apply the differential-bilinear technique to attack
8-round s5DES.

The next combination we discuss is the higher order differential-linear attack.
Higher-order differential cryptanalysis [2, 22, 25] is a generalization of differential
cryptanalysis that uses differentials of more than two plaintexts. In the higher-
order differential attack the attacker analyses the development of the XOR of
the intermediate data during the encryption of a set of plaintexts satisfying
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some conditions. Attacks which resemble higher-order differential attack, such
as SQUARE-like attacks [12, 18, 24, 29], can also be combined with linear crypt-
analysis.

We show that higher-order differentials (and SQUARE-like properties) can
also be used as a building block in a two-phase attack. In higher-order
differential-linear cryptanalysis, the attacker examines sets of plaintexts that
have the input difference of the higher-order differential. The higher-order dif-
ferential predicts the XOR value of all the intermediate encryption value after
the higher-order differential. Then, the linear approximation can be applied to
the entire set to predict the parity of a subset of the ciphertext bits (of all the
ciphertexts).

The data complexity of the higher-order differential-linear attack is propor-
tional to 22m/p2q2m, where p is the probability of the higher-order differential,
q is the bias of the linear approximation, and m is the number of plaintexts in
each set. Therefore, the attack can be used only if either the structure is small
enough or the linear approximation is very good (e.g., with bias 1/2). Such
instances can occur in block ciphers, especially in weak key classes for which
very strong and unexpected properties hold. For example, in the linear weak key
class of IDEA [17], a specially built approximation has a bias of 1/2. We show
that in the case of IDEA the size of the linear weak key class is increased from
223 keys in the class of a regular linear attack to 232 keys using a higher-order
differential-linear attack.

The last combination we discuss in this paper is the differential-linear
boomerang technique. The boomerang attack [36] treats the cipher as a cas-
cade of two sub-ciphers, and exploits two differentials, one for each sub-cipher,
in order to obtain some information on the differences using an adaptive chosen
plaintext and ciphertext process. In a differential-linear boomerang attack, the
attacker constructs a pair of encryptions whose difference in the intermediate
encryption value is known by means of the boomerang technique. This pair can
then be analyzed by means similar to those of the differential-linear cryptanal-
ysis. Moreover, it appears that the linear boomerang is a special case of a more
general attack. By decomposing the first sub-cipher into two sub-sub-ciphers
(and the cipher into three sub-ciphers in total), we can apply the differential-
linear (or the differential-bilinear) attack to the cipher.

One interesting feature of the (differential-)(bi)linear boomerang attack is
that this is the first attack that treats the cipher as a cascade of three sub-
ciphers successfully, while all previous works treat the cipher as a cascade of at
most two sub-ciphers.

The paper is organized as follows: In Section 2 we shortly sketch the ba-
sic differential-linear attack. In Section 3 we present differential-bilinear crypt-
analysis and apply it to DES and s5DES. In Section 4 we discuss higher-order
differential-linear cryptanalysis and present several applications of the attack,
including increasing the linear weak class of IDEA. In Section 5 we introduce
(differential-)(bi)linear boomerang attacks. This set of attacks are combinations
of the boomerang technique with the (differential-)(bi)linear attack. We concen-



New Combined Attacks on Block Ciphers 129

trate on the differential-bilinear boomerang attack, as this attack is the most
general one (while the other variants can be treated as special cases of this
attack). Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Notations

We use notations based on [3, 5] for differential and linear cryptanalysis, respec-
tively. In our notations ΩP , ΩT are the input and the output differences of the
differential, and λP , λC are the input and the output subsets (denoted by bit
masks) of the linear approximation. We also use λT to denote the input subset
in some cases.

Let E = E1 ◦ E0 be a block cipher, i.e., C = Ek(P ) = E1k
(E0k

(P )). For
example, if E is DES, then E0 can be the first eight rounds of DES, while E1

are the last eight rounds. For sake of simplicity, we omit the key, as it is clear
that encryption is done using a secret key. We denote the partial encryption of
P (and the partial decryption of C) by T , i.e., T = E0(P ) = E−1

1 (C).
The last notation is the scalar product of two strings x and y and is denoted

by x · y.

2.2 Differential-Linear Cryptanalysis

Langford and Hellman [28] show that a concatenation of a differential and a
linear approximation is feasible. The main idea in the combination is to encrypt
pairs of plaintexts, and check whether the corresponding ciphertext pairs have
the same parity of the output mask or not.

Let ΩP → ΩT be a differential of E0 with probability 1. Let λT → λC be a
linear approximation of E1 with bias ±q. We start with a pair of plaintexts P1

and P2 = P1 ⊕ ΩP . After the partial encryption through E0, the intermediate
encryption values are T1 and T2 = T1 ⊕ ΩT , respectively. For any intermediate
encryption value T and its corresponding ciphertext C, λT · T = λC · C with
probability 1/2 + q. Therefore, each of the relations λC · C1 = λT · T1 and
λC ·C2 = λT ·T2 = λT ·T1 ⊕λT ·ΩT is satisfied with probability 1/2± q. Hence,
with probability 1/2 + 2q2 the relation λC · C1 = λC · C2 ⊕ λT · ΩT holds.

We note that λT and ΩT are known, and thus, we have constructed a condi-
tion on C1 and C2 which has probability 1/2+2q2, while for a random pair of ci-
phertexts, this condition is satisfied with probability 1/2. This fact can be used in
distinguishers and in key recovery attacks. Hellman and Langford also noted that
it is possible to use truncated differentials [22] as long as λT ·ΩT is predictable.

As both difference and parity are linear operations, the two linear approxi-
mations in E1 in both encryptions can be combined into an approximation of E
of the form

E11–differential–E12 ,

where the lower subscript denotes whether the sub-cipher is in the first encryp-
tion or in the second, and “differential” refers to the differential combiner that
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ensures that the parities of the data before transition from E0 to E1 in both
encryptions are always equal (or always differ).

This led to the introduction of a differential-linear approximation for 6-round
DES which was composed of a 3-round differential and a 3-round linear approx-
imation. The differential-linear approximation was then used to attack 8-round
DES. The attack requires 768 chosen plaintexts, and has the lowest data require-
ments between all attacks on 8-round DES.

Later research [8, 27] showed that it is possible to have λT ·ΩT unknown but
fixed. Also, it was shown that when the differential-linear technique is applicable
when the differential has probability p �= 1. In that case the probability that
λT · T1 = λT · T2 ⊕ λT · ΩT is 1/2 + p′, where p′ = p/2, and thus the event
λC · C1 = λC · C2 ⊕ λT · ΩT holds with probability 1/2 + 4p′q2 = 1/2 + 2pq2.

As we demonstrate later, in some of the attacks that we present this property
does not hold. That is, the attacker has to know the exact value of the difference
ΩT , and in some cases, only certain values of the difference ΩT can be used in
the combined attack.

Moreover, even if ΩT ·λP is unknown to the attacker but constant for a given
key, the attack still succeeds. In that case we know that the value λC ·C1⊕λC ·C2

is either 0 or 1, with a bias of 2q2. This case is similar to the case in linear
cryptanalysis, when λK · K is unknown, and can be either 0 or 1.

3 Differential-Bilinear Attack

3.1 Bilinear Cryptanalysis

The bilinear attack [14] is a generalization of linear cryptanalysis aimed at Feistel
ciphers. The attack considers approximations involving bilinear terms of the
input, the output, and the key. The reason this attack aims at Feistel ciphers is
that it is easier to find such bilinear approximations for Feistel ciphers.

For the description of the bilinear approximations we adopt the notations
used in [14]. We also put aside the probabilistic nature of some of the steps for
sake of clarity (of course, when we use the approximations we take the prob-
abilities back into account). Let the input value of the r-th round in a Feistel
cipher be (Lr[0, 1, ..., n − 1], Rr[0, 1, ..., n − 1]), where L stands for the left half
of the data and R stands for the right half (note that R0 and L0 compose
the plaintext). Furthermore, we denote the input and the output values of the
F -function in the r-th round by Ir[0, 1, ..., n − 1], and Or[0, 1, ..., n − 1], respec-
tively. Due to the structure of a Feistel cipher Ir = Rr, Rr+1 = Lr ⊕ Or, and
Lr+1 = Rr.

Let α be a subset of {0, 1, ..., n − 1}, then Lr[α] = ⊕{Lr[s]|s ∈ α} =
⊕s∈αLr[s], i.e., Lr[α] is the parity of all bits in the left half masked by α. Simi-
larly Rr[β] is the parity all bits in the right half masked by β.

According to the Feistel round, for any mask α, β and any round r:

Lr+1[β] · Rr+1[α] ⊕ Rr[β] · Lr[α] = Ir[β] · Or[α].
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Such 1-round bilinear approximations can be concatenated to obtain bilinear
approximations of several rounds. Concatenation requires some additional con-
ditions, and also introduces some probability to the whole approximation. We
note that in some cases the relations involve key bits in bilinear terms as well,
e.g., Lr[12] · Kr[15]. One-round approximations can also be extended such that
they include linear terms in addition to the bilinear ones. In this case, the con-
catenation is more complex and can be achieved only if the linear terms fulfill
some additional requirements. The full description of bilinear approximations is
given in [14]. The general form of the obtained bilinear approximation is

L0[α0] · R0[β0] ⊕ R0[γ0] ⊕ L0[δ0] ⊕ Ln[αn] · Rn[βn] ⊕ Rn[γn] ⊕ Ln[δn] =
L0[ε0] · K[ε1] ⊕ R0[ζ0] · K[ζ1] ⊕ Ln[η0] · K[η1] ⊕ Rn[θ0] · K[θ1] ⊕ K[ι1]

(1)

where K is the key (or more precisely, the list of subkeys), and all Greek letters
represent some mask.

Given the above approximation, the bilinear attack resembles the linear at-
tack. Many plaintext/ciphertext pairs are gathered, and for any guess of K[ε1],
K[ζ1], K[η1], K[θ1], and K[ι1], the attacker counts how many pairs satisfy the
approximation. The guess for which the above approximation holds with the
expected probability of 1/2 + q is assumed to be the right guess.

We note that in a bilinear approximation there might be bilinear expressions
involving the subkey. This fact has implications on the differential-bilinear attack
which we explore later.

3.2 Differential-Bilinear Cryptanalysis

Roughly speaking, the differential-bilinear attack encrypts many pairs of plain-
texts, and examines Whether the obtained pair of ciphertexts satisfy some bi-
linear approximation or not. This is very similar to the way that differential and
linear cryptanalysis are combined.

We shall assume, without loss of generality, that the bilinear approximation
has the form presented in Equation (1), and that the probability of the approx-
imation is 1/2 + q. We note that it is possible to have several bilinear terms in
the approximation, but this fact does not change our analysis. We denote the
differential to be concatenated by ΩP → ΩT , and assume that the differential
has probability p.

The attacker chooses pairs of plaintexts P1 and P2 = P1 ⊕ ΩP . With prob-
ability p the the intermediate encryption values T1 and T2, respectively, have a
difference that satisfies the equality

T1L[α0] ·T1R[β0]⊕T1L[γ0]⊕T1R[δ0] = T2L[α0] ·T2R[β0]⊕T1L[γ0]⊕T2R[δ0], (2)

where TiL is the left half of Ti, and similarly TiR is the right half of Ti. We note
that under the random distribution1 assumption, in the (1−p) of the cases where

1 We note that whether this assumption holds for a given cipher needs to be throughly
investigated, and if possible verified as done in [9].
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the differential does not hold, Equation (2) holds in half of the times. Thus, the
probability that Equation (2) holds is p + (1− p)/2 = 1/2 + p/2, and the bias is
p′ = p/2.

Then, similarly to the differential-linear case, the pair of ciphertexts C1 and
C2 satisfies the following equation

C1L[αn]·C1L[βn]⊕C1L[γn]⊕C1R[δn] = C2L[αn]·C2R[βn]⊕C2L[γn]⊕C2R[δn] (3)

with probability 1/2 + 4p′q2 = 1/2 + 2pq2.
However, unlike differential-linear cryptanalysis where any differential can be

used for the combined attack, in the bilinear case the situation is more compli-
cated. This is due to the fact that bilinear approximations require more knowl-
edge about the data than linear approximations. In some cases, the required
information is not given by the differential.

It appears that the knowledge of the difference LT1 [α0]⊕LT2 [α0] and RT1 [β0]⊕
RT2 [β0] in the two encryptions does not imply the knowledge of the difference
between the LT [α0] · RT [β0] values. Thus, the attacker is restricted to the cases
where the knowledge suggested by the difference ΩT suffices to know the differ-
ence of the LT [α0] · RT [β0] values. This is clearly the case when α · ΩTL = β ·
ΩTR = 0, i.e., if the parity of the differences in the bits masked by α and β is zero.
Another example is when there are six active bits in the output of the differential
a, b, c, d, e and f , and the bilinear approximation is a·b+c·d+e·f+a·f+c·b+e·d.
For an arbitrary bilinear relation

∑
α,β LTi

[α] ·RTi
[β], where α and β are masks,

the difference between the two sums can be predicted (to be zero) whenever the
following two conditions hold simultaneously: (1) Each LTi

[α] appears an even
number of times in products with RTi

[β]’s whose difference is 1, and (2) Each
RTi

[β] appears an even number of times in products with LTi
[α]’s whose differ-

ence is 1.
We note that the linear terms of the approximation behave in the same way

as in differential-linear cryptanalysis. This is due to the way the attack works —
the attacker examines the difference in the output mask of two encryptions, and
as long as the linear terms do not affect the bias of the difference in the output
mask, the linear terms do not change the attack.

A more formal way to describe a differential-bilinear approximation is: As-
sume that the cipher E can be decomposed to two sub-ciphers E = E1 ◦ E0,
where the differential ΩP → ΩT (and probability p) is used in E0, and a bilinear
approximation is used for E1. Also assume that the bits predicted in ΩT are
sufficient to know the difference in the LT [α0] ·RT [β0] values with bias p/2. Let
b1 and b2 denote the outputs of the bilinear approximation in the first and the
second encryptions, respectively. The combination between the differential and
the bilinear approximation can be represented by the following extended bilinear
approximation:

b1–differential–b2,

where “differential” refers to the differential combiner. A distinguishing attack
or a key recovery attack based on the differential-bilinear property is similar to
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an ordinary differential-linear attack — the attacker encrypts many plaintext
pairs, and checks in how many of the pairs satisfy Equation (3).

The probability that a pair of ciphertexts (C1, C2), originating from a pair of
plaintexts (P1, P2 = P1⊕ΩT ), to satisfy Equation (3) is 1/2+4p′q2 = 1/2+2pq2.

An interesting fact that will be demonstrated in the bilinear approximation of
DES is that the subkey may be a part of the bilinear approximation. While in a
linear approximation the linear factors of the key are independent of the plaintext
(or the ciphertext), and can be treated like such, in a bilinear approximation the
key may have a bilinear term involving the plaintext (or the ciphertext). Thus,
Equation (3) might involve unknown key terms. When the equation involves
unknown key terms, the attacker has to try all possible combinations for these
key terms in the attack.

3.3 Applying Differential-Bilinear Cryptanalysis to DES and to s5

DES

In [14] a 3-round bilinear approximation of DES is presented. The approximation
has a bias of q = 1.66 · 2−3 which is slightly better than the best 3-round linear
approximation (that has a bias of 1.56 · 2−3). The bilinear approximation is as
follows:

L0[3, 8, 14, 25] ⊕ R0[17] ⊕ L0[3] · R0[16, 17, 20]⊕
L3[3, 8, 14, 25] ⊕ R3[17] ⊕ L3[3] · R3[16, 17, 20]
= K[sth] ⊕ L0[3] · K[sth′] ⊕ L3[3] · K[sth′′],

where (L0, R0) is the plaintext (or in our case the intermediate encryption value),
(L3, R3) is the ciphertext, and K[sth],K[sth′], and K[sth′′] are subsets of the
key bits.

We can concatenate the above bilinear approximation to a differential that
predicts a zero difference in L0[3] · R0[16, 17, 20]. The best 3-round differential
that satisfies the requirements for concatenating the differential and the bilinear
parts is presented in Figure 1. It has probability 46/64, and has the following
structure: The first round has a zero input difference. The second round has an
input difference with one active S-box — S3. The input difference of 4x to S3 may
cause an output difference whose bit 2 (of S3) is inactive with probability 28/64.
If this is the case, then the masked bits of the input of the bilinear approximation
are guaranteed to have a zero difference after the third round. Otherwise (with
probability 36/64), bit 2 of the output of S3 is active. This bit enters S4 in
the third round, and with probability 1/2 the output difference of S4 does not
affect the bits masked by the input mask of the bilinear approximation, and
thus, with probability 28/64 + 1/2 · 36/64 = 46/64 a pair with input difference
ΩP = (0x, 00 20 00 00x) has a zero difference in ΩT in the bits masked by the
bilinear approximation.

According to the previous analysis, the bias of the 6-round differential-bilinear
approximation that starts with the above input difference is

2pq2 = 2
46
64

(1.662−3)2 = 1.98 · 2−5.
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ΩP = 00 20 00 00 00 00 00 00x

A′ = 0 a′ = 0

B′ = 0X 00 NZ 0Yx b′ = 00 20 00 00x

= P (00 V 0 00 00x)

C′ =?? ?M R? ??x c′ = 0X 00 NZ 0Yx

= P (0? 0F ?? ??x)

ΩT =?? ?M R? ?? 0X 00 0Z 0Yx

F

F

F

(where X, Y ∈ {0, 4}, Z ∈ {0, 1}, M ∈ {0, 2, 4, . . . , Ex}, R ∈ {2, 4, 6}, F ∈
{0, 1, 2, 3, 8, 9, Ax, Bx}, N ∈ {0, 8}, V ∈ {3, 5, 6, 7, 9, Ax, Bx, Cx, Dx, Ex, Fx} and where
? is any arbitrary value.)

Fig. 1. A 3-Round Differential of DES with Probability 46/64

This bias is slightly lower than the bias of the best 6-round differential-linear
approximation (that equals to 2.43·2−5), and thus, the differential-bilinear attack
on 8-round DES requires more data than the corresponding differential-linear
attack.

An example that illustrates the advantages of the differential-bilinear crypt-
analysis over a regular differential-linear attack is s5DES [21]. In [15] the follow-
ing bilinear approximation with bias q = 1/4 is presented:

L0[17, 23, 31] ⊕ R0[1, 5] ⊕ L0[9] · R0[5]⊕
L3[17, 23, 31] ⊕ R3[1, 5] ⊕ L3[9] · R3[5] = K[sth],

where K[sth] is a subset of the key bits. This bilinear approximation can be
concatenated to the 3-round differential with probability 1 presented in Figure 2.
The differential assures that the difference in the input bits of the bilinear term
of the bilinear approximation is zero with probability 1. Thus, the bias of the
differential-bilinear approximation is:

2pq2 = 2(1/4)2 = 1/8
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ΩP = 20 00 00 00 00 00 00 00x

A′ = 0 a′ = 0

B′ = 00 W0 XY 0Zx b′ = 20 00 00 00x

= P (V 0 00 00 00x)

C′ =?? ?? M? ??x c′ = 00 W0 XY 0Zx

= P (0? ?? ?? 0?x)

ΩT =?? ?? M? ?? 00 W0 XY 0Zx

F

F

F

(where V ∈ {1, . . . , Fx}, W ∈ {0, 8}, X ∈ {0, 8}, Y ∈ {0, 2}, Z ∈ {0, 2}, M ∈
{0, . . . , 7}, and ? is any arbitrary value)

Fig. 2. A 3-Round Differential of s5DES with Probability 1

This differential-bilinear approximation can be used to attack 8-round s5DES
using 384 chosen plaintexts and time complexity of 220.2 encryptions. The attack
finds about 90 suggestions for 16 bits of the key, where the right value is among
the suggested values with probability of 65.5%.

4 Combining Higher-Order Differential and Linear
Attacks

4.1 Higher-Order Differential Cryptanalysis and SQUARE- ike
Attacks

Higher-order differential cryptanalysis [2, 22, 25] is a generalization of differential
cryptanalysis that exploits the algebraic structure of the cipher. In a higher-
order differential attack the attacker asks for the encryption of a structured set
of chosen plaintexts and analyses the XOR value (or some other function) of the
ciphertexts. The motivation of the attack is the fact that while it is well known
that linear relations between sets of bits during encryption should be avoided,
in some instances higher-order relations between sets of bits can be found.

L
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Ordinary differential cryptanalysis resembles an examination of the deriva-
tive of the nonlinear function of the cipher. It seeks cases with high enough
probability in which the nonlinear function can be approximated by a linear
function. Similarly, higher-order differential cryptanalysis looks at the higher-
order derivatives of the nonlinear function and seeks cases where the derivatives
can be predicted with high probability.

A close relative of the higher-order differential attack is the class of the
SQUARE-like attacks [12, 18, 24, 29]. These attacks are aimed against ciphers
in which small portions of the bits are interleaved by a strong nonlinear function
while the main interleaving stage is linear. This is the case in many of the SP
networks being in use today, and in particular in the AES. In this kind of attacks,
the attacker examines a set of plaintexts, chosen such that the input to one of the
non-linear part gets all the possible values. Thus, the attacker knows that the set
contain all the intermediate values (after the nonlinear stage), but she does not
know which value has originated from which plaintext. In this case, the attacker
does not look for the XOR of the ciphertexts, but rather for more complicated
functions, such as whether each of the possible values appears only once or not.
SP networks with only a few rounds are especially vulnerable, as very efficient
attacks can be devised, no matter what the non-linear function is [12].

Both higher-order differential cryptanalysis and SQUARE-like attacks, start
with a set of specially chosen plaintexts, and look for some special structure in
the obtained set of ciphertexts. The difference between the two attacks is the
form of the special structure we expect/look for in the ciphertexts set.

4.2 The Higher-Order Differential-Linear Attack

The combination of higher-order differentials with linear approximations is sim-
ilar to ordinary differential-linear cryptanalysis. The attacker uses the higher-
order differential (or the SQUARE property) to predict the XOR value of the
sets of masked bits in all of the elements of the structure, and then uses the linear
approximation to compare this value with the XOR of the masked ciphertext
bits in all of the encryptions.

Let Set be a set of plaintexts {P1, P2, . . . , Pm} such that the higher-order
differential predicts (with some probability p) the value ⊕m

i=1Ti where the Ti’s are
the intermediate encryption values. Under standard independence assumptions,
this means that the parity of any subset of bits taken over all intermediate
encryption values is biased with a bias of p′ = p/2. We also assume that there is
a linear approximation that predicts the value of λT ·T ⊕λC ·C with probability
1/2 + q.

Lemma 1. Let the event I be

I = {λP · (T1 ⊕ ... ⊕ Tm) = λC · (C1 ⊕ ... ⊕ Cm)} .

Then (under standard independence assumptions) Pr[I] = 1/2 + 2m−1qm.

Before the proof we note that I is actually the event that the XOR of the input
mask, taken over all intermediate encryption values, is equal to the XOR of the
output mask, taken over all ciphertexts.
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Proof. The proof of the lemma is by induction on m, and is very similar to
the proof of Matsui’s Piling-up Lemma [30]. If m = 1, there is only one ap-
proximation and thus the probability equals to 1/2 + q. Assume that the claim
holds for structures of size k and consider a structure of size k + 1. We divide
the structure into two structures, one consisting of k ciphertexts, and the other
consisting of one ciphertext. The division into two structures can be done at
random. Consider the probabilities of the events I in the two structures, i.e.,
consider each structure as an independent structure and consider the probabil-
ity of the events I corresponding to these new structures. Clearly, the event I
occurs for the whole structure if and only if the corresponding events I1, Ik occur
either for both structures or for none of them. By the induction hypothesis, the
probability of such an event equals to:

(1/2 + 2k−1qk)(1/2 + q) + (1/2 − 2k−1qk)(1/2 − q) =
1/4 + 2k−2qk + 2k−1qk+1 + q/2 + 1/4 − 2k−2qk + 2k−1qk+1 − q/2 =1/2+2kqk+1

Thus, by induction, the lemma is proven. Q.E.D.

Lemma 2. Given a set of plaintexts with the input requirements of the higher-
order differential, the bias of the event that the XOR of the output mask in all
the ciphertexts equal to the value predicted by the linear approximation is

b̂ = 2m−1pqm. (4)

Proof. The proof is a combination of the result of the previous lemma with the
probability of the higher-order differential. Let Z1, Z2 be the boolean variables
defined as Z1 = λP · (T1 ⊕ ... ⊕ Tm), and Z2 = λC · (C1 ⊕ ... ⊕ Cm). We are
interested in the probability P (Z2 = 0). If this probability differs from 1/2, then
we can use this property for the attack. Combining the higher-order differential
with the results on the linear approximation obtained above, we get that P (Z1 =
0) = 1/2 + p/2 and P (Z1 = Z2) = 1/2 + 2m−1qm. Therefore,

P (Z2 = 0) = P (Z1 = 0) · P (Z2 = Z1) + P (Z1 = 1) · P (Z2 �= Z1) =
(1/2 + p/2)(1/2 + 2m−1qm) + (1/2 − p/2)(1/2 − 2m−1qm) = 1/2 + 2m−1pqm.

Q.E.D.

Note that differential-linear cryptanalysis can be considered as a special case
of higher-order differential-linear cryptanalysis, where the size of the structure
is 2. Using Formula (4), the bias of the approximation is b̂ = 2pq2.

4.3 Applications of Higher-Order Differential-Linear Cryptanalysis

Our first application of the higher-order differential-linear cryptanalysis is a
generic attack. Let E be a Feistel block cipher with a bijective round func-
tion F . Denote the block size of E by 2n. Assume that E has an r-round linear
approximation with bias 1/2. We combine this r-round linear approximation
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with a 3-round higher-order differential that exists with probability 1 for all
such ciphers.

Let a word that is constant for all plaintexts in the structure be denoted by C.
Let a word that assumes all possible values (a permutation) for a given structure
be denoted by P , and let a word in which the XOR value of all the plaintexts
in the structure is zero be denoted by B. For example (P, P ) is a structure of
2n plaintexts, where every possible value of the left half appears once, as well as
every possible value of the right half (and we assume no relation between these
instances). Another example is (B,C) — a structure of 2n plaintexts where the
right half is fixed in all the plaintexts, and the XOR of all the values in the left
half is zero.

For the Feistel cipher described above, the following 3-round higher-order
differential holds with probability 1:

(P,C) F→ (C,P ) F→ (P, P ) F→ (P,B).

(This kind of property was first used in [4] with different attack methods). As
can be seen from the higher-order differential, the attacker knows for certain
that the XOR of the texts in the structure at the end of round 3 is 0, and the
same is true for the XOR value in any specific bit as well. The 3-round higher-
order differential can be combined with the linear approximation to devise a
(k + 3)-round higher-order differential-linear approximation of the cipher. The
overall bias of the approximation is 1/2, and thus the approximation requires
several structures of 2n chosen plaintexts to distinguish between the cipher and
a random permutation.

This generic attack can be applied to FEAL [33]. FEAL is a 64-bit Feistel
block cipher, with a bijective round function. There exists a linear approximation
for three rounds of the cipher with bias 1/2 (see [31] for details). We can combine
this linear approximation with the 3-round higher-order differential to devise
a 6-round higher-order differential-linear approximation with bias 1/2 (and a
set size of 232 plaintexts), and use it to distinguish between FEAL-6 and a
random permutation. This distinguisher can be used in a key recovery attacks
on FEAL-7 and FEAL-8. Even though these attacks are far from being the best
known attacks, they demonstrate the feasibility of higher-order differential-linear
cryptanalysis.

Another application of this technique is a weak key class of the block cipher
IDEA [26]. IDEA has a 64-bit block size and it consists of 8.5 rounds. It is based
on operations on four words of 16-bit each.

There is a weak key class of 232 keys, each having zero in 96 positions, that
can be detected using a higher-order differential-linear attack. The underlying
linear approximation is the one used in the linear weak key class of IDEA of 223

keys in [17]. The approximation has bias 1/2, and it propagates through IDEA
by exploiting the fact that for the weak key class the multiplication operation
can be approximated with bias 1/2.

Our weak key class uses a 3-round higher-order differential that starts with
sets of the form (P,C, P,C), for which after three rounds the XOR of the least
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significant bits of the first and the second words are zero. The linear approxi-
mation is used in the remaining 5.5 rounds, and it has a bias of 1/2. Thus, for
this weak key class, the output mask of all ciphertexts in a given set is the same.
We can use this fact and about 100 sets to identify whether the key used in the
encryption is in the weak key class.

We conclude that our new weak key class contains 232 keys, 512 times more
keys than the original linear weak key class. The membership tests requires about
223 chosen plaintexts with a negligible amount of computation time.

We conclude that the higher-order differential-linear attack is feasible, and
that in some cases it can be used to improve existing attacks and to devise
new attacks. At this stage we have not found a published cipher for which our
new technique yields the best attack, even though it is clear that one can easily
“engineer” a dedicated cipher with this property.

4.4 Related Work

We first note that the higher-order differential-linear attack was developed inde-
pendently in [34] under the name square-nonlinear attack. The attack combines a
SQUARE property with a nonlinear approximation whose input is linear. Thus,
the analysis can be reproduced, and despite the non-linear nature of the attack,
the biases behave in the same way. The square-nonlinear attack was used to
attack reduced round version of SHACAL-2.

Another related work is the chosen plaintext linear attack [23]. In the cho-
sen plaintext linear attack, the attacker encrypts structures of plaintexts, chosen
such that the input mask is the same for all values in the structure. An alter-
native description would say that the set is chosen such that the difference of
the intermediate encryption values is 0 in the bits considered by the approxi-
mation. In such a case the attacker can examine only the output parities. This
method can be used to either eliminate rounds from the approximation, or to
reduce the number of candidate subkeys (as rounds before the approximation
no longer play an active role in determining whether the approximation holds
or not).

While there are similarities between the chosen plaintext linear attack and
our higher-order differential-linear attack, there are also major differences. Our
proposed technique looks for the XOR of all ciphertexts in the set, while the
chosen plaintext linear attack examines the approximation in each ciphertext
separately.

Actually, chosen plaintext linear attack will usually lead to a better attack, as
it takes into consideration each plaintext/ciphertext pair, rather than performs
an operation that “cancels” the information conveyed in 216 (or even more) plain-
text/ciphertext pairs. On the other hand, the chosen plaintext linear attack fixes
bits of the plaintext, leading to a smaller number of possible plaintext/ciphertext
values. Another advantage of our attack is its ability to “correct” wrong struc-
tures, i.e., assume that the input mask is biased with some probability (rather
than fixed).
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5 Combining the Boomerang Attack with Linear and
Bilinear Techniques

5.1 The Boomerang Attack

The main idea behind the boomerang attack [36] is to use two short differentials
with relatively high probabilities instead of one long differential with very low
probability. The attack treats the block cipher E : {0, 1}n×{0, 1}k →{0, 1}n as
a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β with
probability p0, and for E1 there exists a differential γ → δ with probability p1.
The distinguisher performs the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2), such that P1⊕P2 = α,
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

We denote the intermediate encryption value of Pi (or the intermediate de-
cryption value of Ci) between E0 and E1 by Xi, i.e., Xi = E0(Pi) = E−1

1 (Ci). If
(P1, P2) is a right pair with respect to the first differential, then X1 ⊕X2 = β. If
both pairs (C1, C3) and (C2, C4) are right pairs with respect to the second dif-
ferential, then X1 ⊕X3 = γ = X2 ⊕X4. If all these conditions are satisfied then
X3 ⊕ X4 = β. The boomerang attack uses the obtained β value by decrypting
the pair (X3,X4), which with probability p0 leads to P3 ⊕ P4 = α. The overall
probability of such a quartet is p2

0p
2
1.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Thus, a right quartet for E is encountered with probability no
less than (p̂0p̂1)2, where:

p̂0 =
√∑

β

Pr 2[α → β], and p̂1 =
√∑

γ

Pr 2[γ → δ].

The complete analysis is given in [36]. In particular it is possible to show that
for a specific value of β, and the corresponding probability p0 and all γ’s si-
multaneously, the probability for X3 ⊕ X4 = β is p0p̂1

2. We shall use this fact
later.

5.2 Differential-Bilinear-Boomerang Attack (and Relatives)

We first note that linear, differential-linear, and bilinear approximations, are
special cases of differential-bilinear approximations (up to whether we consider
pairs of plaintexts or plaintext/ciphertext pairs). Hence, if we can combine the
differential-bilinear attack with some other attack, we can actually combine any
of the linear, the differential-linear, or the bilinear attacks as well.

Our newly proposed attacks exploit the β difference between the intermediate
decryption values X3 and X4 of the encryptions whose ciphertexts are C3 and C4.
If there is a differential-bilinear approximation for E−1

0 (the decryption through
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E0), then the pair (X3,X4) has the required input difference, and thus, there is
some bilinear relation between X3 and X4 whose probability (or bias) is non-
trivial.

More formally, let (X3,X4) (generated by the partial decryption of C3 and
C4 during the boomerang process) be with difference β. Assume that there
exists a differential-bilinear approximation with bias 2pq2 for E−1

0 with input
difference β. Thus, it is possible to analyze the corresponding plaintexts as in
the differential-bilinear attack, just like as suggested in Section 3.

However, the pair (X3,X4) does not always have the required difference β,
which occurs with probability p0p̂

2
1. By performing the analysis of the differential-

bilinear attack again, and taking into consideration the probability that the β
difference occurs, we conclude that the differential-bilinear relation has a bias of
2p̂2

1p0pq2.
Actually, we treat the first sub-cipher E0 as a cascade of two sub-sub-ciphers,

i.e, E0 = E01 ◦E00 . The differential is used in the the first part of the backward
direction, i.e., in E−1

01
, while the bilinear approximation is used in the second par

of E−1
00

(also in the backward direction).
The differential-bilinear boomerang attack tries to obtain a difference be-

tween two intermediate encryption values in the transition between the first
sub-sub-cipher and the second sub-sub-cipher (both are parts of the first sub-
cipher). This is a somewhat “asymmetric” boomerang, where for the first pair
(P1, P2) we have a different number of rounds in the first sub-cipher than for the
pair (P3, P4).

As the bias of the differential-bilinear boomerang is very low, it might seem
that using other techniques based on decomposing the cipher into sub-cipher is
always better than this attack. Even though currently we have no example where
this attack is better than other combinations, we believe such cases exist.

We start with showing that there are cases where the proposed attack can
be better than the boomerang attack. At a first glance, even if we assume that
the bias of the differential-bilinear approximation of E0 is 1/2, then the bias
of the whole differential-bilinear boomerang approximation is p̂2

1p0. Thus, the
data complexity of the differential-bilinear boomerang attack is expected to be
at least O(p̂−4

1 p−2
0 ), while a regular boomerang attack requires a usually smaller

data complexity of O(p̂−2
0 p̂−2

1 ). However, this is true only for a boomerang attack
that uses regular differentials. In such case, the probability of the differential in
the decryption direction is equal to the probability in the encryption direction.
But in some boomerang attacks, truncated differential are used, and for these
kind of differentials the probability depends on the direction. Thus, it might lead
to an attack which is better than the boomerang attack, if for example, there is
a truncated differential that is used in the forward direction of E0, but cannot
be used in the backward direction due to low probability.

Another attack that can be used instead of the differential-bilinear boomerang
is the differential-(bi)linear attack. As mentioned before, there is a good differ-
ential in the backward direction, and a good bilinear approximation. The reason
why this process might yield a better attack is that the difference predicted by
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the differential after the partial decryption may not be suitable for concatena-
tion with a bilinear approximation. In this case, the boomerang process is used
to change the difference to a more “friendly” one.

For linear (or differential-linear) cryptanalysis, where the exact difference
has a much smaller effect, the answer is different. Usually, it is assumed that
the approximation has an independent random behavior for any two plaintexts,
even if there is some constant difference between them. The chosen ciphertext
linear cryptanalysis [23] has shown that this is not the case, and that the actual
values encrypted can alter the probabilities related to the approximation. Hence,
the bias of the linear approximation may increase if there is a specific difference,
instead of some random difference. Such an increase would lead to an higher
biases, which in turn would mean better attacks.

6 Summary

In this paper we presented several new combined attacks. Each of these combina-
tions has scenarios where it yields an attack that may be better than differential-
linear attacks, differential attacks, or linear attacks for some ciphers.

The differential-bilinear attack, the higher-order differential-linear attack,
and the (differential-)(bi)linear boomerang attack, are examples of attacks based
on treating the cipher as a cascade of sub-ciphers. This kind of treatment allows
us to present a a differential-bilinear approximation for 6-round s5DES with a
bias of 1/8. The decomposition into sub-ciphers can be used to enlarge the linear
weak-key class of IDEA by a factor of 512.

We conclude that new designs have to take into consideration combined at-
tacks, including the well-known ones such as differential-linear and boomerang
attacks, as well as the new ones presented in this paper.
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