
Automated Generation of Simplification Rules
for SAT and MAXSAT�

Alexander S. Kulikov

St.Petersburg State University,
Department of Mathematics and Mechanics,

St.Petersburg, Russia
http://logic.pdmi.ras.ru/∼kulikov

Abstract. Currently best known upper bounds for many NP-hard prob-
lems are obtained by using divide-and-conquer (splitting) algorithms.
Roughly speaking, there are two ways of splitting algorithm improve-
ment: a more involved case analysis and an introduction of a new simpli-
fication rule. It is clear that case analysis can be executed by computer,
so it was considered as a machine task. Recently, several programs for
automated case analysis were implemented. However, designing a new
simplification rule is usually considered as a human task. In this paper
we show that designing simplification rules can also be automated. We
present several new (previously unknown) automatically generated sim-
plification rules for the SAT and MAXSAT problems. The new approach
allows not only to generate simplification rules, but also to find good
splittings. To illustrate our technique we present a new algorithm for
(n, 3)-MAXSAT that uses both splittings and simplification rules based
on our approach and has worst-case running time O(1.2721NL), where N
is the number of variables and L is the length of an input formula. This
bound improves the previously known bound O(1.3248NL) of Bansal and
Raman.

1 Introduction

The splitting method (i.e., estimating the complexity of divide-and-conquer algo-
rithms by recurrent inequalities) is a powerful tool for proving upper bounds for
NP-hard problems. Currently best known upper bounds for many NP-hard prob-
lems are obtained by using exactly this method (SAT [7], MAXSAT [3], XSAT
[2], MAX-CUT [4], Vertex Cover [6]). Formally, a splitting algorithm splits an
input instance of a problem into several simpler instances further simplified by
certain simplification rules, such that by finding the solution for all of them one
can construct the solution for the initial instance in polynomial time.

� Supported in part by grant No. 1 of the 6th RAS contest-expertise of young scientist
projects (1999) and Grant #NSh-2203-2003-1 of the President of Russian Federation
for Leading Scientific School Support.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 430–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://logic.pdmi.ras.ru/~kulikov

Automated Generation of Simplification Rules for SAT and MAXSAT 431

In general, there are two ways of splitting algorithm improvement: a more
involved case analysis and an introduction of a new simplification rule . Re-
cently, several programs for automated case analysis were implemented ([6], [5],
[8]). In this paper we present a procedure for generating simplification rules for
the SAT and MAXSAT problems. Our approach is based on defining a partial
ordering on assignments to variables of a formula and allows not only to gener-
ate simplification rules, but also to find good splittings. By using this approach
we construct a new algorithm for (n, 3)-MAXSAT with worst-case running time
O(1.2721NL). The automated proof of the running time of this algorithm is
available at http://logic.pdmi.ras.ru/∼kulikov.

Motivation. We have already mentioned that one of the two main ways of split-
ting algorithm improvement is an introduction of a new simplification rule to
it. This fact already motivates the need for designing new simplification rules.
Also sometimes a new simplification rule does not allow to prove a better upper
bound on the running time of a splitting algorithm, but it allows to significantly
reduce the case analysis included in this algorithm. In general, a new simplifi-
cation rule for, say, the SAT problem can improve the running time of a certain
SAT solver, not necessarily based on the splitting method.

2 General Setting

2.1 The SAT and MAXSAT Problems

The SAT problem is: given a formula in CNF, check whether this formula is
satisfiable, i.e., whether there exists an assignment of Boolean values to all vari-
ables of the formula that makes it True. For example, the formula (xy)(x̄) is
obviously satisfiable, while the formula (xy)(x̄)(xȳ) is not. In the MAXSAT
problem one is asked to find a maximal possible number of simultaneously sat-
isfied clauses of a given formula. For example, this number is equal to 3 for the
formula (xy)(x̄ȳ)(x̄y)(xȳ).

Both SAT and MAXSAT are very well-known NP-hard problems, that have
been attacked by scientists from all over the world for a long time. The currently
best known upper bounds for SAT are O(1.238823K) and O(1.073997L) [7],
and for MAXSAT are O(1.341294K) [3], O(1.105729L) [1], where K denotes
the number of clauses in the input formula, L denotes the length of the input
formula. Note that there are no known upper bounds of the form O(cN), where
c < 2 is a constant and N is the number of variables in the input formula, for
these problems.

2.2 Simplification Rules

Throughout this paper we consider only simplification rules for SAT and
MAXSAT. In case of SAT by an optimal assignment we mean an assignment to
all variables of a formula that satisfies this formula, in case of MAXSAT we say

http://logic.pdmi.ras.ru/~kulikov

432 A.S. Kulikov

that an assignment is optimal if this assignment satisfies the maximal possible
number of clauses of a formula. Note that in case of MAXSAT any CNF formula
has an optimal assignment, while in case of SAT only satisfiable formulas have
such an assignment.

We say that a simplification rule is applicable to a formula F if it can replace
F by another formula F ′ in polynomial time such that both following conditions
hold:

1. the complexity of F ′ is smaller than the complexity of F ;
2. by constructing an optimal assignment for F ′ one can construct an optimal

assignment for F in polynomial time.

2.3 Class of Formulas

Let C be a clause consisting of literals l1, l2, . . . , lk. We define a clause with
unfixed length as a set of clauses that contains all these literals and probably
some more literals and denote it by (l1l2 . . . lk . . .). We call the literals l1, l2, . . . , lk
the basis of this clause. For example, (l . . .) is the set of all clauses containing
the literal l. In the following we use the word “clause” to refer both to clauses
in its standard definition and to clauses with unfixed length.

Similarly we define a class of formulas. Let C ′
1, . . . , C

′
k be clauses (some of

them may have unfixed lengths). Then a class of formulas is the set of formulas
represented as F = {C1, . . . , Cm}, such that the following conditions hold:

1. m ≥ k,
2. for 1 ≤ i ≤ k, C ′

i ⊆ Ci (as sets of literals), if C ′
i is a clause with unfixed

length, and Ci = C ′
i otherwise,

3. for 1 ≤ i ≤ k, k + 1 ≤ j ≤ m, Cj does not contain any variable from the
basis of C ′

i.

We denote this set by C ′
1, . . . , C

′
k . . . and call the clauses C ′

1, . . . , C
′
k the basis

of this class of formulas. We define two functions CorSet and CorClause (for
corresponding set and corresponding clause) based on this definition:

CorSet(F,F) = {C1, . . . , Ck} ,

CorClause(C ′
i, F,F) = Ci .

The notion of class of formulas allows to explain the fact that a formula
contains occurrences of certain literals. For example, to show that a formula F
contains a (3, 2)-literal one can write the following:

F ∈ (x . . .)(x . . .)(x . . .)(x̄ . . .)(x̄ . . .)

However, if we want to express the fact that F contains two (1, 1)-literals that
occur together in a clause, we have to write the following:

F ∈ (xy . . .)(x̄ . . .)(ȳ . . .) . . . or F ∈ (xy . . .)(x̄ȳ . . .)

Automated Generation of Simplification Rules for SAT and MAXSAT 433

For a formula F and a subset S of its variables we define CorClass(F, S) as
a class of formulas resulting from F by replacing all its variables that are not in
S by “. . . ”. Clearly, F ∈ CorClass(F, S). For example,

CorClass((xyz)(x̄)(ȳzu)(ūx)(z̄), {z, u}) = (z . . .)(zu . . .)(ū . . .)(z̄)

Note that in most situations we can work with a class of formulas in the same
way as with a CNF formula. For example, if we eliminate from the basis of a
class of formulas all clauses that contain a literal x and all occurrences of the
literal x̄ from the other clauses, we obtain the class of formulas resulting from
all formulas of the initial class by setting the value of x to True. Also it is easy
to see that if after assigning a Boolean value to a variable of a class of formulas
or applying a (considered in this paper) simplification rule to it, its complexity
measure decreases by ∆, then the complexity measure of each formula of this
class decreases at least by ∆.

For a class of formulas F and a clause C we define a class of formulas F+{C}
as a class resulting from F by adding the clause C to its basis. Similarly we define
a clause with unfixed length C + {l}, where C is a clause with unfixed length
and l is a literal.

We say that a simplification rule is applicable to a class of formulas, if this
rule is applicable to every formula of this class. For example, each formula of
the class (x)(xȳ . . .)(y . . .) . . . contains a pure literal (i.e., a literal that does not
occur negated in a formula).

3 New Simplification Rules

In this section we present several new simplification rules for the SAT and
MAXSAT problems.

Usually to prove the correctness of a simplification rule that assigns the value
True to a literal x one proves that every optimal assignment that contains the
literal x̄ can be reconstructed into an optimal assignment that contains the literal
x. For example, if x is a pure literal of a formula F then any assignment A � x̄
satisfies not more clauses than the assignment A\{x̄} ∪ {x}. This discussion
motivates the following definition.

Definition 1. Let A1 and A2 be assignments to all known variables of a class of
formulas F . We say that A1 is stronger than A2 w.r.t. F and write A1 �F A2,
if for each formula F ∈ F and for each assignment B to all variables of F the
following condition holds: if A2 ⊂ B, then B satisfies not more clauses of F than
B\A2 ∪ A1.

For example, in case of MAXSAT problem if F1 = (x . . .)(x . . .) . . ., then
{x} �F1 {x̄} (due to the pure literal rule), and if F2 = (xy . . .)(x̄)(xȳ . . .)(x̄)
(y . . .)(x . . .) . . ., then {x̄} �F2 {x} (due to the almost dominating unit clause
rule). The given definition is very easy and natural. However, in general, it is

434 A.S. Kulikov

not clear how to check whether one of the given assignments is stronger than
the other. Below we show that such a check is possible.

Definition 2. Let C be a clause and A be an assignment. We define the function
mark(C,A) as follows:

mark(C,A) =

{ “ + ”, if C contains at least one literal from A;
“ − ”, if C has fixed length and for each literal x ∈ C, x̄ ∈ A;
“?”, otherwise.

For example, mark((xyz . . .), {y}) = “ + ”, mark((xȳ), {x̄, y}) = “ − ”,
mark((xȳ), {x̄, z}) = “?”, mark((xȳ . . .), {x̄, y}) = “?”. Informally, mark(C,A)
just tell us whether clauses of C are satisfied by extensions of A.

Theorem 1. Let A1, A2 be assignments to all variables of a class of formulas
F and let

p1 = |{C ∈ F | mark(C,A1) = “ + ”}| ,

p2 = |{C ∈ F | mark(C,A2) = “ + ”}| ,

q = |{C ∈ F | mark(C,A2) = “?”,mark(C,A1) 	= “?”}| .

Then, A1 �F A2 iff p1 ≥ p2 + q.

Let us show how this theorem allows to generate simplification rules. We
start with giving several examples. Suppose F ∈ F = (xy)(xȳ)(x̄y)(x̄ȳ . . .)
In such a case we can replace F by F [x̄, ȳ], since {x̄, ȳ} �F {x, y}, {x̄, y}, {x, ȳ}.
The assignment {x̄, ȳ} satisfies at least three clauses from CorSet(F,F), while
any other assignment to variables x and y satisfies at most three of these clauses.

Consider a slightly more complicated example. Let F = (xy . . .)(x . . .)(x̄ȳ . . .)
(ȳ) . . ., then {x̄, y} �F {x̄, ȳ} and {x, ȳ} �F {x, y}. It means that for any formula
F ∈ F , if there exists an optimal assignment for F , then there exists an optimal
assignment B, such that either {x̄, y} ⊂ B or {x, ȳ} ⊂ B. Thus, we can replace
F by F [y = x̄].

In both given examples we construct a majority set of assignments to all
variables of a class of formulas. Below we formally define this notion.

Definition 3. Let F be a class of formulas, M0 be the set of all possible as-
signments to all variables of F . We say that M ⊂ M0 is a majority set for F
and write M = MajorSet(F), if for any assignment A0 ∈ M0 there exists an
assignment A ∈ M , such that A �F A0.

It is easy to see that a majority set is not unique and that, in particular,
M0 (from the definition) is a majority set for F . However, we are interested in
majority sets of small size. We use a greedy algorithm for construction of such
majority sets, its code is given in Fig. 1.

Now we are ready to present the new simplification rule that unifies many
known simplification rules that modify an input formula by assigning a value
to a literal. It is illustrated in Fig. 2. It is easy to see that the running time

Automated Generation of Simplification Rules for SAT and MAXSAT 435

Procedure MSC

Input: A class of formulas F .
Output: A majority set for F .
Method.

1. let M0 = 0
2. let M be the set of all possible assignments to all variables of F
3. in case of SAT: remove from M all assignments A, such that mark(C, A) = “ − ”

for some clause C ∈ F
4. while M �= 0

(a) let A0 be an assignment of M such that |{A ∈ M |A0 �F A}| is maximal
(b) M0 = M0 ∪ {A0}
(c) M = M\{A ∈ M |A0 �F A}

5. return M0

Fig. 1. The greedy algorithm for majority set construction

Procedure GSR(integer c)

Input: A CNF formula F .
Output: A simplified CNF formula F .
Method.
for each subset S of variables of F , such that |S| ≤ c

1. let F = CorClass(F, S)
2. let M = MajorSet(F)
3. if there is a literal x, such that it occurs in every assignment from M , then return

F [x]
4. if there are literals x and y, such that for any assignment A ∈ M , either {x, y} ⊂ A

or {x̄, ȳ} ⊂ A, then return F [x = y]

Fig. 2. The general simplification rule

of this rule is O(L), the correctness is trivial. We call this rule an automated
procedure for generating simplification rules, as one can add this procedure with
any constant parameter into an algorithm. Clearly, if GSR(c1) can simplify a
formula, then GSR(c2) can simplify this formula too, for c1 < c2.

Below we give several new simplification rules, that are particular cases of
GSR.

New simplification rules for MAXSAT:

1. if F ∈ F = (x)(x̄y . . .)(x̄ȳ . . .)(x̄ȳ . . .)(ȳ . . .)(ȳ . . .) . . ., then replace F by F [x]
(since {{x, y}, {x, ȳ}} = MajorSet(F))

2. if F ∈ F = (xyz . . .)(x̄z . . .)(x̄z . . .)(y . . .)(ȳz̄ . . .)(z . . .) . . ., then replace F
by F [x = y] (since {{x̄, y, z̄}, {x, ȳ, z}, {x, y, z}} = MajorSet(F))

436 A.S. Kulikov

3. if F ∈ F = (x)(x̄yz . . .)(x̄t̄ . . .)(x̄t̄ . . .)(yt . . .)(ȳt̄ . . .)(ȳ . . .)(zt̄ . . .)(z̄ . . .)
(z̄ . . .) . . ., then replace F by F [x] (since {{x, ȳ, t̄}, {x, y, t̄}, {x, ȳ, t}} =
MajorSet(F))

New simplification rules for SAT:

1. if F ∈ F = (xy)(x̄ . . .)(ȳ . . .)(x̄y . . .)(ȳ . . .) . . ., then replace F by F [x = ȳ]
(since {{x, ȳ}, {x̄, y}} = MajorSet(F))

2. if F ∈ F = (xy . . .)(xz . . .)(x̄z̄ . . .)(x̄z̄ . . .)(x̄z̄ . . .)(y . . .)(y . . .)(ȳz . . .)(ȳ . . .)
(z̄ . . .) . . ., then replace F by F [x = z̄] (since {{x, ȳ, z̄}, {x, y, z̄}, {x, ȳ, z̄}} =
MajorSet(F))

Actually our technique allows to find not only simplifications, but also good
splittings. The main idea is that for any formula F ∈ F the splitting F [A1],
F [A2], . . . , F [Ak] is correct, where {A1, A2, . . . , Ak} = MajorSet(F).

Acknowledgements

The author would like to express a great gratitude to his supervisor
Edward A. Hirsch for valuable comments.

References

1. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In Pro-
ceedings of ISAAC’99, pages 247–258, 1999.

2. J. M. Byskov, B. A. Madsen, and B. Skjernaa. New algorithms for exact satisfiability.
Technical Report RS-03-30, BRICS, 2003.

3. J. Chen and I. Kanj. Improved exact algorithms for MAX-SAT. In Proceedings of
the 5th LATIN, volume 2286 of LNCS, pages 341–355, 2002.

4. S. S. Fedin and A. S. Kulikov. A 2|E|/4-time algorithm for MAX-CUT. Zapiski
nauchnykh seminarov POMI, 293:129–138, 2002.

5. S. S. Fedin and A. S. Kulikov. Automated proofs of upper bounds on the running
time of splitting algorithms. Zapiski nauchnykh seminarov POMI, 316:111–128,
2004.

6. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347,
2004.

7. E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Rea-
soning, 24(4):397–420, 2000.

8. S. I. Nikolenko and A. V. Sirotkin. Worst-case upper bounds for sat: automated
proof. In Proceedings of the 8th ESSLLI Student Session, pages 225–232, 2003.

	Introduction
	General Setting
	The SAT and MAXSAT Problems
	Simplification Rules
	Class of Formulas

	New Simplification Rules
	Acknowledgements
	References

