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Abstract. We prove that a first order ordinary differential equation
(ODE) with a dicritical singularity at the origin has a one-parameter
family of convergent fractional power series solutions. The notion of a
dicritical singularity is extended from the class of first order and first
degree ODE’s to the class of first order ODE’s. An analogous result for
series with real exponents is given.

The main tool used in this paper is the Newton polygon method
for ODE. We give a description of this method and some elementary
applications such as an algorithm for finding polynomial solutions.

1 Introduction

In this paper we give a sufficient condition for a first order ordinary differen-
tial equation (ODE) to have a one-parameter family of fractional power series
(resp. generalized formal power series) solutions. If the family of solutions have
rational exponents it turns out that each one is convergent, hence its sum is
the parametrization of an analytical branch curve. The sufficient condition is
a generalization of the notion of dicritical singularity of holomorphic foliations
in dimension 2. The foliation defined by a(x, y) dx + b(x, y) dy = 0 is dicritical
if there exists a dicritical blowup in the reduction of singularities process. It is
well known that it is dicritical if and only if there exists a one-parameter family
of analytical invariant curves passing through the origin. The above foliation
corresponds to the first order and first degree ODE a(x, y) + b(x, y) y′ = 0. We
generalize this result for first order and arbitrary degree ODE. The dicritical
property is described in terms of the Newton polygon process and in case of first
order and first degree agrees with that of foliations.

Briot and Bouquet [1] in 1856 used the Newton polygon method for studying
the singularities of first order and first degree ODE’s and Fine [2] gives a complete
description of the method for general ODE in 1889.

D.Y. Grigoriev and M. Singer [3] use it to give an enumeration of the set of
formal power series solution with real exponents of an ODE F (y) = 0. They give
restrictions (expressed as a sequence of quantifier-free formulas) over parameter
Ci and µi for

∑∞
i=1 Ci xµi to be a solution of F = 0. The one-parameter families

of solutions that we obtain in this paper are simpler than those obtained in [3]
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for the general case. (See Theorem 2 for a precise description.) In particular
the parameter does not appear in the exponents µi. When the Newton polygon
process to a first order ODE F (y) = 0 is applied, it is easy to see that the
“first” parameter that we need to introduce is a coefficient and not an exponent
(see Proposition 1). The problem arises in subsequent steps, because now we
are dealing with a differential equation which has parameters as coefficients.
For instance, xy′ − C y = 0 has y(x) = C1 xC as solution and parameter C
has “jumped” to the exponent. Here we proof that this phenomenon does not
happen.

In a forthcoming paper we will give a complete description of the set of
generalized power series solutions of a first order ODE.

In Section 2, we give a detailed description of the Newton polygon process in
order to state some basic definitions and notations. This section should be read
in connection with our main result, stated and proved in section 3, as a technical
guide for the proof. All results in section 2 are not original and can be found
in [3, 4, 5, 6, 7, 8]. As an elementary application of the Newton polygon method
we have included an algorithm which gives a bound for degree of polynomial
solutions of a first order ODE.

2 Description of the Classical Newton Polygon Method

Let K be a field, C ⊆ K. We will denote K((x))∗ the field of Puiseux series
over K. Hence, the elements of K((x))∗ are formal power series

∑
i≥i0

ci xi/q,
i ∈ ZZ, ci ∈ K and q ∈ ZZ+. A well-ordered series with real exponents with
coefficients in the field K is a series φ(x) =

∑
α∈A cα xα, where cα ∈ K, and

A is a well ordered subset of IR. If there exists a finitely generated semi-group
Γ of IR≥0 and γ ∈ IR, such that, A ⊆ γ + Γ , then we say that φ(x) is a grid-
based series. (This terminology comes from [7].) Let K((x))w and K((x))g be
the set of well-ordered series and that of grid-based series respectively. Both are
differential rings with the usual inner operations and the differential operator

d

d x
(c) = 0, ∀c ∈ K, and

d

d x

(∑
cα xα

)
=

∑
α cα xα−1 .

In fact, both rings are fields by virtue of Theorem 1.
Let F (y0, . . . , yn) be a polynomial on the variables y0, . . . , yn with coefficients

in K((x))g. The differential equation F (y, dy
dx , . . . , dny

dxn ) = 0 will be denoted by
F (y) = 0. We are going to describe the classical Newton polygon method for
searching solutions of the differential equation F (y) = 0 in the field K((x))w.
We write F in a unique way as

F =
∑

aα,ρ0,...,ρn
xα yρ0

0 · · · yρn
n , aα,ρ ∈ K,

where α ∈ A and ρ belongs to a finite subset of INn+1. We define the cloud of
points of F to be the set P(F ) = {Pα,ρ | aα,ρ �= 0}, where we denote

Pα,ρ = (α − ρ1 − 2ρ2 − · · · − nρn , ρ0 + ρ1 + · · · + ρn) ∈ IR × IN . (1)
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The Newton polygon N (F ) of F is the convex hull of the set
⋃

P∈P(F )

(P + {(a, 0) | a ≥ 0}) .

We remark that N (F ) has a finite number of vertices and all of them has as
ordinate a non-negative integer.

Given a line L ⊆ IR2 with slope −1/µ, we say that µ is the inclination
of L. Let µ ∈ IR, we denote L(F ;µ) to be the line with inclination µ such
that N (F ) is contained in the right closed half-plane defined by L(F ;µ) and
L(F ;µ) ∩N (F ) �= ∅. We define the polynomial

Φ(F ;µ)(C) =
∑

Pα,ρ∈L(F ;µ)

aα,ρ Cρ0+···+ρn (µ)ρ1
1 · · · (µ)ρn

n , (2)

where (µ)k = µ(µ − 1) · · · (µ − k + 1) and Pα,ρ is as in (1).

2.1 Necessary Initial Conditions

Lemma 1. Let y(x) = c xµ+· · · higher order terms · · · ∈ K((x))w be a solution
of the differential equation F (y) = 0. Then we have that Φ(F ;µ)(c) = 0.

Proof. We have that F (c xµ + · · · ) =
∑

α,ρ

aα,ρ xα (c xµ + · · · )ρ0(µc xµ−1 + · · · )ρ1 · · · ((µ)nc xµ−n + · · · )ρn =

∑

α,ρ

{
Aα,ρ cρ0+···+ρn (µ)ρ1

1 · · · (µ)ρn
n xα−ρ1−2ρ2−···−nρn+µ(ρ0+···+ρn) + · · ·

}
=

⎧
⎨

⎩

∑

ν(α,ρ;µ)=ν(F ;µ)

aα,ρ cρ0+···+ρn (µ)ρ1
1 · · · (µ)ρn

n

⎫
⎬

⎭
xν(F ;µ) + · · · higher order terms,

where ν(α, ρ ;µ) = α − ρ1 − 2ρ2 − · · · − nρn + µ(ρ0 + · · · + ρn), and ν(F ;µ) =
min{ν(α, ρ;µ) | aα,ρ �= 0}. �	

The set NIC(F ) = {(c, µ) | c ∈ K̄, c �= 0, µ ∈ IR, Φ(F ;µ)(c) = 0}, where K̄ is the
algebraic closure of K, is called the set of necessary initial conditions for F . We
give a precise description of this set using the Newton polygon of F .

For each µ ∈ IR, L(F ;µ) ∩ N (F ) is either a side or a vertex. Assume that
L(F ;µ) ∩ N (F ) = S is a side. We call Φ(F ;µ)(C) the characteristic polynomial
of F associated to the side S. Let AS = {c ∈ K̄ | c �= 0, Φ(F ;µ)(c) = 0}. We say
that the side S is of type (0) if AS = ∅, of type (I) is AS is a finite set and of
type (II) if AS = K̄. We have that AS × {µ} = NIC(F ) ∩ (K̄ × {µ}).

Let p = (a, h) be a vertex of N (F ), and let µ1 < µ2 be the inclinations
of the adjacent sides at p. For any µ such that µ1 < µ < µ2, we have that
L(F ;µ) ∩N (F ) = {p}. Then Φ(F ;µ)(C) = Ch Ψ(F ;p)(µ), where

Ψ(F ;p)(µ) =
∑

Pα,ρ=p

aα,ρ (µ)ρ1
1 · · · (µ)ρn

n , (3)
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Table 1. Necessary initial conditions for the equation F (y) = 0 of example 1

vertices

µ Ψ(F ;p)(µ) type

−∞ < µ < −1/2 µ3 (µ − 1)2 0

−1/2 < µ < 0 0 IV

0 < µ < 2 µ3(µ − 1) III

2 < µ < 4 µ − 4 0

4 < µ < ∞ −1 0

sides

µ Φ(F ;µ)(C) type

µ = −1/2 −9/32 C5 0

µ = 0 0 II

µ = 2 2 C(4C + 1) I

µ = 4 −1 0

Fig. 1. The Newtonpolygon of F at the origin (left) and at infinity (right)

where Pα,ρ is as in (1). The polynomial Ψ(F ;p)(µ) is called the indicial polynomial
associated to p. Let Ap = {µ ∈ (µ1, µ2) | Ψ(F ;p)(µ) = 0}. Then NIC(F ) ∩ K̄ ×
(µ1, µ2) = K̄ × Ap. There are again three possibilities. Either Ap = ∅, in this
case we say that the vertex p is of type (0); or Ap is a finite set, then p is of type
(III); or Ap = (µ1, µ2), and we call p of type (IV).

Let (c, µ) ∈ NIC(F ). Then µ is associated with either a side or a vertex of
N (F ). We say that (c, µ) is of type (I)–(IV) depending on the type of the vertex
or of the side associated with µ.

Example 1. Let F (y) = x3 y2
0 y1 y2

2 − y3
1 + y0 y1 y2 + x−1 y0 y2

1 + x y2
2 − y1 y2 −

y1 + 4x−1 y0 − x3 y0 y1 y2 − x3.

The necessary initial conditions for F (y) are described in Table 1 and its Newton
polygon is drawn on the left hand of Fig. 1.

Proposition 1. Let F (x, y, y′) ∈ K((x))w[y, y′] be a polynomial first order ordi-
nary differential equation. Let p be a vertex of N (F ). Then p is not of type (IV).

Proof. Let p = (α, h). Let Fp be the sum of all monomials of F whose corre-
sponding point is p. We have that Fp =

∑h
i=0 ai xα yi (xy′)h−i. Then the indicial

polynomial associated with the vertex p is Ψ(F ;p)(µ) =
∑h

i=0 ai µh−i. If this poly-
nomial has an infinite number of solutions, then ai = 0 for all 0 ≤ i ≤ h. Then
Fp is identically null, which is an absurd because p belongs to the cloud of points
of F . �	
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2.2 The Newton Polygon at Infinity and Polynomial Solutions

Let us assume that the coefficients of F (y) are rational functions. For any point
x0, in order to find formal solutions in the variable x−x0 we only need to perform
the change of variable x̄ = x − x0 in the differential equation and work as before.

At infinity, we have two possibilities. Either we perform the change of variable
z = 1/x in the differential equation and we work as above, or we just look for
series of the form y(x) =

∑∞
i=0 ci xµi , µi > µi+1, for all i. In this case we do not

need to do any change to the original equation, but the monomials involved in
the necessary initial condition are those which give the greatest order. Hence,
the Newton polygon of F (y) at infinity N∞(F ) is defined as the convex hull of⋃

P∈P(F )(P + {(a, 0) | a ≤ 0}), L∞(F ;µ) being the line with slope −1/µ which
supports N∞(F ), and Φ∞

(F ;µ)(C) as in (2) substituting L∞(F ;µ) for L(F ;µ).
Then Lemma 1 holds substituting “lower order terms” for “higher ...” and Φ∞

(F ;µ)

for Φ(F ;µ). Using this version of Lemma 1 and Prop. 1, we have the following

Algorithm
Input: A first order ODE F (y) = 0 with rational coefficients.
Output: A bound for the degree of the polynomial solutions of F (y) = 0.
Let p the top vertex of N∞(F ). Return N , where N is greater than any real root of
Ψ(F ;p)(µ), and such that N ≥ µ, where µ is the inclination of the non-horizontal
side of N∞(F ) adjacent to p.

We may apply the above algorithm for any ODE provided the top vertex of
N∞(F ) is not of type (IV). For instance, the equation in Example 1 satisfies this
hypothesis, so that 3/2 as a bound for the degree of its polynomial solutions.

2.3 The Newton Polygon Process

Given a differential polynomial F (y) ∈ K((x))g[y0, . . . , yn], the Newton polygon
process constructs a tree T . The root of T is τ0. For each node τ of the tree there
are three associated elements: a differential polynomial Fτ (y) with coefficients
in K̄((x))g, an element cτ ∈ K̄, and µτ ∈ IR ∪ {−∞,∞}. For the root τ0, we
have Fτ0(y) = F (y), cτ0 = 0 and µτ0 = −∞.

Let τ be a node of T which is not a leaf. We are going to describe all its
descendant nodes. First, if y = 0 is a solution of Fτ (y) = 0, then there is a
descendant σ of τ , which is a leaf and for which Fσ = Fτ , µσ = ∞ and cσ = 0.
The other descendant nodes of τ are in a bijective correspondence with the set
Dτ = {(c, µ) ∈ NIC(Fτ );µ > µτ}. For each (c, µ) ∈ Dτ , there is a descendant
node σ for which Fσ(y) = Fτ (cxµ + y), cσ = c and µσ = µ.

The above tree depends on F and on the field K. If necessary, we shall
write T (F ) or even T (F ;K) to clearly state which tree we are referring to. For
instance, let F = y′, we may consider K = C or L = C(C). The tree T (F ;L),
has for each rational function R(C) a node σ with cσ = R(C) and µσ = 0.

As usual, the level of a node σ is k if the path of T from τ0 to σ is τ0, τ1, . . . , τk =
σ. We say that the tree T is discrete if for each k ≥ 0, the number of nodes of
level k is finite.
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Example 2. Let F (y) be as in example 1. We will describe here some nodes of
the tree T = T (F ; C). The tree T has only one node of level zero: the root
node τ0. We have Fτ0(y) = F (y), cτ0 = 0 and µτ0 = −∞. From Table 1, we have
that NIC(Fτ0) is the set

Dτ0 = {(c, µ) ; −1/2 < µ < 0, c ∈ C} ∪ {(c, µ) ; c ∈ C, µ ∈ {0, 1}} ∪ {(−1/4, 2)}

Since y = 0 is not a solutions of F (y) = 0, then the descendant nodes of τ0

are in bijective correspondence with set Dτ0 . In particular, the tree T is not
discrete. Let us consider σ1 and σ2 the descendant nodes of τ0 corresponding to
the elements (2, 0) and (−1/3, 0) of Dτ0 respectively. Thus, Fσ1(y) = F (2 + y),
Fσ2(y) = F (−1/3+y) and µσ1 = µσ2 = 0. Using the Newton polygon of Fσ1 and
that of Fσ2 , we see that Dσ1 = Dσ2 = {(2

√
−1, 1), (−2

√
−1, 1)}, and y = 0 is

not a solution of neither Fσ1(y) = 0 nor Fσ2(y) = 0. Hence, each σi, for i = 1 or
i = 2, has exactly two descendant nodes σi,j , with j = 1 or j = 2. Now we have
that Dσ2,j

= ∅ and y = 0 is not a solution of Fσ2,j
(y) = 0. Thus, σ2,j is a leaf

of T because it has no descendant nodes. Lemma 1 implies that there are not
solutions of F (y) = 0 of type −1/3 +

√
−1 x + · · · , where dots stands for higher

order terms. We remark that µσ2,j
= 1 �= ∞. In following subsection we will

see that branches of T with a leaf σ satisfying µσ �= ∞ does not correspond to
solutions of F (y) = 0. On the other hand, we have that Dσ1,j

= {(3/14, 2)} and
y = 0 is not a solution Fσ1,j

(y) = 0, hence σ1,j has exactly one descendant node
σ2,j , where cσ2,j

= 3/14 and µσ2,j
= 2. Moreover, after the next subsection, we

will be able to prove that there are two branches (σk,j)k≥0 of T , where j = 1, 2
and we put σ0,j = τ0, each one corresponding to a solution of F (y) = 0 of the
form 2 + (−1)j

√
−1 x + 3/14x2 + · · · .

2.3.1 Relation Between Branches of T and Solutions of F (y) = 0
The tree T has three types of branches: (a) infinite ones; (b) finite branches
whose leaf σ has µσ = ∞; and (c) finite branches whose leaf σ has µσ < ∞. In
this paragraph we will see that there exists a one to one correspondence between
formal power series solution of F (y) = 0 and the set of branches of T of types
(a) or (b).

Let τ0, τ1, . . . , τk, τk+1 be a finite branch of T such that µτk+1 = ∞. Let
φ(x) =

∑k
i=1 cτi

xµτi . We have that Fτk
(y) = F (φ(x) + y). Since µτk+1 = ∞ we

have that y = 0 is a solution of Fτk
(y) = 0. Hence, φ(x) is a solution of F (y) = 0.

Reciprocally, let φ(x) =
∑k

i=1 ci xµi be a solution of F (y) = 0. By Lemma 1,
there exists a finite branch τ0, τ1, . . . , τk, τk+1 of T with cτi

= ci and µi = µτi

for 1 ≤ i ≤ k.
Let τ0, τ1, . . . , τk be a finite branch of T such that µτk+1 < ∞. Let φ(x) =

∑k
i=1 cτi

xµτi . We have that Fτk
(y) = F (φ(x) + y). Since τk is a leaf, one has

NIC(Fτk
) ∩ K̄ × (µτk

,∞) = ∅, and y = 0 is not a solution. By Lemma 1, this
means that there is no solution y(x) of F (y) = 0 such that y(x) = φ(x) + ψ(x)
and with the terms of ψ(x) of order greater than µτk

. Hence, the above branch
does not correspond to any solution of F (y) = 0.
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In view of Lemma 1, it is obvious that if y(x) =
∑∞

i=1 ci xµi , where ci �= 0
for all i, is a solution of F (y) = 0, then there is an infinite branch (τi)i≥0 of T .
The reciprocal result is the following

Theorem 1. Let F (y) ∈ K((x))g[y0, . . . , yn]. Let B = (τi)i≥0 be an infinite
branch of the tree T . Let φ(x) =

∑
cτi

xµτi . Then φ(x) ∈ K̄((x))g and is a
solution of F (y) = 0. In particular, if all the exponents of φ(x) are rational,
then they have a greatest common denominator and φ(x) is a Puiseux series.

See [3, 4, 7, 8] for proofs of this theorem in different settings. They are based on
the stabilization of the Newton polygon process, which also gives a recurrent
formula for the coefficients of φ(x) which we will need later.

2.3.2 Stabilization of the Newton Polygon Process
In this paragraph we will see that given an infinite branch (τi)i≥0 of T , there
exists i1, such that, for i ≥ i1, the node τi has only one descendant, in other
words, the coefficient cτi+1 and the exponent µτi+1 are completely determined.
We will give a recurrent formula for the coefficients cτi+1 and prove Theorem 1.

Lemma 2. Let G(y) be a differential polynomial and H(y) = G(c xµ + y). Let
P = (t, h) be the point of highest ordinate in L(G;µ)∩N (G). Let A = {(t′, h′) ∈
IR2 | h′ ≥ h}. Then N (G) ∩ A = N (H) ∩ A. Moreover, N (H) is contained
in the right half-plane defined by L(G;µ). Finally, if Φ(G,µ)(c) = 0, then the
intersection point of L(G,µ) with the x-axis is not a vertex of N (H).

Proof. Let M(y) = a xα yρ0
0 · · · yρn

n be a differential monomial. Let Pα,ρ = (t, h)
its corresponding point. By simple computation, M(c xµ + y) = M(y) + V (y),
where V (y) is a sum of differential monomials whose corresponding points have
ordinate less than h and lie in the line passing through Pα,ρ with inclination µ.
This implies the first two statements. In order to prove the last one, we remark
that if T (y) is the sum of monomials of G(y) whose corresponding points lie
in L(G;µ), then T (c xµ) is the coefficient of the monomial whose corresponding
point is the intersection of L(G,µ) with the x-axis. Since T (c xµ) = Φ(G;µ)(c),
we are done. �	

Lemma 3. Let τ be a node of T with µτ �= ∞. Then either y = 0 is a solution
of Fτ (y) = 0 or N (Fτ ) has a side of inclination µ > µτ .

Proof. It is a consequence of Lemma 2 and the construction of T .

Definition 1 (The Pivot Point). For any non leaf node τ of T , we will denote
pτ to be the point of least ordinate in L(Fτ ;µτ ) ∩N (Fτ ).

Let (τi)i≥0 be an infinite branch of T . Let pτi
= (αi, βi). We have that βi ∈ IN.

By Lemma 2, βi ≥ βi+1 ≥ 1 for i ≥ 1. Hence, there exists i0 such that, if i ≥ i0,
then βi0 = βi. We have also that pτi

= pτi0
for i ≥ i0. We call point p = pτi0

the pivot point of the branch.
We have that p is a vertex of N (Fτi

) for i ≥ i0. Hence, the monomials of
Fτi+1(y) and those of Fτi

(y) corresponding to p are exactly the same for i ≥ i0.
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In particular, the indicial polynomial Ψ(Fτi
;p)(µ) is the same for i ≥ i0; denote

it by Ψ(µ). We say that the branch stabilizes at step i1 ≥ i0 if µτi
is not a root

of Ψ(µ) for i ≥ i1.

Example 3. Following with the notation of example 2, let (τi)i≥0 be a branch
of T such that τ1 = σ1,1. We have that pτ2 = (−2, 1). Since its ordinate is
already equal to 1, the pivot point p of the branch is pτ2 . The indicial polynomial
Ψ(Fτ2 ;p)(µ) = µ(1 + 3µ). For j ≥ 2 we have that µτj

≥ µτ2 = 2, and so µτj
is not

a root of Ψ(µ). Hence, the branch (τi)i≥0 stabilizes at step 2.

By a simple use of the chain rule, we can prove (see Sect. 4 in [4]) the following

Lemma 4. Let h be the ordinate of the pivot point p of the branch (τi)i≥0.
Assume that h ≥ 2 and that the differential variable y(k) actually appears in at
least one of the monomials of Fτi0

(y) corresponding to the pivot point p. Then
φ(x) =

∑
cτi

xτi is also a solution of ∂F
∂y(k) (y) = 0, and the pivot point of φ(x)

with respect to ∂F
∂y(k) (y) has ordinate h − 1.

Remark 1. Let (τi)i≥0 be a branch of the tree T (F ) associated with F = 0. By a
successive application of the above lemma, there exists G(y) = ∂|a|F

∂y
a0
0 ···∂yan

n
(y) �= 0

such that the tree T (G) associated with G(y) = 0 has a branch (τ ′
i)i≥0 with

cτ ′
i

= cτi
and µτ ′

i
= µτi

for i ≥ 0, and whose corresponding pivot point p has
ordinate equal to 1. Since p has ordinate equal to 1, we have that Ψ(Gτ′

i
;p)(µ) is

a nonzero polynomial, hence it has a finite number of real roots. This implies
that the branch (τ ′

i)i≥0 stabilizes at some step i1.

Definition 2. Let F (y) be a differential polynomial. We say that F = 0 has
quasi-linear solved form if p = (0, 1) is a vertex of N (F ), N (F ) ⊆ IR≥0 × IR,
and the indicial polynomial Ψ(F ;p)(µ) has no positive real roots.

Proposition 2. Let F (y) ∈ R((x))g[y0, . . . , yn], where R is a ring, C ⊆ R ⊆ K,
and K is a field. Assume that F = 0 has quasi-linear solved form. Let us write

F (y) =
∑

α,ρ

aα,ρ xα+ρ1+2ρ2+···+nρnyρ0
0 yρ1

1 · · · yρn
n ,

where the exponents α lie in a finitely generated semi-group Γ of IR≥0. Then there
exists a unique series solutions φ(x) ∈ K((x))g of F = 0 with positive order.
Moreover, let us write Γ = {γi}i≥0, where γi < γi+1, for all i. Then, for each
i ≥ 1, there exists a polynomial Qi({Aα,ρ}, T1, . . . , Ti−1), which only depends on
Γ , and with coefficients in R, such that, if we write φ(x) =

∑∞
i=1 dix

γ
i , we have

that

di = −
Qi({aα,ρ}, d1, . . . , di−1)

Ψ(F ;(0,1))(γi)
, i ≥ 1 . (4)
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Proof. Consider F (y) = M(y)+G(y), where M(y) is the sum of those monomials
of F (y) whose corresponding point is (0, 1). For any series φ(x) =

∑
i≥1 di xγi , we

have that M(φ(x)) =
∑

i≥1 diΨ(F ;(0,1))(γi)xγi and G(φ(x)) =
∑

i≥1 gi xγi , where
each gi is a polynomial expression on aα,ρ and d1, . . . , di−1. Since Ψ(F ;(0,1))(γi) �=
0, the relations diΨ(F ;(0,1))(γi) + gi = 0, i ≥ 1, determine uniquely φ(x). �	

Lemma 5. Let F (y) ∈ K((x))g[y0, . . . , yn] and (τi)i≥0 be an infinite branch of
T with pivot point p = (α, 1) and which stabilizes at step i1. Let ξ be a rational,
µτi

< ξ < µτi+1 . Consider H(y) = x−α Fτi1
(xξ y). Then H(y) ∈ K((x))g[y, y′]

and has quasi-linear solved form.

Proof. Let G(y) = Fτi1
(y). The affine map (a, t) �→ (a−α0 + ξ t, t) is a bijection

between the clouds of points of G(y) and H(y); hence it is a bijection between
their Newton polygons, sending a side of inclination µ to a side of inclination
µ − ξ. Moreover, we have that Ψ(H;(0,1))(µ) = Ψ(G;q)(µ + ξ). This proves that
H has quasi-linear solved form. The fact that the series coefficients of H(y) are
grid-based is a consequence of the following fact: let Γ be a finitely generated
semi-group and γ ∈ IR, then A = (γ + Γ ) ∩ IR≥0 is contained in a finitely
generated semi-group. To see this, let Γ be generated by s1, . . . , sk. Let Σ be
the set of (n1, . . . , nk) ∈ INk such that γ +

∑
nisi > 0 and for any (n′

1, . . . , n
′
k) �=

(n1, . . . , nk), with n′
i ≤ ni for 1 ≤ i ≤ k, one has that γ +

∑
n′

isi < 0. Then Σ is
finite, and A is generated by 1, s1, . . . , sk and γ+

∑
nisi, where (n1, . . . , nk) ∈ Σ.

Proof of theorem 1. By Remark 1, we may assume that the pivot point p of
(τi)i≥0 has ordinate 1. Now apply Lemma 5 and Proposition 2. �	

3 Formal Power Series Solutions of First Order ODE

Definition 3. Let F (y) ∈ C((x))g[y, y′] and T be the tree constructed in the
previous section. Let σ be a descendant node of τ which is not a leaf. We say
that the node σ is of type (I)–(IV) if (cσ, µσ) is a necessary condition of Fτ of
the corresponding type (I)–(IV).

Let τ be a node of T . We call τ irrationally dicritical if it is of type (II)
or (III). We say that τ is dicritical if the path τ0, . . . , τk+1 = τ from τ0 to τ
satisfies that each τi is of type (I) for 1 ≤ i ≤ k, τ is of type (II) or (III), and
µτ ∈ Q.

A branch of T is called dicritical (resp. irrationally dicritical) if it contains a
dicritical (resp. irrationally dicritical) node. We will say that F = 0 is dicritical
(resp. irrationally dicritical) at the origin if its tree has at least a dicritical (resp.
irrationally dicritical) branch (τi)i≥0 with µτ1 > 0.

We remark that the tree T is discrete if and only if F = 0 has no irrationally
dicritical branches.
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This section is devoted to proving the following

Theorem 2. Let F (y) ∈ C((x))g[y, y′] be irrationally dicritical. Then there ex-
ists a one-parameter family of grid-bases series solutions of F (y) = 0 as follows

yc(x) =

(
k−1∑

i=1

bi xµi

)

+ c xµk +

(
s∑

i=k+1

ci xµi

)

+

( ∞∑

i=s+1

di xµi

)

(5)

where

– each bi is a fixed constant,
– the parameter c ∈ C \ E, where E is a finite set,
– each ci satisfies a polynomial equation Qi(c, ck+1, . . . , ci) = 0, and
– each di = Ri(c,ck+1, . . . , cs, ds+1, . . . , di−1)/µi g(c, ck+1, . . . , cs), where Ri

and g are polynomials with coefficients in C.
– The exponents {µi}i≥1 do not depend on the parameter c (we allow zero

coefficients in (5)).

Moreover, if F (y) ∈ C((x))∗[y, y′] and F = 0 is dicritical, then there exists
a one-parameter family as (5) with exponents {µi}i≥1 ⊆ 1

q ZZ. If coefficients of
F (y) are convergent Puiseux series, then each yc(x) is also a convergent Puiseux
series, hence it corresponds to the parametrization of an analytic branch curve.

Lemma 6. Let F (x, y, y′) be a differential polynomial with coefficients in C((x))g.
Let C be an indeterminate over C, and let L be an extension field of C(C). Let
C1 . . . , Ct ∈ L. Consider the differential polynomial

G(x, y, y′) = F (x, φ + y, φx + y′) ∈ L((x))g[y, y′],

where φ(x) = C + C1 xµ1 + · · · + Ct xµt , 0 < µ1 < · · · < µt, and φx = d φ
d x . Let

p = (a, h) be any vertex of the bottom part of the Newton polygon of G(x, y, y′).
(The bottom part of N is constituted by the sides of N with positive slope.)

Then there is only one monomial of G(x, y, y′) whose corresponding point is
p and this monomial has the form g xa (x y′)h, where g is a non-zero element
of L. In particular, the characteristic polynomial associated to any side of the
bottom part of N (G) has nonzero roots.

Proof. Multiplying F by a convenient xα, we may assume that

F =
∑

r∈Γ

∑

s∈IN

ϕr,s(y)xr (xy′)s, ϕr,s(y) ∈ C[y] ,

where Γ is a finitely generated semi-group of IR≥0 containing 1, µ1, . . . , µt. We
have that

G =
∑

r∈Γ,s,l≥0,k≥0

(
s

k

)
1
l!

ϕ(l)
r,s(φ)xr (xφx)s−k yl (xy′)k . (6)
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Let d
d C be the derivative with respect to C in C(C). We choose an extension of

this derivation operator to L, and we extend it trivially to L((x))∗[y, y′]. Hence,

d

dC
Coeffxayl(xy′)k(G) = Coeffxa

(
∑

r,s

(
s

k

)
1
l!

d

dC

{
ϕ(l)

r,s(φ)xr (xφx)s−k
}

)

= A+B,

where

A = Coeffxa

(
dφ

dC

∑

r,s

(
s

k

)
1
l!

ϕ(l+1)
r,s (φ)xr (xφx)s−k

)

=
∑

0≤t≤a

Coeffxa−t(
dφ

dC
)Coeffxt

(
∑

r,s

(
s

k

)
1
l!

ϕ(l+1)
r,s (φ)xr (xφx)s−k

)

=
∑

0≤t≤a

Coeffxa−t(
dφ

dC
)(l + 1)Coeffxtyl+1(xy′)k(G),

B =
∑

0≤t≤a

Coeffxa−t

(

x
∂ φ

∂x∂C

)

Coeffxt

(
∑

r,s

(
s

k

)
s − k

l!
ϕ(l)

r,s(φ)xr (xφx)s−k−1

)

= (k + 1)
∑

0≤t<a

Coeffxa−t

(

x
∂ φ

∂x∂C

)

Coeffxtyl(xy′)k+1(G) .

We remark that t ∈ Γ and all the above sums are finite. The above equalities
hold by (6) and because Coeffx0

(
x ∂ φ

∂x∂C

)
= 0.

Let p = (a, h) be a vertex of the bottom part of N (G). Let l′+k = h. Assume
that k < h, so that l′ ≥ 1. Let l = l′ − 1. Then

Coeffxtyl+1(xy′)k(G) = Coeffxtyl(xy′)k+1(G) = 0, for t < a .

From this, in the above computation, A = Coeffxayl′ (xy′)h(G) and B = 0. Hence

Coeffxayl′ (xy′)h(G) =
d

dC
Coeffxayl(xy′)k(G) = 0 .

The last equality holds because the point (a, h − 1) does not belong to N (N).
So, the only coefficient different from zero is that of xa y0 (xy′)h. Now let S
be a side of the bottom part of N (G) with inclination µ0 > 0. Let (a, h) and
(a + kµ0, h − k) be the vertices of S. We have that

Φ(G;µ0)(T ) = gh (µ0 T )h + · · · + gh−k (µ0 T )h−k .

Since gh and gh−k are different from zero, Φ(G;µ0)(T ) has non-zero roots. �	

Theorem 3. Let F (x, y, y′) ∈ C((x))g[y, y′]. Assume that F (y) = 0 has a nec-
essary initial condition (c, µ0) of type (II) or (III). Let C be an indeterminate
over C and L = C(C). Then F = 0 has a solution as follows

y(x) = C xµ0 +
∞∑

i=1

Ci xµi ∈ L̄((x))g .
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Moreover, there exist i1, a polynomial g(T, T1, . . . , Ti1) with coefficients in C
such that ḡ = g(C,C1, . . . , Ci1) �= 0 ∈ L̄, and

Ci ∈ C[C,C1, . . . , Ci1 ,
1
ḡ
], for all i ≥ 1 .

Proof. Consider G(y) = F (xµ0 y). Then (c, 0) is a necessary initial condition
for G = 0 of type (II) or (III). It suffices to prove the statement for G(y) and
µ0 = 0. We have that Φ(G;0)(C) ≡ 0. We consider G(y) ∈ L((x))g[y, y′], hence
(C, 0) is a necessary initial condition for G = 0. Let T = T (G;L) be the tree
of G constructed in the previous section. Let τ1 be the node of T such that
cτ1 = C and µτ1 = 0. Let us prove that there exists a branch (τi)i≥0 of T ,
passing through τ1, which corresponds to a solution of G(y) = 0. Let (τi)k

i=0

be a path of T . If y = 0 is a solution of Fτk
(y) = 0, we are done. If y = 0

is not a solution, by lemma 3 there exists a side S of N (Fτk
) with inclination

µk+1 > µk. In particular, S is a side of the bottom part of N (Fτk
). By Lemma 6,

the characteristic polynomial Φ(Fτk
;µk+1)(T ) has a non zero root Ck+1 in L̄.

Hence, the path (τi)k
i=0 can be continued to a branch (τi)i≥0 which corresponds

to a solution φ(x) = C +
∑

i≥1 Ci xµi ∈ L̄((x))g of G(y) = 0, where Ci = cτi
and

µi = µτi
, for all i ≥ 1.

It remains to prove the second part. If φ(x) is a finite sum of monomials we
are done. Let p = (α, h) be the pivot point of φ(x) with respect to G(y). If h ≥ 2
then, by Lemmas 4 and 6, φ(x) is a solution of ∂h−1G

∂y′h−1 . Hence, we may assume
that the pivot point is p = (α, 1) and it is reached at step i1. By Lemma 6,
we have that Ψ(G;p)(µ) = g µ, where g xα(xy′) is the only monomial of Gτi1

(y)
whose corresponding point is p. The element g is a polynomial expression on
C,C1, . . . , Ci1 with coefficients in C. Let ξ be a rational number such that µi1 <
ξ < µi1+1. Consider H(y) = x−α Gτ1(x

xi y). By Lemma 5 H(y) has quasi-linear
solved form. ¿From proposition 2, ψ(x) =

∑
i>i1

Ci xµi−ξ is the only solution
of H(y) = 0 with positive order and the coefficients Ci satisfy the recurrent
equations (4). Let R = C[C,C1, . . . , Ci1 ] ⊆ L̄, so that H(y) ∈ R((x))g[y, y′]. We
have Ψ(H;(0,1))(µ) = (µ − ξ) g. Using the recurrent equations (4), one sees that
Ci ∈ R[ 1g ] ⊆ L̄. �	

Corollary 1. Let η : C[C,C1, . . . , Ci1 ,
1
ḡ ] → C be a ring homomorphism. Let

c = η(C) and ci = η(Ci), for i ≥ 1. Then η(y(x)) = c xµ0 +
∑∞

i=1 ci xµi is a
solution of F (y) = 0.

Proof. Set C0 = C and c0 = c. Let Fk = F (
∑k

i=0 Ci Xµi) and Gk = F (
∑k

i=0 ci Xµi).
We have that ord(Gk) ≥ ord(Fk), for all k ≥ 1. �	

Remark 2. Since C1, . . . , Ci1 are algebraic over C(C), there exist polynomials
Qi ∈ C[T, T1, . . . , Ti], 1 ≤ i ≤ i1, and g ∈ C[T, . . . , T1, . . . , Ti1 ] such that if
C = {c = (c, c1, . . . , ci1) ∈ Ci1+1 | Qi(c) = 0, 1 ≤ i ≤ i1, g(c) �= 0} then
there exists a homomorphism η : C[C,C1, . . . , Ci1 ,

1
ḡ ] → C with η(Ci) = ci for

0 ≤ i ≤ i1 if and only if c ∈ C. Moreover, there exists a finite set E ⊆ C such that
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the projection π : C → C \E over the first coordinate is onto. Then we obtain a
one-parameter family of solutions of F (y) = 0 as described in Theorem 2.

Proof of Theorem 2. Let τ be an irrationally dicritical node of T (F ; C). Let
(τi)k+1

i=0 be the path from τ0 to τ . Then (cτk+1 , µτk+1) is a necessary initial condi-
tion of Fτk

(y) = 0 of type (II) or (III). Apply Theorem 3 and the above remark
to Fτk

(y) = 0. If F (y) ∈ C((x))∗[y, y′], consider a dicritical node τ and the path
(τi)k+1

i=0 , such that τi are of type (I) for 1 ≤ 1 ≤ τk. Hence Fτk+1 has rational
exponents. The solution constructed in Theorem 3 has also rational exponents
because the necessary initial conditions used there correspond to sides. Hence,
the family of solutions have rational exponents. Finally, by Lemma 6 the pivot
point of all them has a corresponding monomial of type ḡ xα (xy′), with ḡ �= 0.
This guarantee the convergence of the solutions by a direct application of The-
orem 2 of [4] or by the main theorem of [9]. �	
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