
Faster Exact Solving of SAT Formulae with a
Low Number of Occurrences per Variable

Magnus Wahlström�

Department of Computer and Information Science,
Linköping University,

SE-581 83 Linköping, Sweden
magwa@ida.liu.se

Abstract. We present an algorithm that decides the satisfiability of a
formula F on CNF form in time O(1.1279(d−2)n), if F has at most d
occurrences per variable or if F has an average of d occurrences per
variable and no variable occurs only once. For d ≤ 4, this is better than
previous results. This is the first published algorithm that is explicitly
constructed to be efficient for cases with a low number of occurrences
per variable. Previous algorithms that are applicable to this case exist,
but as these are designed for other (more general, or simply different)
cases, their performance guarantees for this case are weaker.

1 Introduction

The boolean satisfiability problem, and its restricted variants, is one of the most
well studied classes of NP-complete problems. Since no algorithm for general
formulae on conjunctive normal form (CNF) with a worst-case running time
of O(cn) for c < 2 is known, or even believed to exist (the currently fastest
algorithms for SAT run in O(2n(1−1/ log2 2m)) time [6, 15] where m is the number
of clauses and expected time O(2n−c

√
n) for a constant c [5]), a large amount

of work has been done on restricted variants of the problem that are easier to
solve. Most notable of these restricted problems is k-sat where a clause may
have at most k literals. This is polynomial for k = 2 and NP-complete for k > 2
[9]. The best results for 3sat are a probabilistic algorithm which runs in time
O(1.3238n) [11] and a deterministic one which runs in time O(1.473n) [1], and
for general k-sat a probabilistic algorithm with running time in O((2 − 2/k)n)
[14] and a deterministic algorithm in time O((2 − 2/(k + 1))n) [4].

If every variable is limited to at most d occurrences in a formula, SAT is
solvable in linear time when d = 2 and NP-complete when d ≥ 3, and k-sat
where every clause has exactly k literals is trivial when d ≤ k (every such formula
is satisfiable) and NP-complete otherwise. If shorter clauses are allowed, 3sat
is NP-complete when d ≥ 3 [17]. Previous comparable algorithms include an

� This research work was funded by CUGS (the national graduate school in computer
science).

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 309–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 M. Wahlström

unpublished result by Kullmann (cited in [13]), where he achieves O(3n/9) ≈
O(1.1299n) for SAT instances where d = 3, and two algorithms with running
times characterised by measures other than n that give non-trivial results for
some of these cases. Hirsch has given algorithms [10] that run in time O(1.2389K)
and O(1.0740L) for a general SAT formula with K clauses or total length L,
which would give O(1.2389n) for d = 3 and O(1.3305n) for d = 4, and Szeider has
given a fixed-parameter tractable algorithm with a running time characterised
by the maximum deficiency of a formula F [16]. If K(F) is the number of clauses
in F and N(F) the number of variables, the maximum deficiency of F is D =
maxF ′(K(F ′)−N(F ′)) over every subformula F ′ of F , and Szeider’s algorithm
runs in time O(2Dn4). For a k-sat instance where every clause has exactly k
literals, and with d ≥ k, this would give us a running time of O(2(d/k−1)n), or
O(1.2600n) when d = 4 and k = 3 (or indeed for any formula F where d = 4
and where no clause has fewer than three literals). When 2-clauses are allowed,
the result is not as strong. In this paper, we present an algorithm that runs
in time O(1.1279(d−2)n) for any CNF formula with at most d occurrences per
variable, i.e. O(1.1279n) when d = 3 and O(1.2721n) when d = 4, regardless of
the lengths of the clauses. In a slight variation of this, we get the same running
time if a formula F is free of singletons (variables with one occurrence) and the
average number of occurrences per variable is d. Hirsch’s results hold for this
case as well. This latter case is perhaps of less complexity theoretical interest,
but might occur in practice, if one has an application that creates formulae with
few high-degree variables. The reason that we cannot allow singletons in the
latter case is that they lower the average degree too much. While all singletons
disappear in reductions without adding any significant extra running time, the
value of the function used as an upper bound on the running time, which is
a function of (d − 2) · n, actually decreases when singletons are added–in the
extreme case, one could add singletons until d < 2 and the upper bound would
collapse. It would be possible to compensate for this by introducing extra terms
in the function, but this would make the entire analysis more complex. We feel
that the restriction, which only applies when one is counting the average number
of occurrences per variable, is not severe enough to warrant this.

The results in this paper are achieved by a compact recursive algorithm with
about a dozen cases. The strategy used in the algorithm is to use reductions
and branchings to gradually impose more structure onto the problem instance,
until finally the problem is structured enough to be converted into an instance of
(3, 2)-CSP with a third as many variables. This instance can then be solved by a
fast algorithm for this problem, such as Eppstein’s algorithm [8]. In particular,
we found it possible to enforce a large amount of structure when every variable
occurs at most three times in F . Another key component is our measure of
complexity f(F) = L(F) − 2N(F), which we use to guide the decision of when
to apply certain reductions. It is this measure that allows us to construct an
algorithm that is simultaneously very strong when every variable occurs at most
three times, and able to handle instances where some variables have a higher
number of occurrences well.

Faster Exact Solving of SAT Formulae 311

The structure of this paper is as follows. Section 2 contains some notes on
standard concepts used in the text, Section 3 presents the algorithm, Section 4
contains the proof of its running time, and finally Section 5 contains conclusions
and some discussion of future work.

2 Preliminaries

A SAT instance is a boolean formula F in CNF form, with no restrictions on the
clause lengths. A k-sat instance is a SAT instance where no clause contains more
than k literals; a clause with exactly k literals is a k-clause. The problem instances
that are considered in this paper belong to the general SAT class, without restric-
tions on clause lengths. V ars(F) is the set of all variables that occur in F .

Regarding notation, if v is a variable then ¬v is its negative literal, and if l
is the literal ¬v then ¬l is the literal v. In general, l (or l′, li, etc) represents a
literal that may be positive or negative, while other lowercase letters represent
variables or positive literals. |C| for a clause C denotes the number of literals
in C (also called the length of C), and a clause (l ∨ C) for some literal l and
clause C is the clause that contains all literals of C plus the literal l. Similarly,
(l ∨ C ∨ D) for literal l and clauses C and D would be the clause containing
l plus every literal occurring in C or D. Unless explicitly stated otherwise, the
clauses C,D must be non-empty.

If l is a literal of a variable occurring in F , F [l] is the formula one gets if
every clause C in F that contains l, and every occurrence of ¬l in other clauses,
is removed. For a set of literals A, F [A] is the result of performing the same
set of operations for every literal l′ ∈ A. Note that F [l] and F [A] may contain
empty clauses.

For a variable v ∈ V ars(F), define the degree d(v, F) of v in F to be the
number of occurrences of either v or ¬v in the clauses of F . Usually, the formula
is understood from the context, and d(v) is used. d(F) is the maximum degree
of any v ∈ V ars(F), and F is k-regular if d(v) = k for every v ∈ V ars(F). A
variable v where the literal v occurs in a clauses and ¬v occurs in b clauses is
an (a, b)-variable, in which case v is an a-literal and ¬v a b-literal. If b = 0, then
v is a pure literal (similarly, if a = 0 then ¬v is a pure literal). We will usually
assume, by symmetry, that a ≥ b, so that e.g. any 1-literal is always a negative
literal ¬v. If d(v) = 1, then v is a singleton.

The neighbours of a literal l are all literals l′ such that some clause C in F
contains both l and l′. If a clause C contains a literal of both variables a and b,
then a and b co-occur in C.

We write L(F) for the length of F and N(F) for the number of variables in
F (i.e. L(F) =

∑
v∈V ars(F) d(v, F) and N(F) = |V ars(F)|).

We use the classic concept of resolution [7]. For clauses C = (a∨ l1 ∨ . . .∨ ld)
and D = (¬a ∨ m1 ∨ . . . ∨ me), the resolvent of C and D by a is the clause
(l1 ∨ . . . ∨ ld ∨ m1 ∨ . . . ∨ me), shortened to remove duplicate literals. If this
new clause contains both v and ¬v for some variable v, it is said to be a trivial
resolvent.

312 M. Wahlström

For a formula F and a variable v occurring in F , DPv(F) is the formula where
all non-trivial resolvents by v have been added to F and all clauses containing
the variable v have been removed from F . Resolution is the process of creating
DPv(F) from F .

(d, l)-CSP is the constraint satisfaction problem where each variable has d
possible values and every constraint involves l variables. (3, 2)-CSP is used in a
subcase of the algorithm in this paper, and for this problem there is an algorithm
due to Eppstein [8] which runs in O(1.3645n) time for n variables. The problem
formulation we use is the one used by Eppstein: An instance I of (d, l)-CSP is a
collection of variables and a collection of constraints. For each variable v, there
is a list of up to d values (called colours) that v can take, and each constraint
is a tuple of up to l (variable,colour)-pairs. The constraints are seen as illegal
combinations: A constraint ((v1,X1), . . . , (vk,Xk)) is satisfied if, for at least one
i, 1 ≤ i ≤ k, variable vi is assigned a colour different than Xi. The instance I
is satisfied if there is an assignment of one colour to each variable that satisfies
every constraint.

3 The Algorithm

The algorithm LowdegSAT (F) for determining the satisfiability of a CNF for-
mula F is shown in Figure 1. It is shown as a list of cases, where the earliest
case that applies is used, e.g. case 8 is only used if none of cases 0–7 apply. Case
0 is a base case. Cases 1–5 are referred to as simple reductions, since the effect
of these cases is only to remove literals or variables from F , without adding any
new literals or variables. Cases 6–7 are the non-simple reductions, and cases 8–12
are branchings.

We use f(F) = L(F) − 2N(F) =
∑

v∈V ars(F)(d(v, F) − 2) as a measure
of complexity, motivated by the fact that this is the maximum number of oc-
currences of v that need to be removed from F before v can be removed by
a polynomial-time reduction. As an indication that this is a relevant measure,
when using this measure the worst cases for d(v) = 3 and d(v) = 4 both get the
same branching number, as we see in the next section. f(F) is also used in the
algorithm for deciding whether to apply certain reductions and branchings or
not.

We say that a formula F ′ is the step k-reduced version of F if F ′ is the result
of applying the reductions in cases 0–k, in the order in which they are listed,
until no such reduction applies anymore. F ′ is called step k-reduced (without
reference to F) if no reduction in case k or earlier applies (i.e. F is step k-
reduced if LowdegSAT (F) reaches case k + 1 without applying any reduction).
A synonym to step 7-reduced is fully reduced.

Definition 1. Standardising a CNF formula F refers to applying the following
reductions as far as possible:

1. Subsumption: If there are two clauses C,D in F , and if every literal in C
also occurs in D, then D is subsumed by C. Remove D from F .

Faster Exact Solving of SAT Formulae 313

Algorithm LowdegSAT(F)
Case 0: If F = ∅, return 1. If ∅ ∈ F , return 0.
Case 1: If F is not on standard form, standardise it (see Def. 1).
Case 2: If there is some 1-clause (l) ∈ F , return LowdegSAT (F [l]).
Case 3: If there is a pure literal l in F , return LowdegSAT (F [l]).
Case 4: If there is a 2-clause (l1∨l2) and a clause D = (l1∨¬l2∨C) in F for some possi-
bly empty C, construct F ′ from F by deleting ¬l2 from D and return LowdegSAT (F ′).
Case 5: If there is a variable x in F with at most one non-trivial resolvent (such as a
(1, 1)-variable), return LowdegSAT (DPx(F)).
Case 6: If there is a variable x in F with d(x) = 3 such that resolution on x is admis-
sible (see Def. 2), return LowdegSAT (DPx(F)).
Case 7: If there are two clauses (C ∨ D), (C ∨ E), with |C| > 1, construct F ′ from F
by replacing these two clauses by (C ∨ ¬x), (x ∨ D), (x ∨ E) for a newly introduced
variable x, and return LowdegSAT (F ′).
Case 8: If d(F) > 3, pick a variable x of maximum degree. If some literal of x, as-
sume ¬x, occurs in a single clause (¬x ∨ l1 ∨ . . . ∨ lk), return LowdegSAT (F [x]) ∨
LowdegSAT (F [{¬x,¬l1, . . . ,¬lk}]). If both x and ¬x occur in at least two clauses,
return LowdegSAT (F [x]) ∨ LowdegSAT (F [¬x]).
Case 9: If there is a 2-literal l such that f(F) reduces by at least six in a branch
F [l], assume that ¬l occurs in a clause C along with literals l1, . . . , lk and return
LowdegSAT (F [l]) ∨ LowdegSAT (F [{¬l,¬l1, . . . ,¬lk}]).
Case 10: If there is a clause C = (¬v1 ∨ . . . ∨ ¬vk) that contains only 1-literals, and
|C| ≥ 4, return LowdegSAT (F − C + (¬v1 ∨ . . . ∨ ¬v�k/2�)) ∨ LowdegSAT (F − C +
(¬v�k/2�+1 ∨ . . . ∨ ¬vk)).
Case 11: Let a be a 2-literal (assumed to be positive) with a maximum number of
neighbours. Let the clause that contains ¬a be (¬a ∨ ¬b ∨ ¬c). If the literal a has at
least three neighbours, return LowdegSAT (F [a]) ∨ LowdegSAT (F [{¬a, b, c}]).
Case 12: If no previous case applied, the formula can be converted into a (3, 2)-CSP
instance with N(F)/3 variables, as described in Lemma 1. Perform this conversion,
and apply Eppstein’s algorithm from [8].

Fig. 1. Algorithm for SAT when most variables have few occurrences

2. Trivial clauses: If there is a clause C in F such that both literals v and ¬v
occur in C for some variable v, then C is a trivial clause. Remove it from
F .

3. Multi-occurring literals: If there is a clause C in F where some literal l occurs
more than once, remove all but one of the occurrences of l from C.

A formula F where none of these reductions apply is said to be on standard
form.

Definition 2. Let F be a step 5-reduced SAT formula, and let F ′ be the step
5-reduced version of DPx(F), for some variable x that occurs in F . Then,
resolution on x in F is admissible if f(F ′) ≤ f(F), i.e. L(F) − L(F ′) ≥
2(N(F) − N(F ′)).

Definition 3. Backwards resolution is the operation of replacing two clauses
(C ∨ D), (C ∨ E) in a formula F with (¬a ∨ C), (a ∨ D), (a ∨ E) for a new

314 M. Wahlström

variable a. To avoid loops of reductions, we only use this when |C| > 1, so that
the net difference in f(F) is strictly positive.

Lemma 1. Given a 3-regular SAT formula F where all 2-literals occur only in
2-clauses and all 1-literals occur only in 3-clauses, there is a corresponding (3, 2)-
CSP instance I, constructible in polynomial time and with N(F)/3 variables,
that is satisfiable if and only if F is satisfiable.

Proof. By Lemma 14.6 of [13], a formula F with c 3-clauses and otherwise only
2-clauses can be converted into an instance I of (3, 2)-CSP with c variables
(by first creating one variable in I for each clause in F , and then performing a
reduction used by Eppstein in [8] to remove every variable with only two values).
Since every variable of F occurs in only one 3-clause, the resulting instance I
has N(F)/3 variables. ��

Next we show the correctness of LowdegSAT . First we show the correctness
of the branching that is used in some of the cases (introduced in [12], under
the name complement search), and then the overall correctness of the algorithm.
The proof contains some references to lemmas in the next section, as we feel
that the correctness belongs to this section while these other lemmas are more
easily shown in the context of algorithm analysis. No circular references occur,
since no lemma in the analysis section refers to this lemma.

Lemma 2. Let ¬x be a 1-literal in a formula F , and let the clause where ¬x
occurs be C = (¬x ∨ l1 ∨ . . . ∨ ld). Then either F [x] is satisfiable, or F [¬x]
and F [{¬x,¬l1, . . . ,¬ld}] are equi-satisfiable (i.e. either both are satisfiable, or
neither).

Proof. Assume that F [x] is unsatisfiable. Then, if there is a satisfying assignment
A to F , it must set ¬x to true and changing the value of x in A must create
an unsatisfied clause. The only possible such clause is C, which means that all
other literals of C must be false in A. ��

Lemma 3. The algorithm LowdegSAT applied to a CNF formula F correctly
calculates the satisfiability of F .

Proof. Case 0 is correct by the definition of the problem, and cases 1–4 are
easily checked. Cases 5–7 use resolution, and the correctness of this operation
is proven in e.g. [7]. Furthermore, the reduction process will terminate. If F ′ is
the step 3-reduced version of F , by Lemma 4 the simple reductions keep f(F ′)
non-increasing and decrease L(F ′). Resolution keeps f(F) non-increasing while
decreasing the number of variables, implying that L(F) decreases, and creates
no singletons. Backwards resolution decreases f(F) strictly and also creates no
singletons. This shows that no infinite chain of reductions is possible from F ′

onwards, and the process of applying reductions 1–3 is certainly finite. Cases 8,9
and 11 either use a branching with two assignments x and ¬x, which is obviously
correct, or branchings that are correct by Lemma 2. Case 10 is correct, as any

Faster Exact Solving of SAT Formulae 315

assignment that satisfies C must satisfy at least one of the new clauses. In case
11, the length of the clause containing the 1-literal must be 3, as a 2-clause with
a 1-literal ¬x implies that resolution on x is admissible (see Lemma 6). The
correctness and completeness of case 12 given that cases 0–11 do not apply is
proven in Lemma 15 in the next section, as this proof uses a number of other
lemmas, that are best shown in the context of the algorithm analysis. ��

4 Analysing the Running Time

This section contains the proof of the upper bound O(1.1279f(F)) on the worst-
case running time of the algorithm, presented by lemmas roughly following the
cases of the algorithm. The section is split into subsections in the following way:
Section 4.1 presents the method of analysis and contains some results regarding
this and the measure f(F). Section 4.2 deals with cases 0–7 of the algorithm, and
gives the basic structural properties that are enforced there. Section 4.3 deals
with case 8, where all variables with degrees higher than 3 are handled, and
Section 4.4 with case 9, where most of the structure of the problem is enforced.
Finally, Section 4.5 deals with the rest of the cases and concludes the proof of
the running time of the algorithm. With the help of the structure enforced by
case 9, cases 10-11 are easier cases that prepare for the applicability of the CSP
construction in case 12.

4.1 Technical Aspects of the Method of Analysis

We use Kullmann’s method from [13] to get an upper limit on the running time
of LowdegSAT . In summary, if F is a fully reduced formula and if LowdegSAT
applied to F branches into formulas F [A1], . . . , F [Ad], let Fi be the fully re-
duced version of F [Ai] for i = 1, . . . , d. The branching number of this particular
branching is τ(f(F)−f(F1), . . . , f(F)−f(Fd)), where τ(t1, . . . , td) is the unique
positive root to the equation

∑
i x−ti = 1. If α is the biggest branching num-

ber for all branchings that can occur in LowdegSAT , then the running time of
the algorithm for a formula F is O(αf(F)). For a more detailed explanation, see
Kullmann’s paper.

As mentioned, we use f(F) = L(F) − 2N(F) =
∑

v∈V ars(F)(d(v, F) − 2) as
a measure of complexity. While this measure might seem odd at first, there is
an intuitive reading of it: d(v, F) − 2 is the number of occurrences of v that
need to be removed before a simple reduction on v is possible. Thus, it can be
viewed as assigning a weight to each variable depending on its degree, so that
one variable of degree four counts for as much as two variables of degree three. If
F is 3-regular (such as after case 8 of the algorithm), f(F) = N(F), but even for
a 3-regular F we use f(F) to guide when we should apply certain reductions and
branchings. Furthermore, f(F) obeys all the required properties of a measure,
provided that F is free of singletons, as proven in the next lemma.

316 M. Wahlström

Lemma 4. Let F be a CNF formula with d(x) ≥ 2 for every variable x occurring
in F . Let F ′ be the fully reduced version of F . Then, f(F) ≥ 0, f(F) = 0 if and
only if F ′ is empty, and f(F ′) ≤ f(F).

Proof. The first is obvious from f(F) =
∑

v∈V ars(F)(d(v, F)−2). For the second,
note that the simple reductions never increase the degree of any variable, and
that no variable of degree 2 can remain after the simple reductions have been
applied. f(F) = 0 if and only if all variables in F have degree 2, which implies
that all variables will be removed by the simple reductions.

For the final part, f(F) is non-increasing over all simple reductions, by the
previous observations, and over standard and backwards resolution whenever
these are applied, by the restrictions in the algorithm. To complete the argument,
we only need to show that no singletons are created in these steps. For standard
resolution, a variable that occurs in only one resolvent must co-occur exactly
once with x in F , as both resolvents are non-trivial. For backwards resolution,
the only change in the degrees of variables is that the variables in C have their
degrees decreased by one. Thus, f(F) is non-increasing over the entire process
of reductions. ��

Given these properties, we need one more lemma to give a lower bound for
f(F) − f(F ′) when F ′ is the result of an assignment and reductions on F .

Lemma 5. Let F be a fully reduced formula, A an assignment to variables of
F and F ′ the reduced version of F [A]. Further, let F0 be the result of a sequence
of applications of the reductions in cases 1–3 in any order to F [A]. If F0 is free
of singletons, and if F ′ contains no empty clause, we have f(F ′) ≤ f(F0).

Proof. This can be shown by induction on the number of reductions applied.
Remember that cases 1–3 only remove clauses and literals from F , and note
that the only case of these that will ever remove the last occurrence of a literal
from a clause without also removing the entire clause is case 2.

First, if some reduction is applicable on F [A], then every clause and literal
that would be removed by the application of this reduction will be removed by
any sequence of applications of cases 1–3 ending in a step 3-reduced formula.
This can be verified without any great difficulty (using the above observations
and the fact that F ′ contains no empty clause).

Second, assume that the induction hypothesis is true for every sequence of k
of these reductions acting on F [A]; that is, for any sequence of k applications of
cases 1–3 acting on F [A], removing a set of clauses C∗ and a set of literals L,
every possible sequence of such reductions ending in a step 3-reduced formula
will remove at least these clauses and literals. It can be verified without any
great difficulty that any extra clauses and literals that would be removed by the
application of one further reduction will also be missing in any resulting step
3-reduced formula (again using that F ′ contains no empty clause).

Thus, if F1 is the true step 3-reduced version of F [A], then for every variable
v that occurs in both F0 and F1, d(v, F0) ≥ d(v, F1). If F0 is free of singletons,
this gives us f(F0) ≥ f(F1), and the previous lemma gives us f(F1) ≥ f(F ′). ��

Faster Exact Solving of SAT Formulae 317

Thus, even though we do not know the exact sequence of reductions that will
be made after a particular assignment (this is not even defined in the algorithm),
this result guarantees that we can safely underestimate the amount of reduction
due to cases 1–3. We will permit ourselves to say that a particular chain of re-
ductions occurs, rather than using cumbersome more exact phrases. Calculating
f(F) − f(F0) is easily done using f(F) =

∑
v(d(v, F) − 2).

4.2 Basic Structural Properties

This section contains some results regarding the basic structural properties that
exist in a fully reduced formula. First we give a lemma that shows a sufficient
condition for when resolution on a variable x is admissible.

Lemma 6. Let F be a step 5-reduced CNF formula, and x, d(x) = 3, be a
variable occurring in F such that applying resolution to x increases the degree
of at most c variables, while the resolution together with the reductions in cases
1–5 removes or decreases the degree of at least c variables, including x. Then
resolution on x is admissible.

Proof. Use f(F)−f(F ′) =
∑

v∈V ars(F)(d(v, F)−2)−∑
v∈V ars(F ′)(d(v, F ′)−2),

where F ′ is the step 5-reduced version of DPx(F). Note that since d(x, F) = 3,
a variable can increase its degree by at most one in the resolution process. ��

Next, Lemmas 7–8 show the mentioned structural properties.

Lemma 7. If F is a 3-regular, fully reduced formula, and if C,D are two clauses
in F , then |V ars(C)∩V ars(D)| ≤ 2. If |C| = 2, then |V ars(C)∩V ars(D)| ≤ 1,
so V ars(C) 	⊆ V ars(D).

Proof. For the first part, note that some reduction applies both if l1, l2 ∈ C
and l1, l2 ∈ D, and if l1, l2 ∈ C,¬l1,¬l2 ∈ D. There is no way for C and D to
share three variables without one of these cases occurring. For the second part,
if C = (l1 ∨ l2) and l1,¬l2 ∈ D, then case 4 applies and D is shortened. ��
Lemma 8. Let F be a step 5-reduced formula, and let a, b be (2, 1)-variables in
F . The following structures all guarantee an admissible resolution.

1. 2-clause C with ¬a ∈ C
2. 3-clause C with ¬a, b ∈ C and clause D with a, b ∈ D
3. 3-clause C with ¬a, l ∈ C, clause D with a, b ∈ D and 2-clause (¬l ∨ b) for

some literal l.

Proof. In the first two cases, we see immediately by Lemma 6 that resolution
on a is admissible. In the third case, we see that one resolvent is either a copy
of an existing clause or will be shortened or removed in case 4 at the latest. In
either case, f(F) has increased by at most 1 in the resolution process, and at
least one simple reduction which strictly decreases f(F) applies, guaranteeing
that resolution on a is admissible. ��

With these tools, we can prove that all cases 8–12 get a branching number
of τ(4, 8) or better.

318 M. Wahlström

4.3 Case 8: Variables of Higher Degree

Here, we prove that the branching number is sufficiently good when branching
on any variable x with d(x) > 3.

Lemma 9. If F is a reduced formula with d(F) > 3, then applying case 8 of the
algorithm results in a branching number of at most τ(4, 8).

Proof. For any variable y occurring in any 2-clause with x, we are limited to
the following options: d(y) = 3 so that the 2-literal y occurs in a 2-clause and
x and y have no co-occurrences in any other clauses; d(y) > 3 and 2-clauses
(x ∨ y), (¬x ∨ ¬y) are the only co-occurrences of x and y; or finally d(y) > 3
and x and y co-occur in only one 2-clause, say (x ∨ y). In the latter case, one
longer clause (¬x ∨ ¬y ∨ C) for some C can occur. Similarly, for any variable y
occurring with x, but not in any 2-clause, we have the following options: d(y) = 3
and x and y co-occur only once; d(y) = 3 and x and y co-occur only in clauses
(x ∨ y ∨ C), (x ∨ ¬y ∨ D) (or similarly with ¬x), where C and D do not share
variables and |D| > 1 if ¬y is a 1-literal; or finally d(y) > 3, where x and y can
co-occur several times as long as the same pair of literals never occurs in more
than one clause (in other words, the variable y occurs at most twice with the
literal x). From all of this, we can infer the following: The reduction in f(F) in
a branch F [x] is at least d(x) − 2 plus the number of 2-clauses that contain the
variable x plus the contribution from the longer clauses involving the literal x.
With only one such clause, this contribution is at least 2. With two such clauses,
the contribution is at least 4. With three, the contribution is at least 5, occurring
in a situation such as clauses (x∨ y ∨ a), (x∨ z ∨ b), (x∨¬y ∨¬z ∨ c), if d(v) = 3
for every involved variable v. Let a be the reduction of f(F) in the x branch,
and b the reduction in the ¬x branch. If each literal x and ¬x is involved with
at most two clauses longer than a 2-clause, then a + b ≥ 12 and we need only
prove that a, b ≥ 4. Assume that ¬x has at most as many occurrences as x.

If ¬x is at least a 2-literal, or a 1-literal present in a 3-clause or longer clause,
then the result is immediate. If ¬x is a 1-literal present in a 2-clause, say (¬x∨y),
then the extra assignment ¬y will ensure the result.

The remaining case is that there are three longer clauses containing the literal
x, which ensures a reduction of f(F) in the x branch of at least 7 plus the
contribution from 2-clauses. If ¬x is at least a 2-literal, then either there are two
2-clauses and a reduction of at least 4 in the ¬x branch, or a reduction of at
least 5 in the ¬x branch. If ¬x is a 1-literal, finally, then we shall see that f(F)
reduces by at least 5 in the branch ¬x. If ¬x occurs in a 3-clause or longer, or
in a 2-clause (¬x ∨ y) where d(y) > 3, then the immediate assignments reduce
f(F) by at least 4 and at least one more variable is affected by the assignments.
If ¬x occurs in a 2-clause (¬x ∨ y) with d(y) = 3, then y must be a 2-literal, so
that ¬y is a 1-literal occurring in a clause of length at least 3. This concludes
the proof. ��

In every case after this one, F is 3-regular.

Faster Exact Solving of SAT Formulae 319

4.4 Case 9: Imposing More Structure

We give some conditions under which case 9 of the algorithm applies, and show
that the branching number will be at most τ(6, 6).

Lemma 10. If F is a 3-regular, fully reduced formula, the following statements
are true. For the sake of convenience, assume w.l.o.g. that for any variable v,
the literal ¬v occurs only once in F .

1. Any branch F [¬a] for a variable a reduces f(F) by at least 6.
2. Any branch F [a] for a variable a where the literal a occurs in some clause C

with |C| ≥ 5 reduces f(F) by at least 6.
3. If literals a, b occur together in one clause, and a,¬b occur together in an-

other, then a branch F [a] reduces f(F) by at least 6.

Proof. 1: Let S be the set of literals that occur in a clause together with ¬a in
F . For every literal l ∈ S, ¬l is assigned in the branch. We know that if l1, l2 ∈ S,
then any clause containing ¬l1 does not contain ¬l2 or a, and a clause C with
¬l1, l2 ∈ C has |C| > 2 and |S| > 2 if l1 is a negated literal, |C| > 3 if l1 is an
unnegated literal. Either way, each assignment ¬li affects at least two literals
not from the variables in S.

If |S| ≥ 3, then at least four variables are assigned in the branch, and at least
six literals beyond these are removed from F . By a simple counting argument,
this requires at least six variables to be affected.

If |S| = 2, let S = {l1, l2} where l1, l2 are some literals for variables b and c,
respectively.

If some clause C contains both literal ¬l1 and variable c, then by necessity
l1 = b, l2 = c and C = (¬b ∨ c ∨ C ′) where |C ′| ≥ 2 and C ′ contains no literals
of variables a, b, c. In this case, no clause containing ¬c can be formed without
using a sixth variable, by Lemma 7.

Otherwise, any clause containing ¬li for i = 1, 2 has no other variable in
common with the clause containing ¬a. We have three further cases, depending
on the negations in S.

If S = {b, c}, then there must exist clauses (¬b∨C), (¬c∨D) with |C|, |D| ≥ 2.
If less than six variables are affected, V ars(C) = V ars(D) and |C| = |D| = 2,
but then, either resolution or backwards resolution is admissible on a variable in
C. Otherwise, at least six variables are removed in the branch.

If S = {b,¬c}, then there exist clauses (¬b ∨ C) with |C| ≥ 2 and (c ∨ D),
(c ∨ E) with |D|, |E| ≥ 1. If less than six variables are affected, |D| = |E| = 1
and V ars(C) = V ars(D) ∪ V ars(E), and by Lemma 8, we must have clauses
(¬b ∨ ¬u ∨ ¬v), (c ∨ u), (c ∨ v) for variables u, v. Now, the second appearances
of literals u and v must occur in different clauses, where no other literal of the
variables a, b, c, u or v can occur. Counting these clauses, at least six variables
are removed in the branch.

If S = {¬b,¬c}, then we have clauses (b∨A), (b∨B), (c∨C), (c∨D), where no
case uses only six variables. By Lemma 8 and since case 7 does not apply, we have
A,B 	= C,D, and by Lemma 7, V ars(A) 	= V ars(B) and V ars(C) 	= V ars(D),

320 M. Wahlström

so either A–D are all of length one with distinct variables (for a reduction of at
least 7 in the branch) or at least one, say C, has |C| > 1. In the latter case, D
still introduces a variable not in C, for a total reduction of at least 6.

2: Assume w.l.o.g. that C = (a ∨ l1 ∨ l2 ∨ l3 ∨ l4), where l1–l4 are literals of
variables b–e, respectively. By assumption, there is one more clause D containing
literal a, and by Lemma 7, D contains at least one variable other than a–e. At
least six variables are affected by the assignment a.

3: By Lemma 8, the clauses can w.l.o.g. be assumed to be (a ∨ b ∨ l1), (a ∨
¬b ∨ l2 ∨ l3) where l1–l3 are literals of variables c–e. If the reduction in f(F) is
less than 6, the second occurrence of literal b must occur in a clause using only
these variables. No such clause can exist. ��

Lemma 11. Let F be a 3-regular, fully reduced SAT formula where no condition
from Lemma 10 applies. Assume w.l.o.g. that for every variable v, literal ¬v is
a 1-literal. Then the following statements hold:

1. If there is a clause C with literals a, ¬b and ¬c for some variables a, b, c,
then a branch F [a] reduces f(F) by at least 6.

2. If there is no such clause, but there is a clause C with literals a and ¬b for
some variables a, b, then a branch F [a] reduces f(F) by at least 6.

Proof. 1: Assignments b and c will be made. By the various restrictions on F ,
it can be verified that whether C = (a ∨ ¬b ∨ ¬c) or C = (a ∨ ¬b ∨ ¬c ∨ l1), at
least six variables are affected.

2: Assignment b will be made, and |C| ≥ 3. By similar arguments as before,
considering both clauses that contain the literal a as well as the clauses contain-
ing literal b, at least six variables are affected. ��

We see that for any F where none of cases 0–9 apply, we have a specific
structure where every clause C contains either only 2-literals, in which case
2 ≤ |C| ≤ 4, or only 1-literals, in which case |C| ≥ 3. Additionally, every pair of
variables co-occurs in at most one clause.

4.5 The Final Cases

Given the structure imposed by case 9, showing the rest of the results is relatively
easy. Case 10 imposes a stricter limit on the length of a clause with 1-literals,
case 11 gives us stronger guarantees on the neighbourhood of a 2-literal, and
finally, if all other cases fail to apply, case 12 can be applied to convert the
formula to an instance of (3, 2)-CSP.

Lemma 12. Let F be a SAT formula where case 10 is the earliest case of the
algorithm LowdegSAT that applies. The branching number for this case is at
least τ(6, 6).

Proof. Let C be the clause that is being split. For any literal li ∈ C that is not
included in the new clause, ¬li becomes a pure literal, so that an assignment ¬li

Faster Exact Solving of SAT Formulae 321

is made. For each such assignment, two literals for other variables are affected.
If there are at least three such assignments ¬li, we have at least six additional
literals, and by a counting argument at least six variables are affected in total.

If only two literals become pure, say a, b, let Si for i = 1, 2 be the set of literals
v such that v occurs in i clauses together with literal a or b. Assume w.l.o.g. that
S1 = {u1, . . . , ud} and S2 = {v1, . . . , ve}. |S1| + 2|S2| ≥ 4, and for every literal
l ∈ S2 an additional assignment ¬l is made. We trace these assignments.

First, if S2 = ∅, the reduction in f(F) is at least 2 + |S1| ≥ 6.
Second, if |S2| = 1, |S1| ≥ 2. Let D be the clause where ¬v1 occurs. If less

than six variables are to be removed, D = (¬u1 ∨ ¬u2 ∨ ¬v1), but then u1 and
u2 are assigned and must lie in different clauses, which requires extra variables.

Third, if |S2| = 2, then some literal ¬w shares a clause with some ¬vi, and
assignment w is made. At least one occurrence of w is in a clause with some new
variable, for a reduction of at least 6.

Finally, |S2| ≥ 3. If |S2|+|S1| > 3, then the reduction is at least 6. Otherwise,
some extra variable is required to form a clause with ¬vi. ��
Lemma 13. Let F be a CNF formula such that no case before case 11 of
LowdegSAT applies. Let a be a variable. W.l.o.g., assume that literal ¬a oc-
curs once in F . Then, if a is a member of k 2-clauses, an assignment F [¬a]
reduces f(F) by at least 7 + k.

Proof. Let the clause that contains ¬a be (¬a ∨ ¬b ∨ ¬c), so that assignments b
and c are made. Each 2-clause containing a, b or c contributes one variable, and if
there are l literals otherwise removed from F , these literals belong to at least l/2
variables. Since no clause contains both b and c, the result follows from this. ��
Lemma 14. If F is a CNF formula such that case 11 is the earliest case of
LowdegSAT that applies, then the branching number is at most τ(4, 8). If case
11 does not apply either, then every 2-literal l is involved in two 2-clauses.

Proof. If a is part of no 2-clauses, then the number of variables affected by
assignment a is at least 5, which by Lemma 13 leads to a branching with a
branching number of at most τ(5, 7) < τ(4, 8). If literal a is neighbour to only
three other variables, a must be involved in one 2-clause, and by the same lemma,
we have a branching with a branching number of at most τ(4, 8). The remaining
case, with only two other variables, can only be achieved by two 2-clauses. ��
Lemma 15. If F is a CNF formula such that no case among cases 0–11 of
LowdegSAT applies to F , then the construction in Lemma 1 is applicable, and
the total time for LowdegSAT (F) is O(1.3645N(F)/3) ⊂ O(1.1092f(F)).

Proof. In addition to the structural properties noted previously, we have by case
10 that |C| = 3 for every clause C with 1-literals and by case 11, as noted in
Lemma 14, |C| = 2 for every clause C with 2-literals, which proves the applica-
bility of the construction. Eppstein’s algorithm [8] runs in time O(1.3645n), and
the resulting CSP instance has N(F)/3 variables. With f(F) = N(F) at this
point in the algorithm, we get the described running time. ��

322 M. Wahlström

This concludes our sequence of lemmas. We will proceed with the main
theorem.

Theorem 1. If F is a CNF formula without singletons, then LowdegSAT (F)
decides the satisfiability of F in time O(1.1279L(F)−2N(F)).

Proof. This follows from the various relevant lemmas. ��

Corollary 1. If F is any CNF formula where the degree of a variable x is limited
to at most d, the running time is in O(1.1279(d−2)·N(F)).

Proof. All singletons will be removed in simple reductions before any branching
is done. If F ′ is the step 3-reduced version of F , then d(v, F ′) ≤ d for every
v ∈ V ars(F ′) and L(F ′) − 2N(F ′) ≤ (d − 2) · N(F ′) ≤ (d − 2) · N(F). ��

5 Conclusions

We have presented an algorithm which decides the satisfiability of a CNF formula
F , with N(F) variables and of length L(F), in time O(1.1279L(F)−2N(F)) if F is
free of singletons. This implies a running time of O(1.1279(d−2)N(F)) when F is
either a formula with at most d occurrences for any variable or a singleton-free
formula with d occurrences per variable on average. For d ≤ 4, this is better
than previous results.

No previous algorithms have been published for SAT problem instances where
the number of occurrences per variable is limited. Looking at other NP-hard
problems, we find only a few papers where similar attacks have been made.
In [2], Chen et al. apply advanced methods of algorithm analysis to get an
algorithm that solves the Vertex Cover problem for a graph of maximum degree
3 in parameterised time O(1.194kk + n) for a maximum cover size of k, and
in time O(1.1255n) for the non-parameterised version. Closer to the work in
this paper, one of the helper algorithms for the problem of counting max-weight
models for 2sat formulae in [3] is an algorithm that runs in time O(1.1892N(F))
when d = 3. This helper algorithm is then used to extend this into running times
of O(1.2400N(F)) when d = 4 and O(1.2561N(F)) for the general problem.

For future research, it could be fruitful to apply techniques similar to or
inspired by those in [3] to extend the results in this paper to an algorithm that
is more effective when d > 4.

References

[1] Tobias Brueggemann and Walter Kern. An improved deterministic local search
algorithm for 3-SAT. Theoretical Computer Science, 329(1–3):303–313, 2004.

[2] Jianer Chen, Iyad A. Kanj, and Ge Xia. Labeled search trees and amortized
analysis: Improved upper bounds for NP-hard problems. In Proceedings of the
14th Annual International Symposium on Algorithms and Computation (ISAAC
2003), pages 148–157, 2003.

Faster Exact Solving of SAT Formulae 323

[3] Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström. Counting models for
2SAT and 3SAT formulae. Theoretical Computer Science, 332(1-3):265–291, 2005.

[4] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Klein-
berg, Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A de-
terministic (2−2/(k+1))n algorithm for k-SAT based on local search. Theoretical
Computer Science, 289(1):69–83, 2002.

[5] Evgeny Dantsin, Edward A. Hirsch, and Alexander Wolpert. Algorithms for SAT
based on search in Hamming balls. In Proceedings of the 21st Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2004), volume 2996 of
Lecture Notes in Computer Science, pages 141–151. Springer, 2004.

[6] Evgeny Dantsin and Alexander Wolpert. Derandomization of Schuler’s algorithm
for SAT. In Proceedings of the 7th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2004), pages 69–75, 2004.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

[8] David Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and con-
straint satisfaction. In Proceedings of the Twelfth Annual Symposium on Discrete
Algorithms (SODA 2001), pages 329–337, 2001.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[10] Edward A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated
Reasoning, 24(4):397–420, 2000.

[11] Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), page 328, 2004.

[12] Paul Walton Purdom Jr. Solving satisfiability with less searching. In IEEE
Transactions on Pattern Analysis and Machine Intelligence. PAMI-6, pages 510–
513, jul 1984.

[13] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. The-
oretical Computer Science, 223:1–72, 1999.

[14] Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search
and restart. Algorithmica, 32(4):615–623, 2002.

[15] Rainer Schuler. An algorithm for the satisfiability problem of formulas in con-
junctive normal form. Journal of Algorithms, 54(1):40–44, 2004.

[16] Stefan Szeider. Minimal unsatisfiable formulas with bounded clause-variable dif-
ference are fixed-parameter tractable. In Proceedings of the 9th Annual Inter-
national Conference on Computing and Combinatorics (COCOON 2003), pages
548–558, 2003.

[17] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8:85–89, 1984.

	Introduction
	Preliminaries
	The Algorithm
	Analysing the Running Time
	Technical Aspects of the Method of Analysis
	Basic Structural Properties
	Case 8: Variables of Higher Degree
	Case 9: Imposing More Structure
	The Final Cases

	Conclusions
	References

