
DPVIS – A Tool to Visualize the Structure
of SAT Instances

Carsten Sinz and Edda-Maria Dieringer

Symbolic Computation Group, WSI for Computer Science,
University of Tübingen, 72076 Tübingen, Germany

{sinz, dieringe}@informatik.uni-tuebingen.de

Abstract. We present DPVIS, a Java tool to visualize the structure of SAT in-
stances and runs of the DPLL (Davis-Putnam-Logemann-Loveland) procedure.
DPVIS uses advanced graph layout algorithms to display the problem’s inter-
nal structure arising from its variable dependency (interaction) graph. DPVIS is
also able to generate animations showing the dynamic change of a problem’s
structure during a typical DPLL run. Besides implementing a simple variant of
the DPLL algorithm on its own, DPVIS also features an interface to MiniSAT, a
state-of-the-art DPLL implementation. Using this interface, runs of MiniSAT can
be visualized—including the generated search tree and the effects of clause learn-
ing. DPVIS is supposed to help in teaching the DPLL algorithm and in gaining
new insights in the structure (and hardness) of SAT instances.

1 Introduction

Although SAT is an NP-complete problem, there are many real-world instances that can
be solved surprisingly fast by modern (mainly DPLL-based) solvers. The typical expla-
nation for this phenomenon that can be found in the literature is that those instances
are equipped with some kind of internal (and sometimes hidden) “structure” that makes
these problems tractable. The term “structure”, due to its vagueness, leaves much room
for interpretation, though, and it remains unclear how this structure manifests itself and
how it could be exploited. We have therefore proposed a visualization approach [1], that
is supposed to deliver some hints on why solving a particular instance is hard or easy.

Our approach is based on the problem’s (variable) interaction graph [2], which is
supposed to appropriately reflect (at least part of) the problem’s structure. In a SAT
instance given by a set S of clauses over a set X of propositional variables, the interac-
tion graph’s vertices are the instance’s propositional variables, and variables occurring
together in any clause of S are connected by an edge. Thus, if two variables are con-
nected, this indicates that assigning a truth value to one of the connected variables has
the potential to determine the truth value of the other (thus they interact).

DPVIS (see Fig. 1) reads problems in DIMACS CNF format and shows their vari-
able interaction graph. The interaction graph is laid out using algorithms that are known
to reflect graph clustering and symmetry especially well [3]. Moreover, DPVIS visual-
izes changes of the interaction graph during the run of a DPLL algorithm. This includes
visualizing the effects of unit propagation (Boolean constraint propagation) on the in-
teraction graph as well as showing the search tree generated by the DPLL algorithm.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 257–268, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



258 C. Sinz and E.-M. Dieringer

Fig. 1. DPVIS tool showing a visualized SAT instance (hanoi4 of the DIMACS Benchmark
Collection): The variable interaction graph is shown on the left and a manually generated, partial
search tree on the right

We expect DPVIS to be a useful tool for examining the structure of SAT instances—
especially in generating hypotheses on what makes an instance tractable. Moreover, we
believe that DPVIS can be a valuable tool in teaching the DPLL algorithm. As DPVIS

can also display learned clauses, non-chronological back-jumping, and search restarts,
it encompasses most features that can be found in a modern implementation of the
DPLL procedure.

2 Theoretical Background
2.1 SAT Instances as Graphs

To transform a SAT instance represented as a set S of clauses into a (directed or undi-
rected) graph G = (V,E) with vertex set V and edge set E a number of methods have
been suggested [2, 4, 5, 6]. We have decided to use a variant of Rish and Dechter’s inter-
action graphs1 for our visualization, as they put an emphasis on variable dependencies.

1 Interaction graphs are also known as primal graphs. Slater [6] calls them co-occurrence-of-
variables-graphs.



DPVIS – A Tool to Visualize the Structure of SAT Instances 259

The interaction graph is an undirected graph, where the vertex set V is the set of
variables of S and {x, y} ∈ E if and only if there is a clause c ∈ S that contains
both variables x and y. Note, that this is a lossy representation, as the signs of literals in
clauses are ignored. For the purpose of structural analysis and visualization we consider
this not a disadvantage, however.

For our visualization experiments we have decided to use a refined variant of in-
teraction graphs, in which 2-clauses (i.e. clauses containing exactly two literals) are
represented as visually emphasized directed or undirected arcs in the graph. We make
the following distinction:

1. A clause with two positive literals is shown as a red, double-ended arrow.
2. A clause with one positive and one negative literal, say (¬x ∨ y), is written as a

blue arrow from variable x to variable y, indicating the implication direction.
3. A clause with two negative literals is written as a green, double-ended arrow.

All other clauses are displayed without highlighting, i.e. as black edges between the
involved variables. Moreover, we allow duplicate edges in our graphs; thus, e.g., two
clauses both involving variables x and y result in a double edge between the corre-
sponding vertices.

Special treatment of 2-clauses is motivated by their importance for tractability: A
problem consisting only of 2-clauses is solvable in linear time [4]. Moreover, experi-
ments with random instances from the (2 + p)-model (problems with a fraction of p
3-clauses and (1 − p) 2-clauses) indicate that random instances with up to 40 percent
of 3-clauses (i.e. p ≤ 0.4) might be computationally tractable [7].

2.2 Graph Layout

The graph layout or graph drawing problem consists of generating a geometric rep-
resentation of a graph in two or three dimensions. Nodes have to be positioned in the
Euclidean space while optimizing certain layout properties like minimal number of edge
crossings, uniform edge length, reflection of inherent symmetry, etc [3, 8].

Different algorithms are available for graph layout, a prominent one being the spring
embedder model of Eades [9] or its close relative, the force-directed placement algo-
rithm of Fruchterman and Reingold [3]. Both are known to produce layouts that reflect
symmetry convincingly.2 The physical model used by the spring-embedder assumes
metal springs of a certain length attached between each pair of connected nodes. The
springs impose attractive and repellent forces on the nodes depending on their current
distance in the layout. The layouter attempts to minimize the sum of all affecting forces
by iteratively repositioning the nodes.

DPVIS builds upon the commercially available graph layout package yFiles of
yWorks (http://www.yworks.com), from which it uses the Organic Layouter
and Smart Organic Layouter, both of which implement force-directed placement al-
gorithms.

2 We have considered other existing layouts as well, like hierarchical or orthogonal layout, but
found them not being equally suitable for our purpose.



260 C. Sinz and E.-M. Dieringer

3 DPVIS Functionality

Upon start-up, DPVIS reads a SAT instance in DIMACS CNF format from a file, per-
forms unit propagation, and displays the instance’s variable ineraction graph with vari-
ables (the graph’s nodes) placed randomly (on the left part of the screen) and an empty
DPLL search tree (on the right). The user can then choose a graph layouter and DPVIS

computes a visually more attractive layout. Thereafter, variables can be set to true or
false (by clicking on the graph’s nodes with either the left or right mouse button), or
an automatic DPLL run can be started. In the first case, after setting a variable, unit
propagation is automatically initiated.

A detailed description of all available display and animation options is given in the
following paragraphs.

Fig. 2. Larger layout example: Bounded model-checking instance longmult11 (see Sec. 4 for a
reference) with 5103 variables and 15259 clauses laid out using DPVIS’ Smart Organic Layouter

3.1 Visualizing Internal Structure

To display the static problem structure and show the effects of setting individual vari-
ables and subsequent unit propagation, DPVIS offers these features:

– Two Different Layout Algorithms: Graph layouts can be computed using two
different force-directed layout algorithms, each equipped with a set of additional
parameters, e.g. for controlling preferred edge length or graph compactness.



DPVIS – A Tool to Visualize the Structure of SAT Instances 261

– Zooming the Interaction Graph: After the layout is computed, the user can zoom
into the interaction graph to focus on an area of special interest. The user may also
search for variables and center the view on them, or optimally fit the graph into the
available display area.

– Setting Variables to true resp. false: By clicking on a variable, the user can set a
variable to true (by clicking the left mouse button) or false (right mouse button).
Each setting of a variable also extends the search tree by a new leaf.

– Performing Unit Propagation: Unit propagation is automatically initiated after
setting of a variable: first, all variables affected by unit propagation are highlighted;
then they are removed one by one (or at once, if this option is selected) and the in-
teraction graph is updated accordingly, resulting in an animated view of unit prop-
agation.

An example of a typical layout obtained with DPVIS is displayed in Fig. 2.

3.2 Animating DPLL Runs

DPVIS also allows generating and visualizing complete runs of the DPLL procedure.
There are three possibilities to generate such a run. They differ in the way in which the
case-splitting literal L is selected in the DPLL algorithm (see Fig. 3).

1. Manual Selection of Case-Distinction Variable: The user selects the case-splitting
variable by clicking on a node in the variable interaction graph or by entering the
variable index into a field at the bottom of the screen. This option delivers enough
flexibility for the user to experiment with his own (manually generated) variable
selection heuristics, e.g. one that tries to generate independent subproblems.

2. Simple Variable Selection Heuristics: DPVIS also implements two simple vari-
able selection heuristics: one that randomly selects the case-splitting variable, and
one that is based on counting literal occurrences: the variable with the maximal
number of occurrences (making no distinction between positive and negative oc-
currences) is selected.

3. Interface to Modern DPLL Implementation: An interface to external SAT-solvers
is also contained in DPVIS. This allows DPVIS to read traces of DPLL runs from

boolean DPLL(ClauseSet S)
{

while (S contains a unit clause {L}) {
delete clauses containing L from S // unit-subsumption
delete L from all clauses in S // unit-resolution

}
if (∅ ∈ S) return false // empty clause?
if (S = ∅) return true // no clauses?
choose a literal L occurring in S // case-splitting on L
if (DPLL(S ∪ {{L}}) return true // first branch
else if (DPLL(S ∪ {{L}}) return true // second branch
else return false

}

Fig. 3. Pseudo-code of the basic DPLL algorithm



262 C. Sinz and E.-M. Dieringer

Fig. 4. DPVIS-interface to MiniSAT. Program traces (top right window) produced by MiniSAT
are read in by DPVIS, and can be played back. Play-back is controlled by an animation console
(bottom right window)

solvers like zChaff or MiniSAT3. Currently, the only interface available is that to
MiniSAT (see Fig. 4). Using this interface, DPLL traces containing information
about case-splitting, unit propagation, learned clauses and back-jumps can be ani-
mated and analyzed with DPVIS. The user can choose between playback mode, in
which—starting with an initial interaction graph layout—the program trace is pre-
sented to the user (resembling a movie). Alternatively, the user can employ single-
step mode, in which after each step he or she may compute a new graph layout.

Independent of which mode was used to generate the DPLL search tree, the follow-
ing additional options are available:

– Free navigation in the search tree: At each point in the DPLL program trace, the
user can stop the trace and navigate to any point in the thitherto existing search tree.

– Re-compute layout at any time and each node of the search tree: When the play-
back of the animation trace is stopped (or interrupted), different layout algorithms
and parameter settings may be applied either to the current state (see Fig. 5) or
(by combining it with the search tree navigation feature) to already visited search
nodes. Different states during search can thus easily be compared.

3 SAT-solvers that are intended to interface with DPVIS have to be slightly modified in order to
output the appropriate program traces.



DPVIS – A Tool to Visualize the Structure of SAT Instances 263

1 2

Fig. 5. At each point during play-back of a DPLL trace, the layout of the interaction graph may
be re-computed: after having learned some clauses (left diagram, yellow arcs; instance ssa0432-
003 of the DIMACS Benchmark Collection), re-computing the graph layout shows the locality
of the learned lemmas (right diagram)

4 Two Sample Applications

We now briefly present two examples, how DPVIS can effectively be employed. The
first is concerned with the analysis of DPLL search spaces, the second deals with so-
called top-level assignments.

4.1 Comparing Search Spaces

The intention of this experiment is to compare search spaces resulting from random
problem instances with search spaces generated by “real-world” problems. We use the
following SAT instances for our experiments:

longmult1: encoding of a bounded model checking (BMC) problem (equivalence of
output bit 0 of two hardware multiplier designs)

uuf50-0188: unsatisfiable uniform random 3-SAT instance with 50 variables and a
clause-variable-ratio of α = 4.36 (i.e. near the satisfiability threshold)

ssa2670-141-d7: instance from test-patterngeneration(checks for single-stuck-at fault),
where seven randomly selected variables have been fixed (to random Boolean val-
ues in order to reduce the search space to a size comparable with the other instances)

bw large.b-d8: encoding of an AI planning problem, with eight randomly selected
variables fixed to random Boolean values (as with ssa2670-141-d7)

The longmult1-instance can beobtainedfromwww.cs.cmu.edu/∼{}modelcheck
/bmc.html, all other instances can be downloaded from www.satlib.org. All
instances are unsatisfiable, additional statistical information about these problem in-
stances can be found in Table 1.



264 C. Sinz and E.-M. Dieringer

Table 1. Characteristic numbers for some SAT instances (all instances unsatisfiable), including
MiniSAT results (number of conflicts and decisions) and balancedness-coefficients

Instance #Vars #Clauses #Confl. #Dec B-Coeff.
longmult1 631 1611 5 20 3.7021
uuf50-0188 50 218 145 186 1.0611
ssa2670-141-d7 753 1619 41 253 7.3231
bw large.b-d8 889 9949 4 19 3.0603

The table’s columns show—from left to right—the instance name, the number of
variables and the number of clauses occurring in the problem (after having performed
unit propagation), the number of conflicts and decisions produced during a MiniSAT
run, and the B-coefficient, which is an indicator of the balancedness of the search tree
of the instance (as generated by MiniSAT). More exactly, for a search tree T the B-
coefficient B is defined by B := h/�ld(c)�, where h is the height of the search tree
(the length of the longest path from the root), c is the number of conflicts produced by
MiniSAT (i.e. the number of leaves in the search tree), and �ld(c)� is the dual logarithm
of c rounded up to the next larger integer, i.e. the height of a balanced tree with c nodes.
Thus, a B-coefficient of 1 indicates a balanced tree, whereas a large coefficient stands
for an unbalanced, degenerate tree.

The search spaces for all four problem instances are shown in Fig. 6. The random
3-SAT instance (Fig. 6-2) reveals an almost balanced search tree, whereas the other,
“real-world” instances (1, 3, 4) possess more or less degenerate trees. This observation
is also reflected by the B-coefficient of the real-world instances being much higher than
that of the random 3-SAT instance.

We suppose that hard SAT instances have low B-coefficients whereas easy instances
possess high ones. Further assuming that the search space is uniform (in the sense of
having similar B-coefficients in different parts), the B-coefficient may be used to esti-
mate the run-time of a SAT solver after having processed only a small fraction of the
search space.

We expect that by making experiments with DPVIS other notions similar to that of
the B-coefficient might come up in the future, hopefully allowing for a better distinction
between hard and easy problem instances.

4.2 Analyzing the Effect of Top-Level Assignments

Eén and Sörensson introduced the notion of top-level assignments for unit-clauses that
are learned during search [10]. Each top-level assignment (TLA) fixes the value of a
variable for the whole instance and thus indicates that in each solution of the instance
the TLA-variable must have that fixed value.4

In a further experiment with DPVIS, we compared the number of TLAs produced
by different SAT instances during a MiniSAT run. Some results of these experiments
are presented in Table 2.

4 The notion of a top-level assignment is closely related to that of a backbone variable[11].



DPVIS – A Tool to Visualize the Structure of SAT Instances 265

1

2

3 4

Fig. 6. Search trees for different problem instances: 1: bounded model checking (longmult1); 2:
random 3-SAT (uuf50-0188); 3: test-pattern generation (ssa2670-141 d7); 4: planning problem
(bw large.b-d8)

Table 2. Number and percentage of top-level assignments (TLAs) for some SAT instances

Instance #Vars #Clauses #TLAs #TLA/#Vars
longmult1 631 1611 151 23.93%
uuf50-0125 50 218 13 26.00%
ssa2670-141-d7 753 1619 336 44.62%
bw large.b-d8 889 9949 233 26.21%

Although the number of top-level assignments is considerable in all cases, a more
elaborate study with more problem instances from each problem class showed that the
number of TLAs is typically much higher for real-world problems than for random
3-SAT problems (29.5% vs. 11.0% in our experiments).



266 C. Sinz and E.-M. Dieringer

1 2

1 2

Fig. 7. Comparing interaction graphs before (on the left) and after (on the right) having added
TLAs (top-level assignments): Real-world instance ssa2670-141-d7 (shown on top) reveals a
considerable simplification and decomposition into independent components after having added
TLAs. The random 3-SAT instance uuf50-0125 (shown below) also possesses a considerable
amount of TLAs, but exhibits no such simplification

Comparing (using DPVIS) the interaction graphs of the original instances with those
where the detected TLAs were added, revealed a considerable simplification for the
real-world instances, whereas the structure of random 3-SAT instances remained mainly
unchanged (see Fig. 7).

5 Conclusion and Related Work

We presented DPVIS, a tool to visualize the structure of SAT instances and to display
DPLL search trees. We see a twofold purpose for our visualization tool: First, it may



DPVIS – A Tool to Visualize the Structure of SAT Instances 267

help in building hypotheses on why problem instances are hard or easy. We have indi-
cated in Sec. 4 how experiments in this direction might look like. Second, we suggest
using DPVIS in teaching the basic DPLL algorithm and recent extensions of it like
clause learning and restarts. By having an integrated view on both the problem struc-
ture (via its variable interaction graph) and the search tree, students can obtain a good
intuition how the DPLL method works.

Future experiments should include the analysis of an instance’s component structure
(resp. its decay into independent components) and the examination of long implica-
tion chains, as suggested in [1]. Moreover, in order to handle large graph layouts more
conveniently, it would be desirable to have additional tools, e.g. for grouping sets of
variables or merging them into a single node.

The only work on visualization of SAT instances that we are aware of is that of
Slater [6] and preliminary work by Selman [12]. Slater uses different graph translation
techniques (interaction graph, co-occurrence of literals and further ones) and visual-
izes the resulting graphs with the GraphVis software package from AT&T. However,
the hierarchical layouter he uses is not as efficient in revealing symmetries as force-
directed placement algorithms are. Selman uses a specialized three-dimensional lay-
outer to display variable interaction graphs. In his approach nodes with different degree
are placed on different “height levels”, and nodes with the same degree are equally
distributed on circles growing with the number of nodes that have to be placed on
them.

Availability: DPVIS is available both as on-line version (Java Applet) and stand-alone
application (Java Application including MiniSAT) from http://www-sr.informatik.uni-
tuebingen.de/˜sinz/DPvis.

References

1. Sinz, C.: Visualizing the internal structure of SAT instances (preliminary report). In: Proc.
of the 7th Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT 2004), Van-
couver, Canada (2004)

2. Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. J. Automated Rea-
soning 24 (2000) 225–275

3. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software –
Practice and Experience 21 (1991) 1129–1164

4. Aspvall, M., Plass, M., Tarjan, R.: A linear-time algorithm for testing the trurh of certain
quantified boolean formulas. Information Processing Letters 8 (1979)

5. Park, T., Van Gelder, A.: Partitioning methods for satisfiability testing on large formulas.
Information and Computation 162 (2000) 179–184

6. Slater, A.: Visualisation of satisfiability problems using connected graphs (2004)
http://rsise.anu.edu.au/˜andrews/problem2graph.

7. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining com-
putational complexity from characteristic ’phase transitions’. Nature 400 (1999) 133–137

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Algorithms for automatic graph drawing:
An annotated bibliography. Computational Geometry 4 (1994) 235–282

9. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42 (1984) 149–160



268 C. Sinz and E.-M. Dieringer

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. of the 6th Intl. Conf. on Theory
and Applications of Satisfiability Testing (SAT 2003), Springer (2003) 502–518

11. Singer, J., Gent, I., Smaill, A.: Backbone fragility and the local search cost peak. Journal of
Artificial Intelligence Research 12 (2000) 235–270

12. Selman, B.: Algorithmic adventures at the interface of computer science, statistical physics,
and combinatorics. In: Proc. of the 10th Intl. Conf. on Principles and Practice of Constraint
Programming (CP 2004), Springer (2004) 9–12


	Introduction
	Theoretical Background
	SAT Instances as Graphs
	Graph Layout

	DPVIS Functionality
	Visualizing Internal Structure
	Animating DPLL Runs

	Two Sample Applications
	Comparing Search Spaces
	Analyzing the Effect of Top-Level Assignments

	Conclusion and Related Work
	References

