
Abstract. In this paper, we present a hybrid method for deciding prob-
lems involving integer and Boolean variables which is based on generic
SAT solving techniques augmented with a) a polynomial-time ILP
solver for the special class of Unit-Two-Variable-Per-Inequality (unit
TVPI or UTVPI) constraints and b) an independent solver for general
integer linear constraints. In our approach, we present a novel method
for encoding linear constraints into the SAT solver through binary “in-
dicator” variables. The hybrid SAT problem is subsequently solved us-
ing a SAT search procedure in close collaboration with the UTVPI
solver. The UTVPI solver interacts closely with the Boolean SAT solv-
er by passing implications and conflicting assignments. The non-UTV-
PI constraints are handled separately and participate in the learning
scheme of the SAT solver through an innovative method based on the
theory of cutting planes. Empirical evidence on software verification
benchmarks is presented that demonstrates the advantages of our
combined method.

1 Introduction

Many applications in hardware and software verification, such as RTL datap-
ath verification [7], symbolic timing verification [2], and buffer over-run vulner-
ability detection [32], are naturally cast as decision problems that involve
systems of constraints over the Booleans and unbounded integers. In the past
several years, there has been considerable progress in solving these types of
problems by leveraging the recent advances in Boolean SAT and combining
them with methods that decide the feasibility of systems of linear integer con-
straints.

In this paper we are concerned with quantifier-free Mixed Integer Boolean

A Scalable Method for Solving Satisfiability of
Integer Linear Arithmetic Logic

Hossein M. Sheini and Karem A. Sakallah

Dept. of Electrical Engineering and Computer Science,
1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA

Tel: +1 (734) 996-2528. Fax: +1 (734) 763-4617
{hsheini, karem}@umich.edu
formulas (MIB formulas for short) whose atoms are a) Boolean constants and
variables, and b) linear integer constraints. Any such atom is a valid MIB

 formula, and if and are valid MIB formulas then so are
. We note that a MIB formula reduces to a quanti-

fier-free Presburger (QFP) formula when the set of Boolean atoms is empty. A
MIB formula is said to be in Conjunctive Normal Form (MIB-CNF) if it is the
conjunction of a set of clauses each of which is the disjunction of a set of liter-

1ϕ 2ϕ
1 1 2 1 2, , and ϕ ϕ ϕ ϕ ϕ¬ ∧ ∨

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 241–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2

MIB formula can be expressed in MIB-CNF in linear time and space by intro-
ducing a set of Boolean auxiliary variables, if necessary [33]. When the distinc-
tions are not important, we will use the terms MIB formula and MIB-CNF
formula in the sequel to generically refer to a QFP formula.

Current methods for deciding the satisfiability/unsatisfiability of MIB-CNF
formulas can be divided into four categories:

1. SAT-Based Abstraction/refinement methods [4, 20] In these approaches,
the MIB-CNF formula is abstracted to a pure Boolean CNF formula
by replacing each linear integer constraint with an unrestricted Boolean
indicator variable. A SAT solver is then used to check the satisfiability of

. If turns out to be unsatisfiable, then so is since . On the
other hand, if is satisfiable, an ILP solver is called to verify the consis-
tency of that solution. This is done by constructing and solving a system
of simultaneous linear integer constraints corresponding to the satisfying
assignments found for the indicator variables. If the integer constraints are
found to be inconsistent, the abstract formula is refined by eliminating
its current solution and the SAT solver is re-invoked to find another solu-
tion. The procedure terminates if the ILP solver establishes the consisten-
cy of one of these SAT solutions or proves that all the (potentially expo-
nential) satisfying assignments to are inconsistent. The combination
strategies employed in these classes of solvers are either Shostak-like [29]
combination methods or the ones based on work by Nelson-Oppen [24].
For a complete survey of these solvers, the reader is referred to [23].

2. SAT-Based Finite-Domain Instantiation Methods Recently there has been
increasing interest in a special class of QFP formulas in which most linear
constraints are separation constraints of the form ; where x and
y are integer variables and d is a constant. In [28], the authors computed
an upper bound on integer variables and therefore could set the number of
bits in each variable in order to reduce the problem to an equi-satisfiable
finite-domain and consequently Boolean problem. They showed that the
number of bits per integer variable is linearly proportional to the number
of non-separation constraints and logarithmically to the number and size
of non-zero coefficients. The separation constraints, on the other hand, are
pre-processed using the EIJ method [31] which relies on augmenting the
Boolean problem with “transitivity constraints” on the values of indicator
variables in order to rule out assignments to those variables that do not
have any corresponding solutions in the ILP problem. In the worst case,

ϕ ϕ̂

ϕ̂ ϕ̂ ϕ ϕ̂ ϕ≥
ϕ̂

ϕ̂

ϕ̂

x y– d≤

als where a literal is either an atom or the negation of an atom. An arbitrary

.

.

242 H.M. Sheini and K.A. Sakallah
this process can add an exponential number of transitivity constraints de-
pending on the number of separation constraints.

3. Automata-Based Methods [15] The key idea here is to convert the MIB
formula to a deterministic finite-state automaton (DFA) such that the lan-
guage of this automaton corresponds to the set of all solutions of the MIB
formula. These methods seem to be efficient for formulas whose integer
constraints have large coefficients. However, as observed in [15], the effi-

.

ciency of this technique declines considerably as the number of variables
and/or constraints increases.

4. Integer Linear Programming Methods In these techniques, disjunctions
are either removed using Big-M method and the result is checked for sat-
isfiability using a Simplex-based ILP solver [10, 17], or they are enumer-
ated in a Disjunctive Normal Form and then solved using Fourier-Motzkin
algorithm [26].

The method we introduce in this paper belongs to the SAT-based abstrac-
tion/refinement category. Unlike [4, 20], however, in which the SAT and ILP
solvers are loosely integrated, our approach tightly integrates a specialized
transitive-closure algorithm with the SAT solver. It achieves its performance
by taking advantage of the structure of MIB formulas that arise in verification
applications. Specifically, it capitalizes on the fact that the majority of the lin-
ear integer constraints involve at most two variables that have unit coefficients,
namely UTVPI constraints. Such constraints can be checked quickly using a
transitive-closure algorithm which is tightly integrated within the search pro-
cess of a modern SAT solver. The UTVPI solver can yield implications and
generate conflict-induced learned constraints in the SAT solver as soon as such
combinations are detected. The non-UTVPI constraints, on the other hand, are
handled off-line and may yield conflict-induced UTVPI constraints that help to
minimize the number of calls on the non-UTVPI solver. For this purpose, a
novel strategy based on theory of cutting-planes is adopted in order to learn
from the conflicts detected among the non-UTVPI constraints.

These choices work extremely well in practice since the number of UTVPI
constraints is usually much larger than the number of non-UTVPI constraints
[11, 28]. Unlike the method of [28, 31] whose efficiency heavily relies on having
a low number of separation and non-separation constraints, our method while
benefitting from the separation of the UTVPI and non-UTVPI solvers, has no
such dependencies on the number of constraints.

The remainder of this paper is organized as follows. In Section 2 we cover
some preliminaries. In Section 3 our adopted incremental method in solving
UTVPI problems is described. Section 4 covers our approach for encoding and
solving the MIB problem. Experimental results are reported in Section 5 and
we conclude in Section 6.

2 Preliminaries

.

Solving Satisfiability 243of Integer Linear Arithmetic Logic
An integer linear constraint has the general form

where and . The special form
with is referred to as a unit two-variables-per-inequality
(UTVPI) constraint. Single-variable constraints are treated as UTVPI con-
straints by introducing a dummy variable with a zero coefficient. A constraint

1
n

i ii
a x b

=∑ ∼

, ,i ia b x ∈ Z { , , , , , }∈ > ≥ < ≤ = ≠∼ i i j ja x a x b+ ≤
, {0, 1}i ja a ∈ ±

equalities and negated-equalities can be transformed to conjunction and dis-
junction of two UTVPI constraints respectively.

The modern algorithms for propositional SAT are quite well-known and will
not be elaborated here; in particular we assume that the reader is familiar with
the concepts of Boolean Constraint Propagation (BCP) and its efficient imple-
mentation using watched literals, conflict analysis, clause recording, non-chro-
nological backtracking, the VSIDS decision heuristic, restarts, etc. For details
on these, readers are referred to [21, 22].

Notationally, we will use (resp.) to denote the origi-
nal (resp. indicator) Boolean variables in a MIB-CNF formula. Integer vari-
ables will be denoted by lower case letters such as . We will use the
formula in Figure 1 as a running example throughout the paper.

3 Deciding Systems of UTVPI Integer Constraints

Problems consisting of conjunctions of UTVPI constraints can be decided using
generic ILP solvers such as CPLEX [17] or XPRESS-MP [10]. However, the
full-scale Simplex techniques adopted in these solvers do not take advantage of
the simple structure of UTVPI constraints and cannot be efficiently integrated
within the backtrack search process of modern SAT solvers.

The solution method we adopt in this paper for deciding systems of UTVPI

A1 A2 …, , B1 B2 …, ,

u x y …, , ,

[]

[]

[]

[]

[]

[]

[]

[]

1 2 3 4

1 1

2 2

3 3

4 4

3 4 5

6

7

8

(, , , , , , , , ,)

(5) ()

(6) ()

(0) ()

(12) ()

()

(1) (3) (5) (7) ()

(2) (4) (6) ()

(4 4 0) ()

A A A A u v w x y z

A u w

A v w

A z

A u v

A A

x z x z x z x z

y z y z y z

u v x y

ϕ

ω

ω

ω

ω

ω

ω

ω

ω

=

∨ − ≤ ∧

∨ + ≤ ∧

∨ = ∧

∨ + ≥ ∧

¬ ∨ ¬ ∧

= + ∨ = + ∨ = + ∨ = + ∧

= + ∨ = + ∨ = + ∧

+ − − =

that has more than two variables or that has non-unit coefficients will be
referred to as a non-UTVPI constraint. Note that unit two-variable integer

Fig. 1. Example MIB-CNF instance

244 H.M. Sheini and K.A. Sakallah
integer linear constraints is a polynomial-time transitive closure algorithm pro-
posed by Jaffar et al. [19] which, in turn, is an extension of Shostak’s method
for TVPI real constraints [30].

A set of UTVPI constraints is said to be transitively closed if for each pair of
constraints sharing a variable with opposite signs there exists an inequality
constraint between the two remaining variables. For instance, the transitive
closure of is and wex y– d≤ y z d′≤+,{ } x y– d≤ y z d′≤+ x z+ d d′+≤, ,{ }

tightened in order to maintain the unit coefficient property. Specifically, the
constraint implied by and (recall that

) is whose tightening yields . It is
easy to show that the worst-case complexity of maintaining a tightened and
transitively-closed set of UTVPI constraints is quadratic in time and space.

To illustrate consider the following set of UTVPI constraints:

(1)

The transitively-closed and tightened set of constraints derived from (1) is eas-
ily shown to be:

(2)

Jaffar et al. [19] showed that a set of UTVPI integer constraints C is satisfi-
able iff Tighten(Trans(C)) does not contain a constraint of the form
where . An example of an unsatisfiable constraint set is:

(3)

Our MIB-CNF SAT solver maintains a database of transitively closed and
tightened constraint sets. Specifically, suppose that in the course of searching
for a solution the sequence of UTVPI constraint sets is gener-
ated. As each such set is produced, the corresponding
set is computed incrementally by adding/removing any implied constraints
when a new constraint is added/removed.

4 The MIB-CNF Solver

The architecture of our proposed MIB-CNF solver is shown in Figure 2. It con-

ax by d+ ≤ ax by d ′− ≤
, {0, 1}a b ∈ ± 2ax d d ′≤ + () 2ax d d⎢ ⎥′≤ +⎢ ⎥⎣ ⎦

C y z 4 x y– 5 x y+ 2≤,≤,≤+{ }=

Trans C() C x z+ 9 2x 7≤,≤{ }∪=

Tighten Trans C()() C x z+ 9 x 3≤,≤{ }∪=

0 d≤
d 0<

C y z– 1 x y– 1 z x– 3–≤,≤,≤{ }=

Tighten Trans C()() C x z– 2 0 1–≤,≤{ }∪=

C1 C2 C3 …, , ,
Ci Trans Tighten Ci()()

context, we will be interested in a dynamically-changing set of UTVPI con-
straints. To keep such a set transitively closed, whenever a new constraint is
added to the set, all its implied constraints must be derived and added. When
an implied constraint ends up involving a single variable, it may need to be

say that is implied by and . In the MIB-CNFx z+ d d′+≤ x y– d≤ y z d′≤+

245Solving Satisfiability of Integer Linear Arithmetic Logic
sists of three separate solvers: a modern Boolean SAT solver, an incremental
UTVPI integer solver, and a generic ILP (non-UTVPI) solver. The Boolean
solver orchestrates the entire process and interacts very closely with the
UTVPI solver. Specifically, the Boolean solver views the UTVPI solver as a
“super clause” that participates in the implication and conflict analysis steps of
the search process. The non-UTVPI solver, on the other hand, is invoked only
when the combined Boolean/UTVPI solver returns a satisfying assignment to

conflicts in non-UTVPI solver, are adopted. By passing only those absolutely
necessary constraints/variables to the non-UTVPI solver, its performance is
improved exponentially and by learning from its conflicts in terms of UTVPI
constraints, the number of calls to the non-UTVPI solver reduces considerably.

In the remainder of this section we describe how a MIB-CNF instance is
encoded for processing by the MIB-CNF solver, and detail the interactions
between the Boolean solver and the UTVPI and non-UTVPI solvers.

The first step in solving a MIB-CNF instance is to introduce a set of indepen-
dent Boolean indicator variables to label each of the linear integer con-
straints and to conjoin the formula with additional relations that establish the
equivalence between the indicator variables and their corresponding integer

UNS

MIB-CNF Instance

UTVPI SolverBoolean Solver

variable Assignment

A-type B-type

BCP

conflict-based
Learning

tr
an

sl
at

or

tr
an

sl
at

or

constraint
Generation

UCP

conflict Analysis

non-UTVPI Solver

SAT

SAT translator

Simplex-based
ILP Solver

Cutting
Plane
GeneratorUNS

Bi

the subset of Boolean and UTVPI constraints. This solver checks the consis-
tency of simultaneous activation of UTVPI and non-UTVPI constraints whose
indicator variables are true, by adopting a Simplex-based method. Comparing
to other parts of the overall system, the non-UTVPI solver relatively acts as
the bottleneck in the process. Therefore, in order to minimize its overall contri-
bution to the run-time of the MIB-CNF solver, two techniques, namely mini-
mizing the size of the ILP problem and learning UTVPI constraints from

Fig. 2. Overall Architecture of the MIB-CNF Solver

246 H.M. Sheini and K.A. Sakallah

4.1 Encoding Linear Constraints into the SAT Solver
constraints. Specifically, if

(4)

denotes a MIB formula defined over n Boolean variables and k lin-
ear integer constraints , we construct

() ()1 1(, , , , ,)n kg A A C X C Xϕ = … …

A1 … An, ,
C1 X() … Ck X(), ,

(6)

Since is a superset of , this can be viewed as a conservative abstraction:
when is unsatisfiable, so is , and when is satisfiable, it is possible that

 is unsatisfiable. However, because of the form of and the fact that, by
construction, g is positive unate in all indicator variables , the only situation
in which this happens is when at least one is 0 and its corresponding linear
integer constraint is forced to be satisfied. Such a solution can be changed so
that , restoring consistency between the integer constraint and its indi-
cator variable without affecting the satisfiability of the original formula.

1 1
1

(, , , , ,) ()
k

n k i i
i

g A A B B B Cϕ
=

= ∧ →∧� … …

ϕ� ϕ̂
ϕ� ϕ̂ ϕ�

ϕ̂ ϕ̂
Bi

Bi

Bi 1=

[] ()[]

[] ()[]

[] ()[]

[] ()[]

[] ()[]

[] ()[]

1 2 3 4 1 8

1 1 1 1 9

2 2 2 2 10

3 3 3 3 11

4 4 4 4 12

3 4 5 61 13

61 62 63 64 6 62 14

71 72

ˆ(, , , , , , , , , , , ,)

() 5 ()

() 6 ()

() 0 ()

() 12 ()

() 1 ()

() 3 ()

A A A A B B u v w x y z

A B B u w

A B B v w

A B B z

A B B u v

A A B x z

B B B B B x z

B B

ϕ

ω ω

ω ω

ω ω

ω ω

ω ω

ω ω

=

∨ ∧ → − ≤ ∧

∨ ∧ → + ≤ ∧

∨ ∧ → = ∧

∨ ∧ → + ≥ ∧

¬ ∨ ¬ ∧ → = + ∧

∨ ∨ ∨ ∧ → = + ∧

∨ ∨

"

[] ()[]

()[]

()[]

()[]

()[]

()[]

73 7 63 15

8 64 16

71 17

72 18

73 19

20

() 5 ()

[1] () 7 ()

2 ()

4 ()

6 ()

1 4 4 0 ()

B B x z

B x z

B y z

B y z

B y z

u v x y

ω ω

ω ω

ω

ω

ω

ω

∧ → = + ∧

∧ → = + ∧

→ = + ∧

→ = + ∧

→ = + ∧

→ + − − =

Clearly, , and the satisfiability/unsatisfiability of
implies that of . Strict equivalence between the indicator variables and their
corresponding linear integer constraints is not necessary, however. The satisfi-
ability/unsatisfiability of can be determined by checking the simpler formula

()1 ˆ, , kB Bϕ ϕ= ∃ ⋅" ϕ̂
ϕ

ϕ

Fig. 3. Encoding of the MIB-CNF instance of Figure 1. Note that constraint ω8 does
not require an indicator variable since it must be satisfied unconditionally

(5)1 1
1

ˆ (, , , , ,) ()
k

n k i i
i

g A A B B B Cϕ
=

= ∧ =∧… …

247Solving Satisfiability of Integer Linear Arithmetic Logic
The practical effect of checking rather than is that the linear integer
solvers need only process those constraints that are “active,” i.e. those whose
indicator variables are true; constraints whose indicator variables are false can
be safely disregarded. This optimization has a major impact on the perfor-
mance of the MIB-CNF solver.

Figure 3 demonstrates the result of applying this method of encoding on
problem of Figure 1.

ϕ� ϕ̂

cator variable to 1 triggers the UTVPI solver which, in turn, activates the
corresponding linear integer constraint and incrementally updates the database
of active UTVPI constraints to keep it transitively-closed and tightened. This
update can be viewed as continuing the BCP process within the UTVPI solver,
and can yield further implications to other indicator variables or can result in
conflicts. Inconsistency of the active UTVPI constraints is communicated back
to the Boolean solver as a conflicting assignment on the relevant indicator vari-
ables. The Boolean conflict analysis procedure takes over at that point to cre-
ate an appropriate conflict-induced clause [21] and backtracks to eliminate the
conflict. The backtrack level is passed to the UTVPI solver so that it can de-
activate the linear integer constraints whose indicator variables were reset to 0
or unassigned (as well as any constraints they implied by transitive closure and
tightening).

To illustrate the process of implying indicator variables in the UTVPI

1A¬ 1B ()5u w− ≤

()6v w+ ≤

()11u v+ ≤

2A¬ 2B

3A 4A¬ 4B ()12u v+ ≥

()0 1≤−

UTVPI ImplicationsBoolean Implications

The Boolean and UTVPI solvers interact dynamically during the search pro-
cess and communicate through the indicator variables of the UTVPI con-
straints (the non-UTVPI constraints are ignored in this phase.) The Boolean
solver is responsible for making decisions on the Boolean variables and for per-
forming BCP and conflict analysis. A decision or implication that sets an indi-

Fig. 4. Implication sequence leading to a conflict in the UTVPI solver. The indicator
variables enclosed by the dashed outline are returned by the UTVPI solver as a con-
flicting assignment. The conflict analysis procedure of the Boolean solver traces back
from this assignment to learn and record the conflict-induced clause(¬A3∨¬B1∨¬B2∨)

248 H.M. Sheini and K.A. Sakallah

4.2 The Boolean/UTVPI Solver Interface
solver, let B be an indicator variable for a UTVPI constraint C. B is implied to
1 in the UTVPI solver if the process of transitive closure and tightening pro-
duces a constraint that is identical or stricter than C. On the other hand, B is
implied to 0 if transitive closure and tightening produces a constraint that is
inconsistent with C. For example, if B is the indicator variable for ,
generating causes B to be implied to 1, whereas generating

 causes the implication of B to 0.

x y– 5≤
x y– 3≤

y x– 6–≤

the next theorem shows, however, only a subset of the active UTVPI con-
straints needs to be processed by the ILP solver.

A given system of satisfiable transitively-closed UTVPI constraints
together with a set of non-UTVPI linear constraints is equi-satisfiable with a
subset of those UTVPI constraints sharing both variables with variables in the

1B

2B

3B

64B

73B

()5u w− ≤

()6v w+ ≤
()11u v+ ≤

()0z =

()7x z= +

()6y z= +

()7x =

()6y =

()4 4 0u v x y+ − − =

8B
()2x y+ ≤

1A¬

2A¬

3A¬

4A

2B

Decisions

The handling of UTVPI conflicts is illustrated in Figure 4 for our running
example.

When the combined Boolean/UTVPI solver returns a satisfying solution, the
non-UTVPI solver must be invoked to check the consistency of that solution
against any activated non-UTVPI constraints. This can be naively done by col-
lecting all of the active linear integer constraints, i.e., the UTVPI and non-
UTVPI constraints whose indicator variables are set to 1 in the current solu-
tion, and passing them on to a generic Simplex-based ILP solver [10, 17]. As

Fig. 5. Conflict analysis in the non-UTVPI solver. After determining that the high-
lighted constraints are inconsistent, the non-UTVPI solver can either return the con-
flicting assignment (B1 ∧ B2 ∧ B3 ∧ B64 ∧ B73) , or it can derive and return the
learned UTVPI constraint (x+y ≤ 2) along with the learned clause (B1 ∧ B2 ∧ ¬ B8).
The latter is preferable since it minimizes future invocations of the ILP solver

249

4.3 The Non-UTVPI Solver Theorem 1. Proof:

Theorem 1.

Solving Satisfiability of Integer Linear Arithmetic Logic
non-UTVPI system and the set of non-UTVPI constraints.
Chvátal [9] showed that cutting planes provide a canonical way of prov-

ing that every integral solution of a given system of linear inequalities satisfies
another given inequality. Therefore, a cutting plane proof of unsatisfiability is
to prove that there exists a sequence of inequalities such that their non-nega-
tive combination results in inequality . Thus, since we know that the0x 1–≤

Proof:

much better performance by the ILP solver. Using our running example, the
constraints that must be checked by the ILP solver are highlighted in Figure 5.

If the constraints passed to the ILP solver are found to be consistent, the
process terminates with a satisfying solution to the original formula. If, on the
other hand, the ILP solver finds the constraints to be inconsistent, it must
communicate this fact to the Boolean/UTVPI solver which, in turn, must find
another solution. This can be done in a manner similar to that used by the
UTVPI solver to communicate unsatisfiability to the Boolean solver, namely
by returning a set of conflicting indicator variables. This is sufficient, but can
be quite inefficient. This is illustrated for our example in Figure 5. After
detecting inconsistency, the non-UTVPI solver returns the conflicting assign-
ment to the Boolean solver which uses it to per-
form conflict analysis and backtracking. Upon finding another satisfying
solution, e.g., , the non-
UTVPI solver is invoked again and returns with another conflicting assign-
ment. In fact, this iteration will be repeated twelve times exhausting all possi-
ble satisfying assignments to constraints and before the search process
backtracks and reverses an assignment to an A variable.

To reduce the calls to the ILP solver, the non-UTVPI solver can perform its
own “intelligent” conflict analysis before returning to the Boolean solver. The
goal of this analysis is to derive, using cutting planes, a UTVPI constraint that
is implied by the current conflicting assignment. Such a constraint can then be
returned to the Boolean/UTVPI solver to help confine the “bactracking” itera-

()1 2 3 64 73B B B B B∧ ∧ ∧ ∧

1 2 3 4 1 2 3 63 73()A A A A B B B B B¬ ∧ ¬ ∧ ¬ ∧ ∧ ∧ ∧ ∧ ∧

7ω 8ω

UTVPI constraints, it is sufficient to only consider those constraints among the
UTVPI constraint that share variables with them knowing that no new con-
straint can be generated by combining only UTVPI constraints because they
are transitively closed. Therefore, the set of non-UTVPI constraints together
with those UTVPI constraints which share variables with them is equi-satisfi-
able with all UTVPI and non-UTVPI constraints.

To utilize this theorem, the non-UTVPI solver returns the variables associ-
ated with its active constraints to the UTVPI solver which uses them to select
the subset of UTVPI constraints that must be checked for consistency with the
active non-UTVPI constraints. In general, the number of UTVPI constraints
that are passed to the ILP solver using this “filter” is much smaller than the
total number of active UTVPI constraints, and that directly contributes to

set of UTVPI constraints is satisfiable, the proof of unsatisfiability, if any,
should include at least one of the newly added non-UTVPI constraints. In
order to yield from combining linear constraints with those non-0x 1–≤

250 H.M. Sheini and K.A. Sakallah
tions inside that solver. For our example, this is accomplished by combining the
non-UTVPI constraint with the UTVPI constraint

 yielding which is tightened to . Assigning a
fresh indicator variable to this learned constraint, it is returned to the
Boolean/UTVPI solver along with the associated learned clause

 (see Figure 5). Upon learning this clause, the Boolean/

u v 4x– 4y–+ 0=
u v+ 11≤ 4x 4y+ 11≤ x y+ 2≤

B8

()1 2 8B B B∧ ∧ ¬
UTVPI solver would eventually know that either or should be true byA1 A2

details of API’s, and adopting an automatic technique based on bounded, infi-
nite-state model checking. The benchmarks include both satisfiable and unsat-
isfiable instances and incorporate UTVPI and non-UTVPI constraints

benchmark Result Variables
int/bin

Constraints

CNF UTVPI non-UTVPI

s-20-20 SAT 60/973 864 778 6
s-20-30 SAT 60/973 864 778 6
s-20-40 UNS 60/973 864 778 6
s-30-30 SAT 80/1393 1244 1128 6
s-30-40 SAT 80/1393 1244 1128 6
xs-20-20 SAT 82/1116 1046 959 6
xs-20-30 SAT 82/1116 1046 959 6
xs-20-40 UNS 82/1116 1046 959 6
xs-30-40 SAT 112/1606 1516 1399 6

As it is obvious, this process will result in an strictly more powerful learned
clause than that of the naive method explained earlier and would considerably
help the search algorithm by pruning its infeasible search space more effi-
ciently.

5 Implementation and Experimental Results

The UTVPI solver was implemented within our ARIO SMT solver [3]. ARIO is
built on top of MiniSAT [12] and inherits its strategy for random restarts,
VSIDS and clause removal. For the Simplex-based ILP solver, we used
XPRESS-MP [10] and all experiments were conducted on a Pentium-IV
2800MHz machine with 1 GB of RAM running Linux.

To evaluate our method, we experimented on formulas obtained from the
Wisconsin Safety Analyzer (WiSA) project [14]. These instances are concerned
with finding API-level exploits by introducing a framework to model low-level

checking all combinations of and without referring to the non-UTVPI
solver and those would be the only satisfying solutions to the problem.

B6i B7j

Table 1. WiSA benchmarks

251Solving Satisfiability of Integer Linear Arithmetic Logic
combined with Boolean connectors. Un-interpreted functions were initially
eliminated using Ackermann’s technique [1] and the satisfiability of the result-
ing formula was tested using different hybrid SAT solvers. Characteristics of
the benchmarks used in this evaluation are displayed in Table 1.

The results of running ARIO on the benchmarks of Table 1 are displayed in
Table 2. This table also includes CPU run-times obtained from [28] for solving
the same instances using the parametrized solution bounds method along with

tion of cutting planes to preserve their discreteness. For details of their
method, the reader is referred to [27].

The clear advantage of ARIO method over the online method of ICS is
mainly due to its strategy of separating UTVPI and non-UTVPI constraints,
its unique strategy for refinement and more efficient handling of integer con-
straints.

Comparing to the pre-processing and solution-bound approach of UCLID,
our method outperformed on all satisfiable instances due to its more effective
learning and on-demand collaboration strategy of its solvers. The cases that
UCLID performed better, i.e. mainly small unsatisfiable instances, are the ones
in which all the transitivity constraints could be efficiently pre-encoded into
the SAT solver in the form of CNF clauses, effectively shifting all the search
work into the SAT solver rather than sharing it with the slower UTVPI solver
as in our method. However, it is important to remember the high dependence
of such methods on having a low number of separation and non-separation con-
straints that cause the solver to slow down exponentially as the number of con-

UCLID and also the timings of ICS version 2.0c [13] for the same problems
translated by ARIO before applying Ackermann conversion. The hybrid
method of ICS is based on lazy, online integration of a non-clausal SAT solver
with an incremental, backtrackable constraint engine. The approach adopted in
their constraint engine is an extension of Nelson’s version of Simplex algorithm
where equalities and disequalities are added to a Simplex tableau incremen-
tally. Integer constraints are processed, in the same framework with the addi-

benchmark
UCLID
timea

a from [28] and adjusted to CPU speed of 2.8 GHz

ICS
time

ARIO time

UTVPI non-UTVPI total
s-20-20 8.78 0.25 0.17 0.01 0.26
s-20-30 9.50 0.37 0.32 0.01 0.61
s-20-40 4.50 286.84 2.77 0.01 5.05
s-30-30 20.89 1.64 0.28 0.01 0.45
s-30-40 19.21 7.41 1.21 0.01 2.06
xs-20-20 26.03 17.77 0.35 0.02 0.57
xs-20-30 21.42 1482.80 0.1 0.01 0.23
xs-20-40 14.18 >3600 173.9 0.01 276.43
xs-30-40 33.22 >3600 1.88 0.06 3.01

Table 2. Run-times (in sec.) of ARIO, UCLID and ICS on WiSA benchmarks

252 H.M. Sheini and K.A. Sakallah
straints increase

We could not obtain the version of UCLID supporting integer non-separation
constraints from its developers and therefore our information on its performance
is limited to what they reported in [28] and the characteristics of their algorithm.

As demonstrated in Table 3, adopting our intelligent refinement method
based on cutting plane theory resulted in a considerable decrease in calls to

1

1

.

6 Related Work, Conclusions and Future Work

In this paper, we presented a new scalable, cooperative and intelligent method
for solving decision problems involving integer linear arithmetic constraints
together with Boolean variables. The unique characteristics contributing to the
efficiency of our combined method can be summarized as follows:

• Separation of UTVPI and non-UTVPI engines based on the general struc-
ture of problems in software and hardware verification applications,

• Online collaborative algorithm for solving UTVPI constraints while the
Boolean search proceeds,

• Efficient offline communication between the solvers,
• Intelligent and powerful refinement of inconsistencies by the offline solver.

non-UTVPI solver and in some cases enormous speed-ups. This table also
depicts the number of conflicts due to inconsistencies detected among UTVPI
constraints that are all detected online rather than being delayed until the
search is complete. Large numbers of such conflicts in these problems makes
their online handling vital to the efficiency of the overall algorithm. The num-
ber of conflicts detected by cutting planes refers to those conflicts that would
have needed a call to the non-UTVPI solver to be detected.

benchmark
number of conflicts Number of runs

total in UTVPI in Cutting
Planes

with Cutting
Planes

no Cutting
Planes (time)

s-20-20 1111 1057 6 10 84 (0.66 s)
s-20-30 3172 3009 12 8 2066 (15.36 s)
s-20-40 30611 30418 3 1 time-out
s-30-30 1500 1436 2 1 447 (10.17 s)
s-30-40 7631 7281 29 11 273 (7.07 s)
xs-20-20 877 811 11 17 160 (2.09 s)
xs-20-30 396 388 3 1 318 (3.62 s)
xs-20-40 748710 746239 3 1 time-out
xs-30-40 3739 3596 18 16 255 (8.01 s)

Table 3. Running ARIO on WiSA benchmarks. Number of runs is the number of
times a solution to SAT/UTVPI problem was found to be inconsistent by non-UTVPI
engine

253Solving Satisfiability of Integer Linear Arithmetic Logic
Tight integration of theory solvers into the SAT solver was also suggested in
[16] where any given theory (linear arithmetic for instance) is coupled into the
generic DPLL-based propositional solver. Similarly, in our method, the UTVPI
constraints are tightly integrated into the SAT solver, but non-UTVPI con-
straints are handled only after a satisfiable solution to the Boolean/UTVPI

One promising direction of future research involves improving the efficiency
of the collaboration between the SAT solver and its UTVPI engine and also
extending the cutting plane techniques described above to add more refinement
power in order to minimize the number of inconsistent solutions. Since in most
verification applications, the integer solvers are the bottleneck in the SAT-
based algorithms, the methods described in this paper when combined with
other ILP methods provide a viable option. Specifically, the independent char-
acteristics of our method together with its ability to collaborate with the SAT
solver efficiently, makes it more practical for large problems and more amena-
ble to parallelization.

In [6], a layered decision procedure for the satisfiability of linear arithmetic
logic, implemented in MathSAT, is presented. MathSAT is mainly organized in
a layered hierarchy of solvers in increasing solving capabilities. Similar to our
method, MathSAT also differentiates between Difference Logic (DL) con-
straints of the form (a special class of UTVPI constraints) and gen-
eral linear arithmetic constraints. The former is solved using a Bellman-Ford
algorithm and the latter by a simplex-based solver. Integer constraints are han-
dled using branch-and-bound for small problems or Omega Test [26] as the last
resort. Unlike MathSAT, in our method the UTVPI constraints are tightly
integrated into the SAT solver and by adopting an incremental approach for
solving the UTVPI problem and taking advantage of the property introduced
in Theorem 1, the integer problem becomes considerably smaller, effectively
eliminate the need to the computationally-expensive Omega Test.

Compared to these methods, our method is more robust and reliable as it
preserves the completeness of the procedure while maintaining a high level of
efficiency. As we learn more about the trade-offs involved, we will be able to
develop effective integration strategies that outperform individual techniques.

x y– c∼

and effectively prunes the search space of the SAT solver. By not integrating a
full-scale linear arithmetic theory into the SAT solver, our approach maintains
both efficiency and completeness of the DPLL-based solver.

The use of a modified implication graph to take into account mathematical
deductions was also proposed in [18]. In their method, the DPLL-style SAT
solver is combined with a constraint solver based on Fourier-Motzkin elimina-
tion. The hybrid conflict analysis scheme for finite-domain integer and Boolean
variables, introduced in their work, is comparable to the hybrid UTVPI and
Boolean learning method adopted in our method and illustrated in Figure 4.

problem is found. Our proposed refinement method for inconsistencies in the
SAT solutions leads to a considerable reduction in the number of offline calls

254 H.M. Sheini and K.A. Sakallah
Acknowledgement

This work was funded in part by the National Science Foundation (NSF) under
ITR grant No. 0205288. We also would like to thank Vinod Ganapathy for pro-
viding us with WiSA benchmarks.

in an RTL Circuit Constraint Solver,” DATE, pp 666-671, 2005.
[19] J. Jaffar, M. Maher, P. Suckey, and R. Yap, “Beyond Finite Domains,” Workshop

on Principles and Practice of Constraint Programming, 1994.
[20] D. Kroening, J. Ouaknine, S. Seshia, and O. Strichman, “Abstraction-based Satisfi-

ability Solving of Presburger Arithmetic,” CAV, pp.308-320, 2004
[21] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search Algorithm for Proposi-

tional Satisfiability,” IEEE Trans. on Computers, vol. 48(5), pp. 506-521, 1999.

[8] J. A. Brzozowski and C.J.H. Seger, “Asynchronous Circuits,” Springer, 1994.
[9] V. Chvátal, “Edmonds polytopes and a hierarchy of combinatorial problems,” Dis-

crete Math. vol. 4 pp. 305-337, 1973.
[10] Dash Inc., XPRESS-MP 15.25.03, http://www.dashoptimization.com.
[11] D.L. Detlefs, G. Nelson, and J.B. Saxe, “Simplify: A Theorem Prover for Program

Checking,” Tech Report HPL-2003-148, HP Labs, 2003.
[12] N. Eén and N. Sörensson, “An Extensible SAT-solver,” SAT, pp. 502-508, 2003.
[13] J.C. Filliatre, S. Owre, H. Rueß and N. Shankar, “ICS: Integrated Canonizer and

Solver,” CAV, pp. 246-249, 2001.
[14] V. Ganapathy, S.A. Seshia, S. Jha, T.W. Reps, R.E. Bryant, “Automatic Discovery

of API-Level Exploits,” ICSE, 2005
[15] V. Ganesh, S. Berezin, and D.L. Dill, “Deciding Presburger Arithmetic by Model

Checking and Comparisons with Other Methods,” FMCAD, pp. 171-186, 2002.
[16] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “DPLL(T):

Fast Decision Procedures,” CAV, pp. 175-188, 2004.
[17] ILOG CPLEX, http://www.ilog.com/products/cplex.
[18] M.K. Iyer, G. Parthasarathy and K.-T. Cheng, “Efficient Conflict-Based Learning

[6] M. Bozzano, R. Bruttomesso, A. Cimatti, T.A. Junttila, P. van Rossum, S. Schulz,
and R. Sebastiani, “An Incremental and Layered Procedure for the Satisfiability of
Linear Arithmetic Logic,” TACAS, pp 317-333, 2005.

[7] R. Brinkmann and R. Drechsler, “RTL-datapath Verification Using Integer Linear
Programming,” VLSI Design, pp 741-746, 2002

References

[1] W. Ackermann, “Solvable Cases of the Decision Problem,” North-Holland, Amster-
dam, 1954.

[2] T. Amon, G. Borriello, T. Hu, and J. Liu, “Symbolic Timing Verification of Timing
Diagrams Using Presburger Formulas,” DAC, pp 226-231, 1997.

[3] ARIO SMT Solver, http://www.eecs.umich.edu/~ario
[4] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani, “A SAT-

Based Approach for Solving Formulas over Boolean and Linear Mathematical Prop-
ositions,” CADE, pp. 193-208, 2002.

[5] C. Barrett, D. Dill, and J. Levitt , “Validity Checking for Combinations of Theories
with Equality,” FMCAD, LNCS 1166, pp. 187-201, 1996

255Solving Satisfiability of Integer Linear Arithmetic Logic
[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an Efficient SAT Solver,” DAC, pp. 530-535, 2001.

[23] L. de Moura and H. Rueß, “An Experimental Evaluation of Ground Decision Pro-
cedures,” CAV pp. 162-174, 2004.

[24] G. Nelson, and D.C. Oppen, “Simplification by Cooperating Decision Procedures,”
ACM Trans. on Programming Languages and Systems vol. 1, pp 245-257, 1979.

[26] W. Pugh, “The Omega Test: A Fast and Practical Integer Programming Algorithm
for Dependence Analysis,” ACM conf. on Supercomputing, pp. 4-13, 1991.

[27] H. Rueß, and N. Shankar, “Solving Linear Arithmetic Constraints,” SRI Interna-
tional Tech Report CSL-SRI-04-01, January 2004.

[28] S. Seshia and R. Bryant, “Deciding Quantifier-Free Presburger Formulas Using
Parameterized Solution Bounds,” LICS, pp. 100-109, 2004.

[29] R. Shostak, “Deciding Combination of Theories,” Journal of the ACM vol. 31 pp. 1-
12, 1984.

[30] R. Shostak, “Deciding Linear Inequalities by Computing Loop Residues,” Journal
of the ACM, vol. 28(4) pp. 769-779, 1981.

[31] O. Strichman, S.A. Seshia, and R.E. Bryant “ Deciding Separation Formulas with
SAT”, CAV, pp 209-222, 2002.

[32] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A First Step Towards Detec-
tion of Buffer Overrun Vulnerabilities,” Network and Distributed System Security
Symposium, Internet Society, 2000.

[33] J.M. Wilson, “Compact Normal Forms in Propositional Logic and Integer Pro-
gramming Formulations,” Computers and Operation Research, pp. 309-314, 1990.

[25] M. Presburger, “Uber die Vollstandigkeit eines Gewissen Systems der Arithmetik
Ganzer Zahlen, in Welchem die Addition als Einzige Operation Hervortritt,”
Comptes-rendus du premier congres des mathematiciens des pays slaves, 395: pp
92-101, 1929.

256 H.M. Sheini and K.A. Sakallah

	Introduction
	Preliminaries
	Deciding Systems of UTVPI Integer Constraints
	The MIB-CNF Solver
	Encoding Linear Constraints into the SAT Solver
	The Boolean/UTVPI Solver Interface
	The Non-UTVPI Solver Theorem 1. Proof:

	Implementation and Experimental Results
	Related Work, Conclusions and Future Work
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

