
Observed Lower Bounds for Random
3-SAT Phase Transition Density

Using Linear Programming

Marijn Heule� and Hans van Maaren

Department of Software Technology,
Faculty of Electrical Engineering,

Mathematics and Computer Sciences,
Delft University of Technology

marijn@heule.nl

h.vanmaaren@ewi.tudelft.nl

Abstract. We introduce two incomplete polynomial time algorithms to
solve satisfiability problems which both use Linear Programming (LP)
techniques. First, the FlipFlop LP attempts to simulate a Quadratic
Program which would solve the CNF at hand. Second, the Weighted-
LinearAutarky LP is an extended variant of the LinearAutarky LP
as defined by Kullmann [6] and iteratively updates its weights to find
autarkies in a given formula. Besides solving satisfiability problems, this
LP could also be used to study the existence of autark assignments in
formulas. Results within the experimental domain (up to 1000 variables)
show a considerably sharper lower bound for the uniform random 3-Sat
phase transition density than the proved lower bound of the myopic al-
gorithm (> 3.26) by Achlioptas [1] and even than that of the greedy
algorithm (> 3.52) proposed by Kaporis [5].

1 Introduction

Although Linear Programming (LP) techniques exist which run in polynomial
time, it must be said that these techniques certainly are not among the most pop-
ular tools in the Satisfiability area. In those cases where they are used they are
mainly applied in a preprocessing phase, in order to detect a specific structure of
the CNF at hand. Examples of practical applications in this field using LP tech-
niques are measuring the complexity of a CNF formula [2] and the detection of
so-called equivalence clauses [9]. The reason why LP techniques are rarely used
as a reasoning engine is that the straightforward LP relaxation of the Satisfiabil-
ity Problem is always feasible (when unit clauses are absent). This means that
in any trial to make LP techniques useful for CNF reasoning one has to come

� Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 122–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Observed Lower Bounds for Random 3-SAT Phase Transition Density 123

up with a sophisticated reformulation. In this paper we introduce two LP based
techniques which both result in a polynomial time running incomplete solver.

The first one, the FlipFlop LP, finds its motivation in the fact that the Sat-
isfiability Problem can straightforwardly be reformulated as a Quadratic Pro-
gramming Problem. We simulate this Quadratic Program through an iterated
sequence of LP’s, where the optimal solution of the n-th iteration is used as an
input for the n + 1-th iteration. That is, we reformulate the Quadratic Program
as a “Contraction” problem, although not in the strict Mathematical sense. Sat-
isfying assignments are among the “Contraction” fixed points, but unfortunately,
the zero solution, which reveals no information at all, is also one of those fixed
points. Hence, in order to make things work, we have to invoke certain tricks,
which could be classified as “artificial”, to stay away from this trivial fixed point.

The second LP is based on the detection of autarkies - partial assignments
that satisfy all clauses that are “touched”. We call it the WeightedLinear-
Autarky LP, which finds its origin in Kullmann’s Linear Autarky detection [6].
Also in this case we introduce in fact a sequence of LP’s in order to find suitable
weights for autarky detection. Again, we have to invoke tricks and some tuning
to obtain a satisfactory performance.

Both of the above methods are generally applicable, but here we want to focus
on their performance on uniform random 3-Sat formulas. From the presented
results it becomes evident that the second approach is monotonically better than
the first on these set of instances. Nevertheless we present both techniques, since
we observed that outside the domain of random 3-Sat the situation is sometimes
reversed.

The search for lower bounds for the uniform random 3-Sat phase transition
density has a rich history by now [3]. To our knowledge the best result found by
myopic algorithms is due to Achlioptas [1], but the greedy algorithm of Kaporis
et al [5] pushes this bound a bit further. We emphasize that this contribution does
not claim to come up with an even sharper proven lower bound. In order to do so
one needs algorithms which are subject to some profound (likely probabilistic)
analysis and LP techniques do not easily subject themselves as such. At least,
such an analysis is beyond the capacity of the authors at this stage.

The question we address here has a more modest objective: to what observed
densities can polynomial time algorithms of a given complexity solve uniform
random 3-Sat problems. The experimentally obtained results show that both of
our LP based techniques have the potential to go well above Kaporis’ bound. We
find this interesting as such, but most of all we take these results as an indication
that LP based techniques are useful tools in the Satisfiability area.

As far as presenting the capacity of our methods within the context of uniform
random 3-Sat and relating our results to the lower bound question, one might
object that local search based solvers easily almost reach the phase transition
density and that because of this feature our methods are situated in a sort of a
“twilight zone”: no analysis possible at the moment and outperformed by local
search methods. To some extent this is indeed the case, however the authors
are not aware of the existence of a local search solver with a default scalable



124 M.J.H. Heule and H. van Maaren

parameter setting resulting in an incomplete polynomial time solver reaching the
phase transition density consistently. In case they exist, we hope to be alerted
by the Sat community, and complexity comparisons must be made.

2 Preliminaries

A formula (denoted as F = c1 ∧ c2 ∧ . . . ∧ cm) in Conjunctive Normal Form
(CNF) is a conjunction of clauses; each clause (denoted as ci = l1 ∨ l2 ∨ · · · ∨ lk)
being a disjunction of literals; and each literal is an atomic Boolean variable xj

or its negated form ¬xj . The satisfiability (Sat) problem deals with the question
whether a CNF formula is Satisfiable (has a Boolean solution) or not. A formula
is satisfiable if an assignment satisfies all clauses. A clause is satisfied if at least
one of its literals is satisfied.

The clause-variable matrix A associated to a CNF formula F is the matrix
defined by

Ai,j =

⎧
⎨

⎩

1 if the ith clause of F contains the jth variable with sign 1
−1 if the ith clause of F contains the jth variable with sign -1
0 otherwise.

Thus if F is a CNF formula with propositional variables x1, . . . , xn the Sat
problem for F reads as the -1,1 Feasibility problem

{
Ax ≥ −L + 2e

x ∈ {−1, 1}n

In the above, L is the length vector, having the length of clause i as its ith entry,
and e is the all one vector of appropriate dimension. Notice that we use {-1,1}
Boolean variables instead of the commonly used {0,1}.

As defined by Kullmann [6], a formula with clause-variable matrix A has a
Linear Autarky x ∈ Qn if {

Ax ≥ 0
x �= 0

The above concept generalizes an earlier version of Warners and van Maaren [10]
which provides a decomposition of a formula in case the kernel of its clause-
variable matrix is non-zero.

A so-called monotone variable is the best known example of a Linear Autarky:
if variable xj appears only positive (negative) in the formula, vector x = ej

(x = −ej), (ej is the jth unit vector), is a Linear Autarky. In general, a Linear
Autarky x leads to an autark partial assignment of the formula involved by
rounding. To examine this, let partial assignment sign be

sign(xj) =

⎧
⎨

⎩

1 if xj > 0
−1 if xj < 0

undefined if xj = 0.



Observed Lower Bounds for Random 3-SAT Phase Transition Density 125

and substitute all defined sign(xj) into the formula. If a clause i is affected by
this substitution, that is, if a variable with defined sign occurs in clause i, this
clause is obviously satisfied by the partial assignment since

∑

j

Aijxj =
∑

xj �=0

Aijxj ≥ 0

and hence not all Aijxj with defined sign(xj) can be negative. The above im-
plies that a Linear Autarky leads to a non-trivial decomposition of the formula
at hand. One part is satisfied by sign and the other part contains only vari-
ables undefined by sign. Clearly, the latter part is Satisfiability Equivalent to the
original formula: it is satisfiable if and only if the original formula is.

3 The FlipFlop LP

A Quadratic Program (QP) formulation of the Sat problem as defined in the
preliminaries is shown in Fig. 1(a). Since max

∑
x2

i is a quadratic objective
function (not a linear), solving this QP could not be executed in polynomial time,
unless P = NP. We propose a linear simulation of this QP that is incomplete -
in contrast to the QP - but could solve CNF formulas in polynomial time. This
linear simulation is shown in Fig. 1(b). We use parameters vi that represent
“guessed” outcomes of xi in max

∑
x2

i .

max
∑

x2
i

s.t.

{
Ax ≥ −e

−1 ≤ xi ≤ 1

max
∑

vixi

s.t.

{
Ax ≥ −e

−1 ≤ xi ≤ 1

(a) (b)

Fig. 1. (a) A 3-Sat QP formulation; (b) A possible linear simulation of (a)

Solving difficult problems requires a close approximation of xi by vi. We experi-
mented with initial weights vi :=

∑
xi∈F -

∑
¬xi∈F . This LP could solve uniform

random 3-Sat instances up to density of approximately 2.5.
To stretch this result, we experimented with various update strategies for

the weights vi. One rather intuitive update strategy applies the outcomes of xi

in the solution of max
∑

vixi as an “educated guess” for the weights in a new
iteration: vn+1

i := Rn(xi) with Rn(xi) referring to the value of xi in the solution
of the linear simulation after iteration n. Even if one allows many iterations, this
LP is unable to solve many problems apart from the ones that could be solved
using the initial weights.

Of the various update strategies we used during our experiments, one clearly
solved the most problems. The recipe: divide the variables in two disjunct sets
A and B. Variables were randomly divided between sets A and B with an equal



126 M.J.H. Heule and H. van Maaren

xi ∈
{ A p(0.5)

B otherwise
vn+1

i :=

⎧
⎨

⎩

Rn(xi)
if xi ∈ A and n ≡ 0 (mod 2) or
if xi ∈ B and n ≡ 1 (mod 2)

0 otherwise

(a) (b)

Fig. 2. (a) Initial set definition; (b) Update strategy

probability. The weights are updated in such a way that the weights become 0 if
the corresponding variable is alternately in set A or set B. This update strategy
attempts to assign variables - as many as possible - in one set to the sign of
the corresponding weights. This results in assigning values �= 0 to variables in
the other set. The Rn(xi) values will be used in iteration n + 1 where the same
process is performed, but with swapped sets (see Fig. 2). We refer to iteratively
solving the linear simulation defined in Fig. 1(b) using the update strategy as
defined in Fig. 2 as the FlipFlop LP.

4 Weighted Linear Autarkies

In this section, we explain the concept of weighted linear autarkies and the
corresponding LP. A proper weight matrix is required to solve CNF’s. First
we show how LP techniques can be used to determine the importance of the
variables. Second, we propose an update strategy which use this information to
construct the weight matrix.

4.1 The Weighted Linear Autarky LP

We refer to the weighted clause-variable matrix W associated to a CNF formula
F as the weighted analogue of matrix A using weights wi,j > 0:

Wi,j =

⎧
⎨

⎩

wi,j if the ith clause of F contains the jth variable with sign 1
−wi,j if the ith clause of F contains the jth variable with sign -1

0 otherwise.

The definition of the LinearAutarky LP as proposed by Kullmann [6] is
shown in Fig. 3(a). Our variant uses the weighted clause-variable matrix W
(see Fig. 3(b)). We refer to this LP as the WeightedLinearAutarky LP. For
both LP’s, one can try to achieve the constraint x �= 0 by an objective function.
Two possible objective functions are shown in Fig. 4.

{
Ax ≥ 0

x �= 0

{
Wx ≥ 0

x �= 0

(a) (b)

Fig. 3. (a) LinearAutarky LP; (b) WeightedLinearAutarky LP



Observed Lower Bounds for Random 3-SAT Phase Transition Density 127

max
∑

xi

max
∑

vixi

vi :=
∑

xi∈F −∑
¬xi∈F

(a) (b)

Fig. 4. (a) Elementary objective function; (b) Advanced objective function

The advanced objective function seemed more effective, since it finds all
monotone variables directly. This in contrast to the elementary objective func-
tion which will not find monotone variables that occur only negative. However,
during our experiments we found no differences in the solving capacity of both
objective functions. Therefore we selected the elementary one.

As with the LinearAutarky LP, the set of variables with xi �= 0 in the
solution of a WeightedLinearAutarky LP forms an autark assignment. The
advantage of the WeightedLinearAutarky LP is that it could - in theory -
solve many problems. The following theorem is quite similar to Lemma 3.2 by
Kullmann in [7].

Theorem 1. For every satisfiable formula F , there exists a weighted clause-
variable matrix W of which its WeightedLinearAutarky LP results in a
solution.

Proof: Given a satisfying assignment of F , construct W in such a way that
satisfied literals xi,j have corresponding weight wi,j = Li−1 and falsified literals
xi,j have corresponding weight wi,j = 1. Li refers to the length of clause i. The
WeightedLinearAutarky LP will result in the given satisfying assignment.

�

In practice, it is hard to construct a W leading to a solution. We propose
a method to construct matrix W using Linear Programming techniques. First,
we solve a LP called the UpdateWeights LP, which is quite similar to the
WeightedLinearAutarky LP. Second, we use the values of variables xi in
the solution of that UpdateWeights LP to construct W by applying an update
strategy.

4.2 The Update Weights LP

We saw that solving the LP with constraints Wx ≥ 0 and x �= 0 would result in
an autark assignment if it is feasible. The LP with constraints Wx+y ≥ 0, x �= 0,
and y > 0 is always feasible, but would rarely result in an autark assignment.
However, solutions for this LP could be useful to update W in such a way that
the LP with constraints Wx ≥ 0 and x �= 0 becomes feasible. This idea is the
foundation of the UpdateWeights LP as defined in figure 5.

The values of parameters ymin and ymax are essential for the solving capacity of
the algorithm. Since the variables xi are unbounded, there is only one parameter
that needs to be measured: ymax

−ymin
. One must choose ymin and ymax in such a way



128 M.J.H. Heule and H. van Maaren

max
∑

yi

⎧
⎨

⎩

Wx + y ≥ 0
x �= 0

ymin ≤ yi ≤ ymax

(a) (b)

Fig. 5. UpdateWeights LP definitions: (a) objective function; (b) constraints

that in as many relaxations of clauses at least one xi,j exists with sign(xi,j) = 1.
If ymax

−ymin
is too large, many clauses will have either three literals with sign(xi,j) = 1

or three literals with sign(xi,j) = −1. On the other hand, if ymax

−ymin
is too small,

many variables will have an undefined sign(xi,j). Throughout our experiments on
uniform random 3-Sat formulas, ymax

−ymin
≈ 2 appeared to solve most instances near

the phase transition density. More specific, we used ymin := -0.3 and ymax := 0.6.

4.3 Update Strategy

We refer to Sn(xi) as the value of xi in the solution of the UpdateWeights
LP after iteration n. We want to use these values Sn(xi) to construct matrix
Wn+1. An update strategy must satisfy the definition property that all wi,j > 0.
Notice that Sn(xi) is unbounded, since variables xi are unbounded in the Up-
dateWeights LP. Now it seems natural to make wn+1

i,j := baseSn(xi)w
n
i,j . To

prevent that weights might reach either 0 or ∞, we introduce two parameters
wmin and wmax which refer to the minimum and the maximum of the weights,
respectively. This results in the following strategy:

⎧
⎨

⎩

W 0 = A

wn+1
i,j = baseSn(xi)w

n
i,j

0 < wmin ≤ wi,j ≤ wmax

Fig. 6. Update strategy for the WeightedLinearAutarky LP

Parameter wmin has no significant influence on the performance of the algo-
rithm as long as its value is small. We chose wmin := 0.01. A small performance
gain could be achieved by making wmax ≈ 5 (assuming ymin = -0.3 and ymax = 0.6).
We did some small scale experiments to determine an effective value for parame-
ter base: using the other parameters on their chosen values as mentioned above,
we experimented with uniform random 3-Sat formulas. We generated 1000 in-
stances on density 3.7 using 200 variables. The influence of parameter base on
the performance was measured starting with base = 1 using steps of 0.25 and
from 4.0 we used only integer values.

Results are shown in Fig. 7. The optimal value base = 2.5 shown here is used
during our further experiments. Notice that for base = 1 the WeightedLinear-
Autarky LP equals the Linear Autarky LP. So using the LinearAutarky
LP, we cannot solve one single sample of these instances.



Observed Lower Bounds for Random 3-SAT Phase Transition Density 129

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

%
o
f
in

st
a
n
ce

s
so

lv
ed

base

chosen parameters setting

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��
��

��
��

��

��

Fig. 7. Influence of parameter base on the solving capacity of the algorithm

Although intensively tweaking of the various parameters might result in a
better performance of the algorithm, we used these settings for our experiments.

5 Experimental Results

This section deals with the performance of the two solvers based on the LP’s
described above. Our goal is to observe a lower bound for the uniform random 3-
Sat phase transition density. During the experiments we used an Intel Pentium
4 with 3.5 GHz running on Fedora Core 2. All LP’s were solved using glpsol from
the GNU Linear Programming Kit1 (GLPK). To generate the uniform random
3-Sat formulas, we used the generator of Van Gelder2 [8].

As we will see, the WeightedLinearAutarky LP clearly performs better
than the FlipFlop LP on uniform random 3-Sat formulas. The reason for
presenting the results of the latter is the fact that for some structured problems
we observed a reverse effect. Presentation of these results is outside the scope of
this paper.

Since Linear Programming is a polynomial time solving procedure, the com-
plexity of the presented LP’s is also polynomial. But only, of course, as long
as the required iterations to solve a formula does not grow exponentially with
respect to its size. We used a small constant to limit the number of iterations
(MAX ITERATIONS := 50). Using this constant, we already reached a point
where, as the number of variables increased, the density on which all instances
were solved increased accordingly. A higher constant can only increase the per-
formance of the solvers using the presented LP’s. This will be explained later.
For reasons of comparison we added the results of Kaporis’ algorithm on the
same samples (see Fig. 12) at the end of this section.

1 available at http://www.gnu.org/software/glpk/glpk.html
2 available at http://www.satlib.org



130 M.J.H. Heule and H. van Maaren

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.6 2.8 3 3.2 3.4 3.6 3.8 4

p
er

ce
n
ta

g
e

o
f
in

st
a
n
ce

s
so

lv
ed

density

200 variables

�� �� �� �� ��
��

��

�� ��

��

��

��

��

��

��

��

��

400 variables

+ + + + + + + +
+

+

+

+

+

+

+

+

+

600 variables

�� �� �� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

800 variables

+ + + + + + + + +

+

+

+

+

+

+

+

+

1000 variables

�� �� �� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

Fig. 8. Percentage of instances solved using the FlipFlop LP. Vertical line shows the
proved lower bound by Kaporis [5]

0

5

10

15

20

25

30

2.6 2.8 3 3.2 3.4 3.6 3.8 4

av
er

a
g
e

n
u
m

b
er

o
f
it

er
a
ti

o
n
s

density

200 variables

��
��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

400 variables

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

600 variables

�� ��
��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

800 variables

+ + +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1000 variables

�� �� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Fig. 9. Average number of iterations required by the FlipFlop LP

5.1 Flip Flop Solver

The FlipFlop solver (see algorithm 1) first attempts to assign all variables
to {-1,1} by using initial weights based on the occurrences of the variables in



Observed Lower Bounds for Random 3-SAT Phase Transition Density 131

F . In the first iteration these weights are used to solve the linear simulation
in Fig. 1(b). For all next iterations, it uses the FlipFlop update strategy. A
solution is found when all variables are assigned a value {-1,1} by the LP.

Algorithm 1 FlipFlop solver(F)
1: for i ∈ {1, .., n} do
2: vi :=

∑
xi∈F −∑

¬xi∈F
3: end for
4: for j ∈ {1, .., MAX ITERATIONS} do
5: v := FlipFlopLP(AF , v, j modulo 2)
6: if

∑n
i=1 v2

i = n then
7: return SATISFIABLE
8: end if
9: end for

10: return UNKNOWN

We experimented for each density (using steps of 0.1) with 1000 instances of
200 variables, 600 instances of 400 variables, 400 instances of 600 variables, 200
instances of 800 variables and 100 instances of 1000 variables. Figure 8 shows
the percentage of instances solved by the FlipFlop solver. We observed that
by increasing the number of variables, higher densities are reached where all
instances were solved. However, it consequently lags behind the WeightedLin-
earAutarky solver.

Figure 9 shows the average number of iterations required to find a solution
of the solved instances. Recall that we terminate the solver after 50 iterations.
Up to density 3.0 these averages are slightly lower than the averages by the
WeightedLinearAutarky solver (see for comparison Fig. 11). The FlipFlop
solver owes its performance to the many instances that were solved in the first
iteration - due to the initial weights.

5.2 Weighted Linear Autarky Solver

The WeightedLinearAutarkySolver, as shown in algorithm 2, attempts to
solve a formula F by alternately solving the WeightedLinearAutarky LP
and the UpdateWeights LP. We used the update strategy as defined above to
construct W in each iteration.

The WeightedLinearAutarkyLP(WF ) returns set I, which contains all
variables with xi �= 0. If I �= ∅, then the LP found an autark assignment. All
clauses that contain at least one variable in I are removed from the formula.
This is denoted by IterativeUnitPropagation(F ∩ I). If no clause is left
in F after this removal, the formula is satisfiable.

As with the FlipFlop solver, we experimented for each density with 1000
instances of 200 variables, 600 instances of 400 variables, 400 instances of 600
variables, 200 instances of 800 variables and 100 instances of 1000 variables (us-
ing steps of 0.1). Figure 10 shows the percentage of instances solved by the



132 M.J.H. Heule and H. van Maaren

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.6 2.8 3 3.2 3.4 3.6 3.8 4

p
er

ce
n
ta

g
e

o
f
in

st
a
n
ce

s
so

lv
ed

density

200 variables

�� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

400 variables

+ + + + + + + + + + +

+

+

+

+

+

+

600 variables

�� �� �� �� �� �� �� �� �� �� ��

��

��

��

��

��

��

800 variables

+ + + + + + + + + + + +

+

+

+

+

+

1000 variables

�� �� �� �� �� �� �� �� �� �� �� �� ��

��

��

��

��

Fig. 10. Percentage of instances solved using the WeightedLinearAutarky LP.
Vertical line shows the proved lower bound by Kaporis [5]

0

5

10

15

20

25

30

2.6 2.8 3 3.2 3.4 3.6 3.8 4

av
er

a
g
e

n
u
m

b
er

o
f
it

er
a
ti

o
n
s

density

200 variables

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

400 variables

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

600 variables

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

800 variables

+

+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+

1000 variables

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

Fig. 11. Average number of iterations required by the WeightedLinearAutarky LP



Observed Lower Bounds for Random 3-SAT Phase Transition Density 133

Algorithm 2 WeightedLinearAutarkySolver(F)
1: WF := AF
2: for j ∈ {1, .., MAX ITERATIONS} do
3: I := WeightedLinearAutarkyLP(WF )
4: if I �= ∅ then
5: F := IterativeUnitPropagation(F ∩ I)
6: WF := AF
7: if F = ∅ then
8: return SATISFIABLE
9: end if

10: else
11: WF := UpdateWeightsLP(WF )
12: end if
13: end for
14: return UNKNOWN

WeightedLinearAutarky solver. With an increasing number of variables
come higher densities where all instances were solved: all instances consisting
of 200 variables on density 3.4 were solved, while on density 3.7 all instances
consisting of 1000 variables were solved. Figure 11 shows the average number of
iterations required to find a solution of the solved instances. Although there is
a small increase in this average - while increasing the number of variables - the
number of iterations divided by the number of variables is decreasing.

During our experiments, a vast majority of the found autark assignments
were either monotone variables or satisfying assignments. Up to density 3.4, we
found some autark assignments consisting of multiple literals that only satisfied
a part of the formula. However, this only occurred in approximately 0.5% of the
formulas, regardless of the number of variables.

6 Conclusions

Within the experimental domain, both our methods show a threshold shaped suc-
cess performance ratio of proving Satisfiability with respect to increasing density,
growing steeper with increasing size. In this context, our second method shows a
better performance. If the reader allows us to extrapolate to infinity the observed
success ratio of 100% seems to be located well above the Kaporis’ bound. For rea-
sonsof comparisonwe implemented thegreedyalgorithmofKaporis described in [4]
and investigated its performance on the same samples.The emergedfigure 12 shows
that this algorithm has to catch up quite a bit within the range [1000,∞]. From its
decreasing performance with growing size (within our domain of experimentation)
above the Kaporis’ bound one could guess that for very large size instances this suc-
cess performance ratio must have a perfect threshold shape. Our main conclusion
however is thatLP techniques, having amodest polynomial complexity, apparently
are able to reveal hidden structure inCNF’s, even in case of randomlygenerated for-
mulas. The interesting aspects lie in the fact that they are not evidently resolution



134 M.J.H. Heule and H. van Maaren

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.6 2.8 3 3.2 3.4 3.6 3.8 4

p
er

ce
n
ta

g
e

o
f
in

st
a
n
ce

s
so

lv
ed

density

200 variables

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

400 variables

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

600 variables

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

800 variables

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + +

+

1000 variables

��

��

��

��

��

��

��

��

��

��

��

��

��

�� �� ��

��

Fig. 12. Performance of the greedy algorithm proposed by Kaporis [4]. Dashed vertical
line shows the proved lower bound by Kaporis in [4]; straight vertical line shows the
proved lower bound by Kaporis in [5]

based and that their reasoning mechanisms, which clearly must be there, are rather
unconventional compared to the standard ones used in the Satisfiability area.

References

1. D. Achlioptas, Lower Bounds for Random 3-SAT via Differential Equations.
Theoretical Computer Science 265(1-2) (2001), 159–185.

2. E. Boros, Y. Crama, P. Hammer, and M.Saks, A complexity Index for Satisfiability
Problems. SIAM Journal on Computing 23 1 (1994), 45–49

3. J. Franco, Results related to threshold phenomena research in Satisfiability: lower
bounds. Theoretical Computer Science 265(1-2) (2001), 147–157.

4. A.C. Kaporis, L.M. Kirousis, E.G. Lalas, The Probabilistic Analysis of a Greedy
Satisfiability Algorithm. Lecture Notes In Computer Science 2461 (2002), 574–585.

5. A.C. Kaporis, L.M. Kirousis, E.G. Lalas, Selecting complementary pairs of literals.
Electronic Notes in Discrete Mathematics 16 (2003).

6. O. Kullmann, Investigations on autark assignments.
Discrete Applied Mathematics 107(1-3) (2000), 99–137.

7. O. Kullmann, Lean clause-sets: generalizations of minimally unsatisfiable clause-
sets. Discrete Applied Mathematics 130(2) (2003), 209–249.

8. A. Van Gelder, Problem generator mkcnf.c contributed to the DIMACS Challenge
archieve.

9. J.P. Warners, H. van Maaren, A two phase algorithm for solving a class of hard
satisfiability problems. Oper. Res. Lett. 23(3-5) (1998), 81-88.

10. J. Warners and H. van Maaren, Solving satisfiability problems using elliptic ap-
proximations. Effective branching rules. Discrete Applied Mathematics 107(1-3)
(2000), 241–259.


	Introduction
	Preliminaries
	The FlipFlop LP
	Weighted Linear Autarkies
	The Weighted Linear Autarky LP
	The Update Weights LP
	Update Strategy

	Experimental Results
	Flip Flop Solver
	Weighted Linear Autarky Solver

	Conclusions
	References



