
Multiple Controlled Mobile Elements (Data Mules) for
Data Collection in Sensor Networks

David Jea, Arun Somasundara, and Mani Srivastava

Networked and Embedded Systems Laboratory,
Department of Electrical Engineering, UCLA
{dcjea, arun, mbs}@ee.ucla.edu

Abstract. Recent research has shown that using a mobile element to collect and
carry data mechanically from a sensor network has many advantages over static
multihop routing. We have an implementation as well employing a single mobile
element. But the network scalability and traffic may make a single mobile element
insufficient. In this paper we investigate the use of multiple mobile elements. In
particular, we present load balancing algorithm which tries to balance the number
of sensor nodes each mobile element services. We show by simulation the benefits
of load balancing.

1 Introduction

Recently there has been an increased focus on the use of sensor networks to sense
and measure the environment. Some practical deployments include NIMS [1], James
Reserve [2]. Both these deployments focus mainly on the problem of habitat and envi-
ronment monitoring. In most cases the sensors are battery-constrained which makes the
problem of energy-efficiency of paramount importance.

There are multiple ways in which the sensor readings are transferred from the sen-
sors to a central location. Usually, the readings taken by the sensor nodes are relayed to
a base station for processing using the ad-hoc multi-hop network formed by the sensor
nodes. While this is surely a feasible technique for data transfer, it creates a bottleneck
in the network. The nodes near the base station relay the data from nodes that are farther
away. This leads to a non-uniform depletion of network resources and the nodes near
the base station are the first to run out of batteries. If these nodes die, then the network is
for all practical purposes disconnected. Periodically replacing the battery of the nodes
for the large scale deployments is also infeasible.

A number of researchers have proposed mobility as a solution to this problem of data
gathering. Mobile elements traversing the network can collect data from sensor nodes
when they come near it. Existing mobility in the environment can be used [3, 4, 5, 6]
or mobile elements can be added to the system [7, 8, 9], which have the luxury to be
recharged. This naturally avoids multi-hop and removes the relaying overhead of nodes
near the base station. In addition, the sensor nodes no longer need to form a connected
network (in a wireless sense). Thus a network can be deployed keeping only the sensing
aspects in mind. One need not worry about adding nodes, just to make sure that data
transfer remains feasible.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 244–257, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Multiple Controlled Mobile Elements 245

But this technique of using mobile elements comes at a cost of increased latency for
data collection. As a result, this is more suitable for delay tolerant networks [10], for
instance, habitat monitoring [1, 2] mentioned earlier.

In this paper we consider using multiple mobile elements for purposes of data col-
lection. We first briefly review our prior work on single mobile element [7] in Sect. 3.
Next we describe the necessity of using multiple mobile elements for scalability reasons
in Sect. 4. When multiple mobile elements are used to collect data from sensor nodes
(# sensor nodes � # mobile elements), it is better to have the mobile elements serve
more or less the same number of nodes. We describe these ideas of load balancing in
Sect. 5. The operation with load balancing is described precisely in Sect. 6. We present
simulation methodology and results in Sect. 7, and finally end with conclusions and
some directions for future work in Sect. 8. We begin with presenting the related work.

2 Related Work

Various types of mobility have been considered for the mobile element. These can
be broadly classified as random, predictable or controlled. An algorithm for routing
data among randomly mobile users was suggested in [11] where data is forwarded to
nodes which have recently encountered the intended destination node. Random mo-
tion of mobile entities was also used for communication in [4, 5], where the mobile
entities were zebras and whales. An important difference in these two from others is
that the sensor nodes themselves are mounted on the mobile entities (animals), and the
goal is to track their movements. In [3], randomly moving humans and animals act as
“data mules” and collect data opportunistically from sensor nodes when in range. How-
ever, in all cases of random mobility, the worst case latency of data transfer cannot be
bounded.

Predictable mobility was used in [6]. A network access point was mounted on a
public transportation bus moving with a periodic schedule. The sensor nodes learn the
times at which they have connectivity with the bus, and wake up accordingly to transfer
their data.

Controlled mobility was considered in our previous work [7], where a robot acts as
a mobile base station. The speed of the mobile node was controlled to help improve net-
work performance. This is briefly summarized in the next section. Controlled mobility
was also used in [8], where a mobile node is used to route messages between nodes in
sparse networks. However, all nodes are assumed to have short range mobility and can
modify their locations to come within direct range of the mobile node which has long
range mobility and is used for transferring data.

In [12], mobile nodes in a disconnected ad hoc network modify their trajectories to
come within communication range, and [13] considered moving the intermediate nodes
along a route, so that the distances between nodes are minimized and lower energy is
used to transmit over a shorter range. This system also assumes that all nodes are mo-
bile, which may be expensive or infeasible in many deployments where node locations
depend on sensing or application requirements. A mobile base station was also used in
[9] to increase network lifetime. A scheduling problem for the mobile node with buffer
constraints on static nodes and variable sampling rates at each static node is studied



246 D. Jea, A. Somasundara, and M. Srivastava

in [14]. Connectivity through time protocols were proposed in [15] that exploit robot
motions to buffer and carry data if there is no path to the destination.

Henceforth, we will use the term data mule, borrowed from [3] to denote a mobile
element.

3 Single Data Mule

For sake of completeness and having continuity, we briefly describe the single con-
trolled data mule approach in this section. Sensor nodes are deployed in an area, and
are sampling the physical phenomenon. There is a data mule whose job is to collect data
from these sensor nodes. The data mule moves in a straight line up and down. The op-
eration can be divided into two parts: Network algorithms (specifies how sensor nodes
interact with each other and the data mule) and Motion Control algorithms (specifies
how the data mule moves)

3.1 Network Algorithms

The network may be such that some sensor nodes may never hear the data mule directly.
In this situation, they transfer the data through other nodes, which can directly hear the
data mule. The algorithm can be divided into three phases:

1. Initialization: This is used to find out the number of hops each node is from the path
of the data mule (initialized to ∞). The data mule moves broadcasting the beacons
(with hop count as 1). All nodes which hear it mark the hop count, and also rebroad-
cast it (after incrementing the hop count). A node which hears a beacon with hop
count less than what has, updates itself (also noting the node from which it came).
At the end of this phase, all nodes know if they are on path of data mule (at 1 hop).
If they are not on path of the data mule, they know the parent through which to reach
a node which is on path. Basically, this is tree building, with number of trees being
equal to the number of nodes on path of the data mule. All nodes are members of
exactly one tree.

2. Local multihops: Each of the trees formed above do a local multihop within them-
selves, with the root of the tree collecting data of its children nodes. Directed Diffu-
sion [16] is suitable for this.

3. Data Collection by Data Mule: After one round of initialization phase, the data
mule moves polling for data. The nodes which hear the data mule respond with the
data (their own and that of their children). To prevent loss of data due to data mule
going out of range, we can have a acknowledgement based scheme.

Once the initialization phase is over, the other two proceed in parallel.

3.2 Motion Control Algorithms

Motion can be controlled in two dimensions: space (where the data mule goes), and
time (how or what speed the data mule moves). By fixing the path to be a straight line,
we need to decide the speed. Two options are possible:



Multiple Controlled Mobile Elements 247

1. Fix the round trip time (RTT ) of the data mule. With this, there are few approaches
possible.

– We can traverse the path at a fixed speed (at which we get maximum efficiency
from the data mule). Suppose this takes time T (< RTT ). Then we have RTT −T
spare time. We can divide this time equally among all nodes. The data mule would
stop for this time at each node. We do not assume that the data mule knows the
node locations. So we stop when we first hear from a node.

– Alternately, we can cover the trail at constant speed (Length of path / RTT ), and
not stop at any node.

– Finally, we can also have an adaptive speed control algorithm, where the data mule
would normally move at twice the speed above. This leaves RTT/2 time to service
the nodes by stopping at them. This time can be divided among a subset of the
nodes, from which the mule had collected less data than a threshold in the previous
round. Thus unlike the first case, the sets of nodes at which the mule would stop
would change with each round.

We have not gone into details of the above algorithms. Our earlier paper [7] can
be referred where we have implemented a version of these ideas. Although two nodes
are one hop from the data mule, the time which the data mule stays in their contact
may vary, depending on the distance of the node to the path. One way to take care of
this is adaptive motion control mentioned above. The mule would have collected less
data from a node which is far from the path, and in the next round would stop at it,
giving it more time. Nevertheless, this approach only tries to maximize the amount
of data collected. It does not guarantee that all the generated data is collected.

2. Give an equal amount of service time to each node (with the mule stopping for this
amount of time at each node). The service time for a node can be set equal to Buffer
size / Communication data rate. This would ensure that the data mule is able to col-
lect all the data. The mule can collect data even when it is moving, and this can be
considered as a bonus. As mentioned before, all nodes need not be one hop from the
data mule. For this, the root of the trees (all roots are one hop from the data mule) can
be given time equivalent to the number of nodes in its tree. The RTT would depend
on number of nodes in the network.

4 Multiple Data Mules

The single data mule approach presented in the previous section does not scale well.
Suppose the density of the network increases due to increasing number of nodes. Con-
sidering the approach of fixed round trip time for data mule, there are more nodes from
which data has to be collected, in the same amount of time. This leads to loss of data
due to buffer overflows at the nodes. If the second approach of stopping at each node is
used, the data mule will take a longer time to complete a round. In this case, although
at time of each service, the buffer of a node is cleared, it may not be possible for the
data mule to return to this node before its buffer fills again. Again this leads to loss of
data. Another issue arises if the network is deployed over a larger area. The distance



248 D. Jea, A. Somasundara, and M. Srivastava

over which the data mule moves increases. The battery capacity may not be sufficient
for moving this length, requiring recharge on the path.

These problems can be addressed by using multiple data mules. A trivial solution
would be dividing the area into equal parts and having one data mule in each. This
solves the problem if the nodes are uniformly randomly deployed, so that each mule
gets approximately same number of nodes to service. Each mule covers the same area.
Now each mule can independently run the same single mule algorithms presented in
the previous section. To analytically calculate the required number of data mules, let us
define the following:

– num nodes nodes are deployed in an area of l × l units.
– A data mule moves in a straight line from one end to another and back at speed s.
– Time to fill a node’s buffer is buffer fill time. This can be calculated using the

sampling period and buffer size. We assume that all nodes are sampling at the same
rate.

– Time for the data mule to empty a node’s buffer is service time given by
buffer size/communication data rate. Let us assume the second form of mo-
tion control (Sec. 3.2), where the data mule stops at each node for this amount of
time.

– Round trip time (RTT ) for the data mule will be (l/s)+(num nodes×service time)+
(l/s).

Now, if RTT ≤ buffer fill time, one data mule will suffice. Otherwise,
�RTT/buffer fill time� mules would be required.

Two things are to be noted with respect to the last calculation. Firstly, in the expres-
sion for round trip time, the first two terms denote the time it takes the data mule to
move from one side of the area to the other along with time for data collection. The
last term denotes the time to come back to the starting point. There is no data collection
in the reverse path, so as to approximate the whole motion to a closed loop. Secondly,
some nodes may not be able to communicate directly to the data mule. The data of these
nodes will be available at root of the tree this node belongs to using local multihopping.

Node N1

Node N2

Node N3

Node N4

Node N5

path of Data Mule M1

path of Data Mule M2

Fig. 1. Nodes between 2 mules

Table 1. Hop count at nodes in Fig. 1

Nodes Data Mule M1 Data Mule M2
N1 1 5
N2 2 4
N3 3 3
N4 4 2
N5 5 1



Multiple Controlled Mobile Elements 249

(The root will be on path of data mule as mentioned in previous section). A related
issue is the fact that a node will belong to more than one tree (one tree per data mule).
In such cases, the node will send data towards the closer data mule. This is illustrated
in Fig. 1, with the 2 data mules moving on straight line paths. Table 1 shows the hop
count variable at each of the sensor nodes N1 − N5 due to the two data mules. As can
be seen N1, N2 will be serviced by M1, and N4, N5 by M2. N3 is at equal hop count
from both the data mules. Such ties can be broken randomly.

5 Load Balancing

The previous section made the case for using multiple data mules. If the nodes are
uniformly randomly distributed, then the obvious thing to do is to divide the area into
equal regions.

But in practice, at real deployments it may not be so trivial. Firstly, the nodes need
not be uniformly deployed. They will be placed by the field experts such as the biolo-
gists. They would want to deploy nodes in areas where they suspect interesting activities
to take place. This will naturally lead to non-uniform placement. In addition, in these
environments it may not be feasible to have the data mule trails according to system
designer’s requirements.

5.1 Problem Description

We are given a set of nodes deployed in an area, and straight line paths for the data
mules (M1,M2, ...) to move (which are not necessarily equally spaced). We assume
for simplicity that each node is one hop away from atleast one data mule (and atmost
two data mules). Fig. 2 describes the scenario with three data mules M1,M2,M3. The
various regions are marked A − H . Table 2 describes the various regions, and the data
mules they can talk to. The regions which are serviced by a single data mule have no
choice. The nodes in these regions will be called non shareable nodes. But the nodes
in regions which are serviced by 2 data mules, can be attached to either of them. Such
nodes are called shareable nodes. The goal is to find the data mule assignment for these
shareable nodes, so that each data mule services approximately same number of nodes.

5.2 Why It Is Important

Consider a simple scenario with 50 nodes and 2 data mules M1,M2. Suppose M1
has 25 non shareable nodes, M2 has 5 non shareable nodes, and 20 nodes are shared
between them. If these 20 nodes are equally divided between the two data mules, M1
will end up servicing 35 nodes and M2 15 nodes. Consider M1. If we use the approach
of fixed round trip time for the data mule, the time given to each node will be reduced.
On the other hand, if we use the approach of stopping at each node (for amount of time
required to empty its buffer), the round trip time of the data mule will increase, leading
to possibility of buffer overflows, when the data mule returns to service them. Instead,
if both the data mules serviced 25 nodes, the above mentioned problem will be solved.
For this to happen, all 20 shareable nodes are to be serviced by M2.



250 D. Jea, A. Somasundara, and M. Srivastava

Region B

Region C

Region D

Data Mule M1

Region E

Region F

Region G

Region H

Region A

Data Mule M2

Data Mule M3

Fig. 2. Problem description

Table 2. Illustration of Fig. 2

Region Visible Data Mule(s) Region type
A M1 non shareable
B M1 non shareable
C M1, M2 shareable
D M2 non shareable
E M2 non shareable
F M2, M3 shareable
G M3 non shareable
H M3 non shareable

Load balancing is common concept in distributed systems [17]. In our case, the tasks
are the servicing of sensor nodes, and the processing elements (PEs) are the data mules.
In addition, there are constraints on the tasks, as to which PEs can process them. This
refers to the fact that sensor nodes (if they are shareable) can only be serviced by 2 data
mules.

6 Multiple Data Mules with Load Balancing

We now describe the multiple data mule approach with load balancing. This is one of
the main contributions of this paper. This can be divided into five parts: initialization,
leader election, load balancing, assignment, and data collection.

6.1 Initialization

The data mules make a round broadcasting the beacons. The nodes which can hear,
reply back with their id’s. The data mules note down the list of distinct node id’s they
got the response from. At the end of this round, each data mule has a list of nodes which
are one hop from its path.

6.2 Leader Election

We assume that the data mules are equipped with powerful radios, and can communi-
cate with each other. They elect a leader among themselves, and everyone sends the
information gathered in the initialization round to the leader. The data mule with the
smallest id becomes the leader in our case.

6.3 Load Balancing

The leader data mule has the information of all the data mules. For each data mule i, the
leader can classify its nodes into 2 classes: shareable nodes and non shareable nodes.
The shareable nodes can further be classified as being shared with previous or next data
mule. Let us define an array structure DM , of size equal to number of data mules (N ).
The structure DM [i], denoting data mule i has the following members:



Multiple Controlled Mobile Elements 251

– non shareable nodes denotes the set of nodes it is solely responsible.
– shareable nodes neg denotes the set of nodes it shares with the previous data mule

i − 1. For DM [1], this is a null set.
– shareable nodes pos denotes the set of nodes it shares with the next data mule i+1.

For DM [N ], this is a null set.
– non shareable load denotes the size of the set non shareable nodes.
– shareable load neg denotes the size of the set shareable nodes neg.
– shareable load pos denotes the size of the set shareable nodes pos.

The above variables are calculated by the leader, and form the input to the load
balancing algorithm. It may be noted that DM [i].shareable nodes neg & DM [i−
1].shareable nodes pos are same. Similarly, DM [i].shareable nodes pos is same
as DM [i + 1].shareable nodes neg.

– my shareable load neg denotes the number of nodes this data mule is responsible
for out of shareable load neg.

– my shareable load pos denotes the number of nodes this data mule is responsible
for out of shareable load pos.

– my total load is the total number of nodes this data mule will be responsible for. It
is the sum of non shareable load, and the above two variables.
These three variables evolve as the algorithm proceeds.

Initially all data mules are in the same single group, with first mule called the
start mule, and last one called the end mule. The idea is to make the load of (num-
ber of nodes serviced by) each data mule equal to the average load of that group.
This may not always be possible. For instance, consider the simple scenario with 50
nodes and 2 data mules M1,M2. Suppose M1 has 35 non shareable nodes, M2 has
5 non shareable nodes, and 10 nodes are shared between them. The best possible re-
sult would be to assign all the 10 shareable nodes to M2, making it responsible for 15
nodes, and M1 for 35 nodes. In such a case, we divide the original group into two, and
try to balance the load of each group recursively. The recursion is terminated when we
reach the last mule of the group.

Table 3. Meaning of flag variables for a mule

Flag If Flag is TRUE If Flag is FALSE

start flag my shareable load neg = shareable load neg my shareable load neg = 0

end flag my shareable load pos = shareable load pos my shareable load pos = 0

The group splitting happens when we reach a mule such that the minimum load
it should take is more than the group average. We form two groups with this mule
belonging to the first group. This mule becomes the end mule of the first group. Also,
the load this mule shared with the next mule is given completely to the next mule, which
becomes the start mule of the second group. A group can also split when we reach a
mule such that the maximum load it can take is less than the group average. Here again
we form two groups with this mule belonging to the first group. But now this mule takes



252 D. Jea, A. Somasundara, and M. Srivastava

ALGORITHM: Load Balance(start mule, end mule, start flag, end flag)

1. Initialize group has split to FALSE
2. Calculate the average load of this group group avg, as shown in Fig. 4.
3. Reset the following variables:

– DM [start mule..end mule].my shareable load neg
– DM [start mule..end mule].my shareable load pos
– DM [start mule..end mule].my total load

4. Repeat the following for i = start mule..end mule
(a) if group has split is TRUE, return.

– This is to terminate recursion, when we come to next iteration of for loop during back
tracking of recursion.

(b) Calculate the minimum load that can be assigned to this mule.
i. If i = start mule AND start flag = TRUE

A. DM [i].my shareable load neg = DM [i].shareable load neg
ii. Else If i �= start mule

A. DM [i].my shareable load neg =
DM [i].shareable load neg − DM [i − 1].my shareable load pos

iii. DM [i].my total load =
DM [i].non shareable load + DM [i].my shareable load neg

(c) If i = end mule
i. If end flag = TRUE

A. DM [i].my shareable load pos = DM [i].shareable load pos
B. DM [i].my total load+ = DM [i].my shareable load pos

ii. Return
(d) If DM [i].my total load > group avg

– The load on this mule is more than group average; we split into two groups.
i. Set group has split = TRUE

ii. Call Load Balance(start mule, i, start flag, FALSE)
iii. Call Load Balance(i+1, end mule, TRUE, end flag)

• All nodes shared between mules i and i + 1 is taken by mule i + 1.
(e) Else (i.e. if DM [i].my total load ≤ group avg)

i. Calculate the extra load that can be given to this mule.
– extra load = group avg − DM [i].my total load
– DM [i].my shareable load pos =

min(extra load, DM [i].shareable load pos)
– DM [i].my total load+ = DM [i].my shareable load pos

ii. If DM [i].my total load < group avg
– The maximum load this mule can have is less than the group average. Here also, we

split into two groups.
A. Set group has split = TRUE
B. Call Load Balance(start mule, i, start flag, TRUE)
C. Call Load Balance(i+1, end mule, FALSE, end flag)

• All nodes shared between mules i and i + 1 is taken by mule i.
iii. Else (i.e. if DM [i].my total load = group avg, continue

– We continue to check mule i + 1

END

Fig. 3. Load Balancing Algorithm



Multiple Controlled Mobile Elements 253

ALGORITHM: Calculate group average

– Input parameters: start mule, end mule, start flag, end flag
– Procedure:

1. Initialize group load =
∑end mule

i=start mule DM [i].non shareable load
2. Switch depending on (start flag, end flag)

• (TRUE, TRUE)
∗ group load+ =

∑end mule
i=start mule DM [i].shareable load neg+

DM [end mule].shareable load pos
• (TRUE, FALSE)

∗ group load+ =
∑end mule

i=start mule DM [i].shareable load neg
• (FALSE, TRUE)

∗ group load+ =
∑end mule

i=start mule DM [i].shareable load pos
• (FALSE, FALSE)

∗ group load+ =
∑end mule

i=start mule+1 DM [i].shareable load neg

3. group avg = group load
end mule−start mule+1

– Return group avg

END

Fig. 4. Algorithm for calculating group avg in step 2 of Fig. 3

all the load it shares with the next mule. We use two flags start flag, and end flag
to denote these states. Mules are affected by these flags only if they are start mule,
or end mule respectively. Table 3 describes these variables. Initially, when there is
only one group comprising all the mules, the values of these flags do not matter, as the
start mule (mule #1) does not have any predecessor, and end mule (mule #N ) does
not have any successor.

The precise algorithm is given in Fig. 3. Initially, it is invoked with parameters
(1, N, FALSE,FALSE)1. The algorithm has comments explaining each of the steps,
and is also described below. One thing to be noted is the use of local boolean variable
group has split. There are recursive calls inside the for loop in step 4. If it goes in-
side recursion, there is no more meaning for the current group. When control comes
back to this for loop again during backtracking of recursion, we should not process the
remaining mules in the for loop. Step 4.a achieves this.

We begin by calculating the group average in step 2, making sure not to count share-
able nodes twice. The average depends on the two flag values, as shown in Fig. 4. We
next run a loop for all nodes in the group. First, we calculate the minimum load the
mule under consideration should take (step 4.b). In particular, if this mule is not the
start mule, 4.b.ii.A calculates the part of of shareable load which the previous mule
did not take.

The group splitting can happen in two cases. Firstly, if the minimum load (which
was calculated in step 4.b) that has to be assigned to the mule under consideration is
more than the group average. When this happens we break into two groups, and the

1 as mentioned previously, the two flags do not matter initially.



254 D. Jea, A. Somasundara, and M. Srivastava

mule under consideration becomes part of the first group. This is shown in 4.d in the
algorithm. We recursively call the algorithm for the two groups. If the above does not
happen, we try to assign some shareable load , which this shares with the next mule, as
shown in 4.e.i. Now the other reason of splitting can arise. If the maximum load that
can be assigned to this mule is less than the group average, we split into two groups, as
shown in 4.e.ii.

The current recursion ends when we reach end mule in step 4.c. In addition, if the
end flag is TRUE, we add some more load, as shown in 4.c.i.A. This is in accordance
to Table 3.

The worst case complexity of this load balancing algorithm is O(n2), where n is the
number of data mules. This occurs when the group splitting always happens such that
one of the resultant groups has only one mule, and the other group has all the remaining
mules.

6.4 Assignment

The load balancing algorithm of the previous subsection outputs three counts for each
data mule: my shareable load neg, my shareable load pos, my total load. Now
we have to find the corresponding sets i.e.my shareable nodes neg and
my shareable nodes pos. Two data mules would be sharing some nodes. These nodes
are ordered by node id. The idea is to assign the first part of this ordered set to the first
mule (resulting in DM [i].my shareable nodes pos), and the second part to the sec-
ond mule (resulting in DM [i + 1].my shareable nodes neg). The size of the two
parts depends on the counts mentioned above. Finally, each data mule is responsi-
ble for nodes in the three sets: non shareable nodes, my shareable nodes neg, and
my shareable nodes pos. After the assignment has taken place, the leader can inform
all the data mules, the set of nodes they have to service.

6.5 Data Collection

With the assignment done, the data mules traverse their paths, polling for data. The
shareable sensor nodes do not know which of the two data mules they belong to. The
nodes respond for data when they hear the poll packet. The data mule will send back
an acknowledgement only if it is responsible for servicing that node. The sensor node
marks the data mule from which it hears an acknowledgement, and does not respond to
poll packets from the other data mule in future.

7 Simulation Methodology and Results

We now present our simulation methodology. We implemented our algorithms in TinyOS
[18]. The simulator used is TOSSIM [19]. The advantage of this combination is that, the
same TinyOS code can be put on real sensor nodes. To simulate mobility, we use tython
[20]. We consider three schemes for sharing the shareable load between data mules.



Multiple Controlled Mobile Elements 255

Table 4. Simulation Results

Data Mule M1 Data Mule M2 Data Mule M3 Data Mule M4

non shareable load 13 5 5 9
shareable load neg 0 3 3 2
shareable load pos 3 3 2 0
FCFS 16 8 5 11
Equal Sharing 15 8 7 10
Load Balancing 13 9 9 9

1. First Come First Serve (FCFS): The shareable sensor node will get attached to the
data mule from which it hears the beacon packet first in the Initialization round of
data mules (Sect. 6.1).

2. Equal sharing: Each adjacent data mules have a set of shareable nodes between them.
Here, half the shareable nodes are assigned to one data mule, and the other half to
the other mule.

3. Load balancing: Result of applying the load balancing algorithm of Sect. 6.3.

For the simulation topology, we had 40 sensor nodes, and 4 data mules, M1−M4. The
nodes are randomly distributed inside the 100x100 grid region from (24, 30) to (76, 70).
M1 moves from (32, 10) to (32, 90), M2 moves from (44, 90) to (44, 10), M3 moves
from (56, 10) to (56, 90) and M4 moves from (68, 90) to (68, 10). To have effect of
closed-loop path, whenever a data mule reaches its end point, we immediately place it
at the starting point, from where it starts moving again. The nodes are placed inside a
smaller region than whole grid to avoid edge-effects.

The result after the leader mule (M1) gets information from other data mules is
shown in upper half of Table 4. This result depends on topology. Now we execute
the three schemes of load sharing presented above, resulting in my total load values
shown in lower half of Table 4. As can be seen, the result of load balancing does not
necessarily result in equal distribution of load, because non shareable load of M1 is
more than the group average. This results in group splitting, and we end up balancing
the load of the second group.

With these three node assignments to mules, we ran the experiment for 5 rounds,
with the first strategy mentioned in Sect. 3.2 of fixed round trip time. The RTT was set
to 120 time units, and it took each mule 40 time units to complete a round. This gave
80 time units for stopping at the nodes, which was divided equally among the nodes to
be serviced. Fig. 5 shows the average number of packets received per node per round,
at each of the data mules. Results are shown for the three assignments. It is evident that
load balancing leads to more uniformity. Although data mules 2, 3, 4 service the same
number of nodes (9) in the load balanced case, we see a minor variation. This is due to
fact that we are collecting data even when moving, in addition to when being stopped.
So if the nodes assigned to M4 are closer to its path (when compared to nodes assigned
to M3 and its path), we end up collecting more data at M4.



256 D. Jea, A. Somasundara, and M. Srivastava

0 1 2 3 4 5
50

52

54

56

58

60

62

64

66

68

70

Data Mule ID

A
ve

ra
ge

 #
 o

f p
ac

ke
ts

 p
er

 n
od

e 
pe

r 
ro

un
d

FCFS
Equal
Load Balanced

Fig. 5. Simulation Results

8 Conclusions and Future Work

Deployments of sensor networks are taking place. Using a controlled mobile element
is a promising approach to collect data from these sensor nodes. We showed that as the
network scales, using a single mobile element may not be sufficient, and would require
multiple of them. The sensor nodes and (or) the mobile elements may not be uniformly
placed in practice, necessitating the use of load balancing, so that each mobile element
as far as possible, serves the same number of sensor nodes. We gave a load balancing
algorithm, and described the mechanism these multiple mobile elements can be used.
Finally we presented simulation results justifying our approach.

The work presented here can be extended in many directions. For load balancing,
we can remove the assumption that each sensor node can talk to at least one mobile
element. This will lead to case similar to Figure 1. Now, when doing load balancing, we
also need to consider the cost of doing multihop, to reach either of the mobile elements.
We can also extend to cases where mobile elements can be added or removed once the
system is in operation. Node dynamics can be handled by running the initialization and
load balancing periodically.

References

1. Kaiser, W.J., Pottie, G.J., Srivastava, M., Sukhatme, G.S., Villasenor, J., Estrin, D.: Net-
worked Infomechanical Systems (NIMS) for Ambient Intelligence. Technical Report 31,
Center for Embedded Networked Sensing, UCLA (2003)

2. Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat Monitoring:
Application Driver for Wireless Communications Technology. In: SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean. (2001)



Multiple Controlled Mobile Elements 257

3. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-tier Architec-
ture for Sparse Sensor Networks. In: IEEE Workshop on Sensor Network Protocols and
Applications (SNPA). (2003)

4. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-efficient Com-
puting for Wildlife Tracking: Design Tradeoffs and Early Experiences with Zebranet. In:
ACM ASPLOS. (2002)

5. Small, T., Haas, Z.: The Shared Wireless Infostation Model-A New Ad Hoc Networking
Paradigm (or Where there is a Whale, there is a Way). In: ACM MobiHoc. (2003)

6. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using Predictable Observer Mobility for Power
Efficient Design of Sensor Networks. In: IPSN. (2003)

7. Kansal, A., Somasundara, A., Jea, D., Srivastava, M., Estrin, D.: Intelligent Fluid Infrastruc-
ture for Embedded Networks. In: ACM MobiSys. (2004)

8. Zhao, W., Ammar, M., Zegura, E.: A Message Ferrying Approach for Data Delivery in
Sparse Mobile Ad Hoc Networks. In: ACM MobiHoc. (2004)

9. Luo, J., Hubaux, J.P.: Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor
Networks. In: IEEE INFOCOM. (2005)

10. Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets. In: ACM SIG-
COMM. (2003)

11. Dubois-Ferriere, H., Grossglauser, M., Vetterli, M.: Age Matters: Efficient Route Discovery
in Mobile Ad Hoc Networks Using Encounter Ages. In: ACM MobiHoc. (2003)

12. Li, Q., Rus, D.: Sending Messages to Mobile Users in Disconnected Ad-hoc Wireless Net-
works. In: ACM MobiCom. (2000)

13. Goldenberg, D., Lin, J., Morse, A.S., Rosen, B., Yang, Y.R.: Towards Mobility as a Network
Control Primitive. In: ACM MobiHoc. (2004)

14. Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile Element Scheduling for Ef-
ficient Data Collection in Wireless Sensor Networks with Dynamic Deadlines. In: IEEE
RTSS. (2004)

15. Rao, N., Wu, Q., Iyengar, S., Manickam, A.: Connectivity-through-time Protocols for Dy-
namic Wireless Networks to Support Mobile Robot Teams. In: IEEE ICRA. (2003)

16. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In: ACM MobiCom. (2000)

17. Shirazi, B.A., Hurson, A.R., Kavi, K.M.: Scheduling and Load Balancing in Parallel and
Distributed Systems. IEEE Computer Society Press (1995)

18. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for network sensors. In: ACM ASPLOS. (2000)

19. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simulation of entire
tinyOS applications. In: ACM Sensys. (2003)

20. Demmer, M., Levis, P.: Tython scripting for TOSSIM (2004) Network Embedded Systems
Technology Winter 2004 Retreat.


	Introduction
	Related Work
	Single Data Mule
	Network Algorithms
	Motion Control Algorithms

	Multiple Data Mules
	Load Balancing
	Problem Description
	Why It Is Important

	Multiple Data Mules with Load Balancing
	Initialization
	Leader Election
	Load Balancing
	Assignment
	Data Collection

	Simulation Methodology and Results
	Conclusions and FutureWork
	References



