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Abstract. The syntactic framework of the so-called saturated substitutions is de-
fined and used to obtain new characterizations of SAT as well as the classes of
minimal and maximal models of formulas of classical propositional logic.

1 Introduction

The standard two-valued semantics for classical propositional logic can be ‘recon-
structed’ in the logic’s proof theory when the logical constants T and F are chosen
to represent the truth-values 1 (true) and 0 (false). In this approach, substitutions of the
logical constants T and F for propositional variables are counterparts of truth-value
assignments. Furthermore, a formula α(p1, . . . , pn) is satisfiable if and only if there
exists a substitution S of T and F for the variables p1, . . . , pn which, when applied to
α, transforms this formula into a tautology. Hence, to establish the satisfiability of α,
the search for a satisfying truth-value assignment for α (as in WalkSAT procedure, cf.
[11]) can be replaced with the search for a ‘satisfying’ substitution.

In this paper we consider a construction of ‘satisfying’ substitutions as an alternative
to the search. We begin by providing a construction of a certain type of substitutions
which we call saturated substitutions for propositional formulas. Saturated substitutions
define, in a natural way, truth-value assignments. We show that for every formula α, the
class of truth-value assignments defined by all saturated substitutions for α coincides
with the class of all satisfying truth-value assignments for α (i.e., of all the models of
α). Since the construction of saturated substitutions is provided without any explicit
reference to semantics, we obtain a syntactic definition of satisfiability.

The second contribution of this paper is a new characterization of minimal and
maximal models of propositional formulas. This characterization is given in terms of
the so-called polarized substitutions. These saturated substitutions define minimal and
maximal models in a very special way. Apart from their definitional completeness (po-
larized substitutions for a formula α define all and only minimal and maximal models
of α), these substitutions carry enough semantic information to flag more truth-value
assignments as falsifying a formula α than what explicitly follows from the definitions
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of a minimal or a maximal model of α. In other words, polarized substitutions carry
more semantic information about the space of truth-value assignments of propositional
formulas than minimal and maximal models. This property of polarized substitutions
could be exploited, for instance, in the design of satisfiability-based problem solving
methods that require the construction of multiple or all models of propositional formu-
las (in areas such as model-based diagnosis, model-based reasoning, or planning, cf.
[2,5,6,8,10,12], see also [4]).

This paper is structured as follows. In the next section we introduce and discuss the
notions of a saturated and polarized substitutions. In Section 3 we provide a syntactic
characterization of SAT in the framework of saturated substitutions. Finally, in Section
4, we characterize the classes of minimal and maximal models of formulas of classical
propositional logic in terms of polarized saturated substitutions. For reasons of clarity
of presentation, the proofs of all the theoretical results stated in this paper are given in
the Appendix.

2 Saturated Substitutions

In this section we define the class of saturated substitutions for propositional formulas.
Informally speaking, these substitutions are syntactic counterparts of satisfying truth-
value assignments – the relationship that we shall explore in the following sections.

We begin with logical preliminaries. The formulas of classical propositional logic
are constructed, in the usual way, in terms of propositional variables, logical connec-
tives (negation ¬, disjunction ∨, conjunction ∧ and, possibly, other connectives), and
the logical constants T (truth) and F (falsehood). By V ar(α) we denote the set of
all the variables that occur in α. If V ar(α) is of cardinality n, then an enumeration
of V ar(α) is a bijection p from {1, . . . , n} onto V ar(α). If p is an enumeration of
V ar(α), then we shall frequently denote the i − th variable p(i) by pi. Finally, we
shall write α(p1, . . . , pk) to indicate that p1, . . . , pk are some or all the variables from
V ar(α).

Given a formula α and an enumeration p of its variables, a substitution is a mapping
S that assigns a formula S(pi) to every variable pi ∈ V ar(α). We shall frequently
represent a substitution S as a finite list of the form [p1/S(p1), . . . , pn/S(pn)] which
explicitly indicates the assignments of formulas S(pi) to variables pi, 1 ≤ i ≤ n. If
S = [p1/α1, . . . , pn/αn] is a substitution, then S(α)–the application of S to α–is the
formula obtained from α by the simultaneous replacement of every occurrence of every
variable pi with αi. We shall frequently write α(p1/α1, . . . , pn/αn) instead of S(α).

A truth-value assignment is a mapping from the set of all propositional variables
into {0, 1}; its extension to all well-formed formulas of propositional logic is defined
in the usual way. A truth-value assignment h satisfies a formula α (or h is a model of
α), if h(α) = 1. On the other hand, if h(α) = 0, then α is said to be false under h.
A formula is satisfiable if it has a model. We denote by SAT the set of all satisfiable
formulas. Finally, if h is a truth-value assignment, q is a propositional variable, and
v ∈ {0, 1}, then by h[q/v] we denote the truth-value assignment defined exactly like h
with the exception that h[q/v](q) = v.
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As mentioned in the introduction, the satisfiability of a formula α is equivalent to
the existence of a substitution S which assigns logical constants T and F to the vari-
ables of α in such a way that S(α) is a tautology. For every α ∈ SAT such a satisfying
substitution S (called a saturated substitution in the definition given below) can be con-
structed using the following lemma.

LEMMA 1. Let α be a propositional formula, let q ∈ V ar(α), and let h be a model
of α. Then:

(i) h is a model of α(q/α(q/T ));
(ii) h is a model of α(q/¬α(q/F )).

If h is a model of α(p1, . . . , pn), then, by Lemma 1, it is also a model of β =
α(p1/γ, p2, . . . , pn), where γ is either α(p1/T ) or ¬α(p1/F ). Note that p1 does not
occur in β. By applying Lemma 1 again, this time to β and p2, we obtain a satisfiable
formula with only p3, . . . , pn as its variables. It should be evident that n − 2 addi-
tional applications of Lemma 1 to the remaining variables p3, . . . , pn will result in a
variable-free formula of the form α(p1/γ1, . . . , pn/γn) from which a required satisfy-
ing substitution S can be extracted by making S(pi) equivalent to γi, 1 ≤ i ≤ n. This
leads us to the following definition.

DEFINITION 1 (Saturated Substitution). Let α be a formula and suppose that V ar(α)
is of cardinality n. Furthermore, let p be an enumeration of V ar(α) and let τ be a
map from V ar(α) into {0, 1}. A substitution string for α with respect to p and τ is

the sequence of substitutions S1, . . . , Sn defined as follows. Let S0(α)
def
= α. For every

1 ≤ i ≤ n:

Si(pi) =
{

(Si−1(α))(pi/T ), if τ(pi) = 1,
(Si−1(¬α))(pi/F ), if τ(pi) = 0.

Moreover,

for every j < i, Si(pj) = (Si−1(pj))(pi/Si(pi));
for every i < j ≤ n, Si(pj) = pj .

The substitution Sn is called a saturated substitution for α.

The complexity of the definition of a substitution string requires some clarifications.
Let us suppose that S1, . . . , Sn is the substitution string for α(p1, . . . , pn) with respect
to some enumeration p and a mapping τ . First, let us note that for every 1 ≤ i ≤ n,
the substitution Si affects only the first i variables p1, . . . pi, leaving the remaining vari-
ables pi+1, . . . pn unchanged. In particular, S1(p1) is either α(p1/T ) (when τ(p1) = 1,
see Lemma 1(i)) or ¬α(p/F ) (when τ(p1) = 0, see Lemma 1(ii)). For every j > 1,
S1(pj) = pj . Next, let us observe that for every i > 1, we first define Si(pi) guided by
the mapping τ . Only then we proceed to defining Si(pj), for every variable pj such that
j < i. Hence, S2(p2) is either (S1(α))(p2/T ) (when τ(p2) = 1) or (S1(¬α))(p2/F )
(when τ(p2) = 0). Having S2(p2) defined, we define S2(p1) as (S1(p1))(p2/S2(p2)),
i.e., we substitute S2(p2) for p2 in S1(p1). Let us look at the following example.
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EXAMPLE 1. Let α be q ∨ r, let p1 = q, p2 = r, and let τ be defined by: τ(p1) = 1 and
τ(p2) = 0. The substitution string for α with respect to p and τ is defined as follows:
S1(p1) = (α(p1, p2))(p1/T ) = T ∨ p2;
S1(p2) = p2;
S2(p2) = (¬S1(p1 ∨ p2))(p2/F ) = (¬(T ∨ p2)∨ p2))(p2/F ) = ¬((T ∨ F )∨ F ) and
is equivalent to F ;
S2(p1) = (S1(p1))(p2/S2(p2)) = (T ∨ p2)(p2/S2(p2)) = T ∨ (¬((T ∨F )∨F )) and
is equivalent to T .
S2 is a saturated substitution for α.

Note that if S is a saturated substitution for a formula α, then for every variable q ∈
V ar(α), S(q) is equivalent to either T or F , and, hence, so is S(α).

In Section 4, we shall characterize minimal and maximal models of formulas in
terms of polarized substitutions defined as follows. Suppose that S is a saturated sub-
stitution for a formula α defined with respect to some enumeration p and a map τ . S is
said to be positive, if τ(q) = 1, for all q ∈ V ar(α). Similarly, S is said to be negative,
if τ(q) = 0, for all q ∈ V ar(α). Finally, we shall call S a polarized substitution for α,
if it is either a positive or a negative saturated substitution for α.

EXAMPLE 2. Consider the formula α = p1∨p2 from Example 1. Let τ(p1) = τ(p2) =
1. The following steps define one of the positive saturated substitutions for α:
S1(p1) = (p1 ∨ p2)(p1/T ) = T ∨ p2;
S1(p2) = p2;
S2(p2) = (S1(p1 ∨ p2))(p2/T ) = ((T ∨ p2) ∨ p2)(p2/T ) = (T ∨ T ) ∨ T and is
equivalent to T ;
S2(p1) = (S1(p1))(p2/S2(p2)) = (T ∨ p2)(p2/S2(p2)) = T ∨ ((T ∨ T ) ∨ T ) and is
equivalent to T .

3 Saturated Substitutions and Propositional Satisfiability

In this section we establish a correspondence between saturated substitutions and satis-
fying truth-value assignments of propositional formulas (cf. Theorem 1).

DEFINITION 2. Let α be a formula and let S be one of its saturated substitutions.
The truth-value assignment hS is defined in the following way: for every variable
q ∈ V ar(α),

hS(q) =

⎧⎨
⎩

1, if q ∈ V ar(α) and S(q) ≡ T,
0, if q ∈ V ar(α) and S(q) ≡ F,
arbitrary, if q �∈ V ar(α).

THEOREM 1. Let α be a propositional formula. Then:

(i) if α ∈ SAT , then for every saturated substitution S, hS is a model of α;
(ii) for every model h of α there is a saturated substitution S such that h = hS .
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COROLLARY 2. Let α be a propositional formula and S be one of its saturated substi-
tutions. Then:

α ∈ SAT iff S(α) ≡ T .

In view of Theorem 1, saturated substitutions for a formula α can be considered
syntactic counterparts of models of α, that is, models of α can be defined in the syntax
of propositional logic in terms of saturated substitutions. Corollary 2 is the characteriza-
tion of SAT in terms of saturated substitutions: for every saturated substitution S, S(α)
is variable free and is equivalent to either T or F ; the result of this equivalence test
determines the membership in SAT.

4 Minimal and Maximal Models

Minimal and maximal models of propositional formulas are theoretical tools frequently
applied in Computer Science in areas such as model-based diagnosis, model-preference
default reasoning, or reasoning with models (cf. [5,6,8,10,12]). Maximal and minimal
model generation problems have also been widely discussed in the computational com-
plexity literature (cf. [1,7]). In this section we provide a new characterization of these
classes of models in terms of polarized substitutions introduced in Section 2. We also
prove that polarized substitutions carry, in general, more information about counter-
models of propositional formulas than the definitions of minimal and maximal models.

For every propositional formula α we define the relation ≤α between truth-value
assignments in the following way. Given truth-value assignments h0 and h1,

h0 ≤α h1 iff for every p ∈ V ar(α), h0(p) = 1 implies h1(p) = 1.

DEFINITION 3 (Minimal and maximal models). Let α be a propositional formula. A
model h of α is said to be a minimal (resp. a maximal) model of α, if it is ≤α-minimal
(resp. ≤α-maximal).

THEOREM 3. Let α be a propositional formula and let h be a truth-value assignment.
Then

(i) h is a minimal model of α iff h = hS , for some negative saturated substitution S for
α;

(ii) h is a maximal model of α iff h = hS , for some positive saturated substitution S
for α.

In view of Theorem 3, the definitions of negative (resp. positive) saturated substitutions
can be viewed as syntactic definitions of minimal (resp. maximal) models. It turns out
that these definitions contain more semantic information about truth-value assignments
than merely the fact that they define all the minimal and maximal models of propo-
sitional formulas. The following theorem unveils the ‘semantic contents’ of polarized
substitutions.

THEOREM 4 (Blocking Theorem). Let α(p1, . . . , pn) be a satisfiable formula and let
hS+ and hS− be truth-value assignments defined by a positive and a negative saturated
substitutions S+ and S−, respectively. Then:
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(i) if for some i, 1 ≤ i ≤ n, hS+(pi) = 0, then for every choice of truth-values
v1, . . . , vi−1,

hS+

[
p1

/
v1, . . . , pi−1

/
vi−1, pi

/
1
]
(α) = 0.

(ii) if for some i, 1 ≤ i ≤ n, hS−(pi) = 1, then for every choice of truth-values
v1, . . . , vi−1,

hS−
[
p1

/
v1, . . . , pi−1

/
vi−1, pi

/
0
]
(α) = 0.

When searching for multiple models of a formula α, one can use the definition of
a particular maximal or a minimal model of α (given in terms of a polarized substi-
tution) to flag some truth-value assignments as falsifying α. In view of the Blocking
Theorem, the definitions of polarized substitutions may prune the space of truth-value
assignments far more extensively than the definitions of minimal and maximal models
alone. We illustrate this comment with the following example.

EXAMPLE 4. Let α be ¬p1 ∧ p2 ∧ p3. Consider the negative saturated substitution
S (generated with respect to the enumeration p). The minimal model hS defined by S
is given by:

hS(p1) = 0, hS(p2) = 1, hS(p3) = 1.

Since hS is a minimal model, the following three truth-value assignments cannot be
models of α:

h1(p1) = 0, h1(p2) = 0, h1(p3) = 0,
h2(p1) = 0, h2(p2) = 0, h2(p3) = 1,
h3(p1) = 0, h3(p2) = 1, h3(p3) = 0.

However, the Blocking Theorem flags not only these three but also the additional three
assignments as falsifying α. These are:

h4(p1) = 1, h4(p2) = 0, h4(p3) = 0 (Theorem 4(ii), i = 3),
h5(p1) = 1, h5(p2) = 1, h5(p3) = 0 (Theorem 4(ii), i = 3),
h6(p1) = 1, h6(p2) = 0, h6(p3) = 1 (Theorem 4(ii), i = 2).

There is one more assignment to consider

h7(p1) = 1, h7(p2) = 1, h7(p3) = 1.

Neither Theorem 4(ii) nor the definition of a minimal model can flag this assignment
as falsifying α. However, it is easy to see that hS can be also defined by any positive
substitution S+ for α (i.e., hS = hS+). In other words, hS is also a maximal model of
α (cf. Theorem 3). Hence by either maximality of hS or by Theorem 4(i) (i = 1), h7

falsifies α. To conclude, by applying the Blocking Theorem to any negative substitution
S− and any positive substitution S+ for α we were able to demonstrate that hS is the
only model of α.

To conclude the discussion on Blocking Theorem, let us note that, in general, differ-
ent enumerations of V ar(α) in Definitions 1 and 2 may result in different polarized
substitutions for α. Theorem 4, of course, is applicable to all these substitutions.
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5 Conclusions and Future Research

This work is a part of a formal theory of logical substitutions which views saturated
substitutions as syntactic counterparts of satisfying truth-value assignments. We show
that saturated substitutions can be used to obtain new characterizations of SAT as well
as the classes of minimal and maximal models of formulas of classical propositional
logic.

If α is a satisfiable formula, then its polarized substitutions define all its maximal
and minimal models. If α is not satisfiable, then one can still define this formula’s sat-
urated substitutions. If, in addition, α is a conjunction of clauses, then, most likely, the
polarized substitutions for α define the solutions to MAX-SAT problem of determining
the maximal number of clauses of α that can be simultaneously satisfied by some truth-
value assignment. The meaning of a polarized substitution for an unsatisfiable free-form
formula is unclear at this point but related to the notion of the cumulative clash measure
of a formula introduced in [13,14].

Another line of future research concerns the study of saturated substitutions for the
purpose of the development of efficient algorithms for SAT, MAX-SAT, and Maximal
(Minimal) Model Generation. This includes the complete and incomplete methods as
well as algorithms for SAT based on such techniques as the search in Hamming Balls
[3] and Satisfiability Coding Lemma [9].

6 Appendix: Technical Results

This Appendix contains the proofs of all the technical results presented in this paper.

Proof of Lemma 1. Let α, q, and h be as stated. The proof of (i) is the case analy-
sis of the value of h(α(q/T )).

- If h(α(q/T )) = 1, then h(α(q/α(q/T ))) = h(α(q/T )) = 1.
- If h(α(q/T )) = 0, then h(q) = 0 (otherwise h(α(q/T )) = h(α) = 1). So

h(α(q/T )) = h(q) and h(α(q/α(q/T ))) = h(α) = 1.

The proof of (ii) is similar.

- If h(¬α(q/F )) = 0, then h(α(q/¬α(q/F ))) = h(α(q/F )) = 1−h(¬α(q/F )) =
1.

- If h(¬α(q/F )) = 1, then h(q) = 1 (otherwise h(¬α(q/F )) = h(¬α) = 0). So
h(¬α(q/F )) = h(q) and h(α(q/¬α(q/F ))) = h(α) = 1.

LEMMA 2. Let S1, . . . , Sn be the substitution string for a formula α with respect to an
enumeration p and a map τ . Then for every 1 ≤ i < n,

(i) Si+1(α) =
[
pi+1/Si+1(pi+1)

]
Si(α);

(ii) Sn(pi) =
[
pi+1

/
Sn(pi+1), . . . , pn

/
Sn(pn)

]
Si(pi).

Proof. Let α and S1, . . . , Sn be as stated.
To show (i) let us note that by the definition of a substitution string we have

Si+1(α) =
[
p1

/
Si+1(p1), . . . , pi

/
Si+1(pi), pi+1

/
Si+1(pi+1)

]
(α) (1)
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Furthermore, for every j < i + 1,

Si+1(pj) =
[
pi+1/Si+1(pi+1)

]
Si(pj).

We can therefore rewrite (1) as follows

Si+1(α) =
[
pi+1

/
Si+1(pi+1)

][
p1

/
Si(p1), . . . , pi

/
Si(pi)

]
(α)

=
[
pi+1/Si+1(pi+1)

]
Si(α).

We prove (ii) in a similar way. By the definition of a substitution string

Sn(pi) =
[
pn

/
Sn(pn)

][
pn−1

/
Sn−1(pn−1)

]
. . .

[
pi+1

/
Si+1(pi+1)

]
(Si(pi)) (2)

When computing the value of Sn(pi) in (2), each variable pj , j > i, will be replaced by

[
pn

/
Sn(pn)

]
. . .

[
pj+1

/
Sj+1(pj+1)

]
Sj(pj),

which, by the definition of a substitution string, is Sn(pj). This justifies (ii).

LEMMA 3. Let S1, . . . , Sn be the substitution string for a formula α with respect to an
enumeration p and a map τ . Furthermore, let S′

1, . . . , S
′
n−1 be the substitution string

for S1(α) with respect to the enumeration p′ of V ar(S1(α)) and the map τ ′ defined as
follows:

– for every 1 ≤ i < n, p′i = pi+1,
– for every q ∈ V ar(S1(α)), τ ′(q) = τ(q).

Then, for every 2 ≤ i ≤ n,

(i) Si(pj) = S′
i−1(pj), for every 2 ≤ j ≤ i;

(ii) Si(α) = S′
i−1(S1(α)).

Proof. We prove (i) and (ii) by induction on i.
Base case: i = 2. From the definition of S2 we have

S2(p2) =

{
(S1(α))(p2/T ), if τ(p2) = 1,
¬(S1(α))(p2/F ), if τ(p2) = 0.

Since p′1 = p2 and τ ′(p′1) = τ(p2), we have

S2(p2) =

{
(S1(α))(p′1/T ), if τ ′(p′1) = 1
¬(S1(α))(p′1/F ), if τ ′(p′1) = 0.

This means that S2(p2) = S′
1(p

′
1) = S′

1(p2), as required.
To demonstrate (ii), let us note that, by Lemma 2(i),

S2(α) = (S1(α))(p2/S2(p2)).
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By (i) and the fact that p2 = p′1, we conclude that

S2(α) = (S1(α))(p′1/S′
1(p

′
1)) = S′

1(S1(α)).

Inductive step: Assume now that the lemma holds for i = m < n. We shall show
that the result also holds for i = m + 1.

We prove (i) by, first, showing that the result holds for pm+1 and, then, for the
remaining variables p2, . . . , pm.

By the definition of the substitution string S1, . . . , Sn, we have

Sm+1(pm+1) =

{
(Sm(α))(pm+1/T ), if τ(pm+1) = 1,
¬(Sm(α))(pm+1/F ), if τ(pm+1) = 0.

By the inductive hypothesis, Sm(α) = S′
m−1(S1(α)). Since pm+1 = p′m and τ(pm+1)

= τ ′(p′m), we get

Sm+1(pm+1) =

{
(S′

m−1(S1(α)))(p′m/T ), if τ ′(p′m) = 1,
¬(S′

m−1(S1(α)))(p′m/F ), if τ ′(p′m) = 0,

that is,
Sm+1(pm+1) = S′

m(p′m) = S′
m(pm+1), (3)

as required.
Now, consider a variable pj , 2 ≤ j ≤ m. From the definition of substitution string

S1, . . . , Sn, we have

Sm+1(pj) = (Sm(pj))(pm+1/Sm+1(pm+1)),

which, in view of the inductive hypothesis, the equality (3), and the assumption that
pm+1 = p′m, gives us

Sm+1(pj) = (S′
m−1(pj))(p′m/S′

m(p′m)).

Since, by the assumption of the lemma, pj = p′j−1, we finally obtain

Sm+1(pj) = (S′
m−1(p

′
j−1))(p

′
m/S′

m(p′m)) = S′
m(p′j−1) = S′

m(pj),

as required.
To prove (ii), let us note that, by Lemma 2(i),

Sm+1(α) = Sm(α)(pm+1/Sm+1(pm+1)),

which, by (3) and the assumption that pm+1 = p′m, means that

Sm+1(α) = Sm(α)(p′m/S′
m(p′m)).

By the inductive hypothesis, Sm(α) = S′
m−1(S1(α)). So

Sm+1(α) = (S′
m−1(S1(α)))(p′m/S′

m(p′m)).

By Lemma 2(i), the right hand side of this equation equals S′
m(S1(α)), which gives us

the desired Sm+1(α) = S′
m(S1(α)).
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Proof of Theorem 1. Let α be an arbitrary propositional formula and n = |V ar(α)|.
To show (i), let h be a model of α and let S1, . . . , Sn be a substitution string for α with
respect to some enumeration p of V ar(α) and a map τ . We claim that hSn

is a model
of α. We first show that for every 1 ≤ i ≤ n, h is also a model of Si(α). We proceed
by induction on i.

Base case: i = 1. If τ(p1) = 1, then S1(p1) = α(p1/T ). Therefore, S1(α) =
α(p1/α(p1/T )). Similarly, if τ(p1) = 0, then S1(α) = α(p1/¬α(p1/F )). Thus,

S1(α) =

{
α(p1/α(p1/T )), if τ(p1) = 1,
α(p1/¬α(p1/F )), if τ(p1) = 0.

Since h(α) = 1, by Lemma 1 we must have h(S1(α)) = 1.
Inductive step: Assume now that h(Sk(α)) = 1, for some 1 ≤ k < n. Consider the

substitution Sk+1. By the definition of a substitution string

Sk+1(pk+1) =

{
(Sk(α))(pk+1/T ), if τ(pk+1) = 1,
¬(Sk(α))(pk+1/F ), if τ(pk+1) = 0.

By Lemma 2(i), Sk+1(α) = (Sk(α))(pk+1/Sk+1(pk+1)). So,

Sk+1(α) =

{
(Sk(α))(pk+1/(Sk(α))(pk+1/T )), if τ(pk+1) = 1,
(Sk(α))(pk+1/¬(Sk(α))(pk+1/F )), if τ(pk+1) = 0.

By induction hypothesis, h(Sk(α)) = 1. So, using Lemma 1, we get h(Sk+1(α)) = 1,
which completes the inductive proof.

We have just demonstrated that h(Sn(α)) = 1. Since Sn(α) is variable-free,

T ≡ Sn(α) =
[
p1/Sn(p1), . . . , pn/Sn(pn)](α) (4)

Since all the formulas Sn(pi), 1 ≤ i ≤ n, are variable-free (and, hence, equivalent to
either T or F ), (4) implies that h∗ defined as follows: for every 1 ≤ i ≤ n,

h∗(pi) =

{
1, if Sn(pi) ≡ T ,

0, if Sn(pi) ≡ F ,

is a model of α. But h∗ coincides with hSn
on the variables of α. Hence, hSn

(α) = 1,
which completes the proof of (i).

To show (ii), let h be a model of α, let p be an arbitrary enumeration of V ar(α), and let
τ be h restricted to V ar(α). Let S1, . . . , Sn be a substitution string for α with respect
to p and τ . We claim that hSn

and h coincide on V ar(α), or, equivalently, that for any
1 ≤ i ≤ n,

Sn(pi) ≡
{

T, if h(pi) = 1,

F, if h(pi) = 0.
(5)

We proceed by induction on n, the number of variables in α.
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Base case: Suppose n = 1. Let h0 and h1 be truth-value assignments such that
h0(p1) = 0 and h1(p1) = 1.

If h = h0, then S1(p1) = ¬α(p1/F ), because τ(p1) = h(p1) = 0. Since h(α) =
1 and h(p1) = 0 we have α(p1/F ) ≡ T and, hence, S1(p1) = ¬α(p1/F ) ≡ F ,
confirming (5). Similarly, if h = h1, then S1(p1) = α(p1/T ). Since h(α) = 1 and
h(p1) = 1, α(p1/T ) ≡ T . Thus, S1(p1) = α(p1/T ) ≡ T , confirming (5).

Inductive step: Assume now that the result holds for any propositional formula of k
variables, k ≥ 1, and that α is a formula of n = k + 1 variables. We need to show that
for every 1 ≤ i ≤ k + 1,

Sk+1(pi) ≡
{

T, if h(pi) = 1,

F, if h(pi) = 0.
(6)

Consider the substitution S1. Since τ(p1) = h(p1) and S1(pj) = pj , for every 1 < j ≤
k + 1, we have

S1(α) =

{
α(p1/α(p1/T )), if h(p1) = 1,

α(p1/¬α(p1/F )), if h(p1) = 0.
(7)

Since h(α) = 1, by Lemma 1 we have h(S1(α)) = 1. Furthermore, S1(α) is a formula
of k variables. Consider the enumeration p′ of V ar(S1(α)) defined by: for 1 ≤ i ≤ k,

p′i = pi+1,

and the map τ ′ : V ar(S1(α)) �→ {0, 1} defined as follows: for every 1 ≤ i ≤ k,

τ ′(p′i) = h(p′i). (8)

By the inductive hypothesis, the substitution S′
k of the string S′

1, . . . , S
′
k for S1(α) with

respect to p′ and τ ′, has the following property: for every 1 ≤ i ≤ k,

S′
k(p′i) ≡

{
T, if h(p′i) = 1,

F, if h(p′i) = 0.
(9)

It is easy to verify that the substitution strings S1, . . . , Sk+1 and S′
1, . . . , S

′
k satisfy the

assumptions of Lemma 3, and, therefore, Sk+1(pi) = S′
k(pi), for all 2 ≤ i ≤ k + 1.

Thus, in view of (9), we obtain

Sk+1(pi) ≡
{

T, if h(pi) = 1,

F, if h(pi) = 0,
(10)

for every 2 ≤ i ≤ k + 1.
To complete the the proof it remains to show that

Sk+1(p1) ≡
{

T, if h(p1) = 1,

F, if h(p1) = 0.
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To this end, let us note that by Lemma 2(ii)

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(S1(p1)).

If h(p1) = 1, then τ(p1) = 1 and S1(p1) = α(p1/T ). Hence

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α(p1/T ))

=
[
p1

/
T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α) ≡ T .

The last equivalence holds since h(α) = 1 and h(p1) = 1. If h(p1) = 0, then the proof
is similar.

Proof of Theorem 3. Let α be a satisfiable formula of n variables. We shall demonstrate
(i) only. The proof of (ii) is similar and is left to the reader.

Let p be some enumeration of V ar(α) and let S+ be a positive saturated substitution
for α with respect to p. We must show that hS+ is a maximal model of α.

By Theorem 1, hS+ is a model of α. If hS+(q) = 1, for all q ∈ V ar(α), then hS+

is maximal. Otherwise, the maximality of hS+ follows from Theorem 4(i).
Conversely, suppose that h is a maximal model of α. We shall construct an enumer-

ation p of V ar(α) such that for every 1 ≤ i ≤ n,

Sn(pi) ≡
{

T, if h(pi) = 1,
F, if h(pi) = 0,

(11)

where Sn is the positive saturated substitution for α with respect to p. We proceed by
induction on n.

Base case: Suppose that α has just one variable p1. Let S1 be the positive saturated
substitution for α, that is

S1(p1) = α(p1/T ). (12)

If h(p1) = 0, then α(p1/T ) ≡ F , because h is maximal. Hence S1(p1) ≡ F , as
required. If h(p1) = 1, then α(p1/T ) ≡ T , because h is a model of α. Hence S1(p1) ≡
T , as required.

Inductive step: Assume now that (i) holds for any propositional formula of k vari-
ables, k ≥ 1, and that α has n = k + 1 variables. We shall construct an enumeration p
of V ar(α) such that for every 1 ≤ i ≤ k + 1,

Sk+1(pi) ≡
{

T, if h(pi) = 1,
F, if h(pi) = 0,

(13)

where Sk+1 is the positive saturated substitution for α with respect to p.
Let q ∈ V ar(α) be such that h(q) = 0. If there is no such q, then we can repeat the

argument presented in the proof of Theorem 1 to show that for every positive saturated
substitution S for α, h = hS . Otherwise, consider the formula β = α(q/α(q/T )). β
has k variables and h is also one of its maximal models (this can be demonstrated by
induction on the number of variables in β). Thus, by the induction hypothesis, there
exists an enumeration p′ of V ar(β), such that for every 1 ≤ i ≤ k,
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S′
k(p′i) ≡

{
T, if h(p′i) = 1,
F, if h(p′i) = 0,

(14)

where S′
k is a positive saturated substitution for β with respect to p′.

Define the enumeration p of V ar(α) in the following way:

pi =

{
q, if i = 1,

p′i−1, if 2 ≤ i ≤ k + 1.
(15)

Note that the substitution string S1, . . . , Sk+1 for α with respect to p and the substitution
string S′

1, . . . , S
′
k for β with respect to p′ satisfy the assumptions of Lemma 3. Indeed,

since p1 = q, and τ(q) = 1, we have

S1(α) = α(q/α(q/T )) = β, (16)

and, by (15), p′i = pi+1, for every 1 ≤ i ≤ k. The second assumption of Lemma 3 is
also satisfied since both strings are positive. So, by Lemma 3(i), for every 2 ≤ i ≤ k+1,
Sk+1(pi) = S′

k(pi). Hence, we can use (14) to conclude that (13) holds for every
2 ≤ i ≤ k + 1.

To complete the proof we only need to show that (13) holds also for i = 1 or,
equivalently, that Sk+1(p1) ≡ F (since h(p1) = h(q) = 0). To this end, let us note that
by Lemma 2(ii),

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(S1(p1)).

Since S1(p1) = α(p1/T ), this means that

Sk+1(p1) =
[
p1

/
T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α).

By (13), the maximality of h, and by the assumption that h(q) = 0, we conclude that
Sk+1(p1) ≡ h[q/T ](α) ≡ F .

Proof of Theorem 4. Let α, hS+ , hS− , S+, and S− be as stated. We shall demonstrate
(i) only. The proof of (ii) is similar and is left to the reader. We prove (i) by induction
on n, the cardinality of V ar(α).

Base case: suppose n = 1. Let p1 be the only variable of α and let S1 be the positive
substitution for α. Since hS1(p1) = 0, we must have S1(p1) ≡ F . On the other hand,
by the definition of a positive substitution, S1(p1) = α(p1/T ). Thus, α(p1/T ) ≡ F
which shows that hS1

[
p1

/
1
]
(α) = 0.

Inductive step: Assume now that (i) holds for any formula of k variables, k ≥ 1, and
that α has n = k +1 variables. Let us also assume that S+ = Sk+1, for the substitution
string S1, . . . , Sk+1 defined for some enumeration p of V ar(α). Finally, let us assume
that hSk+1(pi) = 0, for some 1 ≤ i ≤ k + 1. We shall consider the cases i = 1 and
1 < i ≤ k + 1 separately.

If i = 1, then hSk+1(p1) = 0 and, hence, Sk+1(p1) ≡ F . On the other hand, by
Lemma 2(ii),

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(S1(p1)).
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Since S1(p1) = α(p1/T ), we have

Sk+1(p1) =
[
p1/T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α).

Thus, [
p1/T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α) ≡ F,

and, by the definition of hSk+1 , we obtain hSk+1

[
p1

/
1
]
(α) = 0, as required.

Now, suppose that 1 < i ≤ k + 1. By the definition of a positive saturated substitu-
tion, S1(p1) = α(p1/T ). Since S1(pj) = pj , for the remaining variables of α, we have

S1(α) = α(p1/S1(p1)) = α(p1/α(p1/T )). (17)

By Lemma 1, S1(α) is a satisfiable formula of k variables. Let us define the enumeration
p′ of V ar(S1(α)) in the following way: for every 1 ≤ j ≤ k,

p′j = pj+1. (18)

Consider the substitution string S′
1, . . . , S

′
k for S1(α) with respect to p′ and the map

τ ′ such that for every variable q, τ ′(q) = 1. It is straightforward to verify that the
substitution strings S1, . . . , Sk+1 and S′

1, . . . , S
′
k satisfy the assumptions of Lemma 3,

and, hence, for every 2 ≤ j ≤ k + 1,

Sk+1(pj) = S′
k(pj). (19)

Since, by assumption, hSk+1(pi) = 0, Sk+1(pi) must be equivalent to F . By (19), this
means that S′

k(pi) ≡ F or that hS′
k
(pi) = 0. If we put w = i− 1, then, in view of (18),

we get hS′
k
(p′w) = 0.

To summarize, S1(α) satisfies the assumptions of the inductive hypothesis with re-
spect to hS′

k
. Hence, for every choice of truth-values v1, . . . , vw−1,

hS′
k

[
p′1

/
v1, . . . , p

′
w−1

/
vw−1, p

′
w

/
1
]
(S1(α)) = 0. (20)

By the definition of hS′
k
, by (18) and (19), for every 1 ≤ j ≤ k,

hS′
k
(pj+1) =

{
1, if Sk+1(pj+1) ≡ T ,

0, if Sk+1(pj+1) ≡ F .

In other words, for every 2 ≤ j ≤ k + 1, hS′
k
(pi) = hSk+1(pi). From this and the fact

that p1 �∈ V ar(S1(α)) it follows that (20) can be rewritten as
hSk+1

[
p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]
(S1(α)) = 0, and, further, using (17), as

hSk+1

[
p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]
(α(p1/α(p1/T ))) = 0.

By Lemma 1, this implies that neither

hSk+1

[
p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]

nor
hSk+1

[
p1

/
1 − hSk+1(p1), p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]

are models of α. This completes the proof of (i).
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