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Abstract. Goerdt [Goe91] considered a weakened version of the Cut-
ting Plane proof system with a restriction on the degree of falsity of
intermediate inequalities. (The degree of falsity of an inequality written
in the form

∑
aixi +

∑
bi(1 − xi) ≥ A, ai, bi ≥ 0 is its constant term

A.) He proved a superpolynomial lower bound on the proof length of
Tseitin-Urquhart tautologies when the degree of falsity is bounded by

n
log2 n+1

(n is the number of variables).

In this paper we show that if the degree of falsity of a Cutting Planes
proof Π is bounded by d(n) ≤ n/2, this proof can be easily transformed
into a resolution proof of length at most |Π|·( n

d(n)−1

)
64d(n). Therefore, an

exponential bound on the proof length of Tseitin-Urquhart tautologies
in this system for d(n) ≤ cn for an appropriate constant c > 0 follows
immediately from Urquhart’s lower bound for resolution proofs [Urq87].

1 Introduction

During the past forty years the research concerning propositional proof systems
was advancing mostly by proving exponential lower bounds on the length of
proofs of specific tautologies in specific systems. For example, the resolution
proof system had been a subject of a very thorough study that yielded expo-
nential lower bounds for the propositional pigeonhole principle [Hak85], Tseitin-
Urquhart tautologies [Tse68, Urq87], random formulas [BSW01] and many other
families of tautologies. Also algebraic proof systems (the ones that deal with
polynomial equalities) attracted a lot of attention in the 90s and similar lower
bounds were proved for them (see [BGIP01] and references therein).

Much less is known about semialgebraic proof systems, which restate a
Boolean tautology as a system of inequalities and prove that this system has no
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0/1-solutions. No exponential lower bounds are known for higher degree proof
systems (though there are exponential bounds for systems of inequalities that
are not produced from Boolean tautologies; see [GHP02] and definitions and
references therein). Concerning proof systems that work with linear inequalities,
exponential lower bounds are known only for variations of the clique-coloring
principle (see [Pud97] for a bound for the Cutting Plane proof system and [Das02]
for a bound for a restricted version of the Lovasz-Schrijver system [LS91]).

The technique that allows to prove the bounds for linear semialgebraic proofs
uses monotone interpolation and Razborov’s lower bound on the monotone com-
plexity of the clique problem [Raz85]. Therefore it is not suitable for proving
lower bounds, for example, for Tseitin-Urquhart tautologies. Goerdt [Goe91]
introduced a weaker version of Cutting Plane proofs by restricting the degree
of falsity of inequalities (see Definition 1 below). He proved a superpolynomial
lower bound on the proof length of Tseitin-Urquhart tautologies in the restricted
system when the degree of falsity is bounded by n

log2 n+1
, n being the number of

variables. Goerdt’s proof is a purely combinatorial argument obtained by modi-
fying Urquhart’s proof for resolution [Urq87].

In this paper we show the relation between the Cutting Plane proofs with
restricted degree of falsity and the resolution proofs. Namely, we show that a
length l Cutting Plane proof with degree of falsity bounded by d(n) ≤ n/2 can
be easily transformed into a resolution proof of length at most l · ( n

d(n)−1

)
64d(n).

Therefore, an exponential bound on the proof length of Tseitin-Urquhart tau-
tologies for d(n) ≤ cn for an appropriate constant c follows immediately from
Urquhart’s lower bound [Urq87] on the length of resolution proofs.

2 Definitions

2.1 Propositional Proof Systems and Formulas

A proof system [CR79] for a language L is a polynomial-time computable func-
tion mapping strings in some finite alphabet (proof candidates) onto L (whose
elements are considered as theorems). In this paper we are interested in a specific
(yet very important) kind of proof systems: proof systems for the co-NP-complete
language of unsatisfiable formulas in CNF (equivalently, tautologies in DNF).

In what follows, we use x to denote a variable (if not otherwise stated), l to
denote a literal (i.e., a variable x or the negation x of it), and a, b, c, d, e, A, B to
denote non-negative integers (all these letters may bear subscripts). A formula
in CNF is a set of clauses, which are disjunctions (i.e., again sets) of literals and
are usually denoted by letters C, D. We assume that a clause cannot contain a
variable together with its negation.

A truth assignment π for a set of variables assigns a value (either 0 or 1)
to each variable; the result of substituting π into a formula F is denoted F |π
(where the clauses containing satisfied literals are removed, and falsified literals
are dropped from the remaining clauses). We define the result of substituting π
into other objects (clauses, inequalities, etc.) by analogy.
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The proof systems we consider are dag-like derivation systems, i.e., a proof is
a sequence of lines such that every line is either an axiom or is obtained by an
application of a derivation rule to several previous lines. The proof finishes with
a line called goal (in our case, this will be a simple form of contradiction). Such
a proof system is thus determined by its set of axioms, set of derivation rules
and the notion of a goal. Note that different proof system may have different
notions of a line (it may be a clause, or an inequality, or anything else).

2.2 Resolution

The resolution proof system [Rob68] has clauses as its proof lines. Given a for-
mula in CNF, one takes its clauses as the axioms and uses two rules:

– Resolution:

C ∪ l D ∪ l

C ∪ D

provided there is no literal l′ ∈ C such that l′ ∈ D.
– Weakening:

C

C ∪ l

provided l /∈ C.

The goal is to derive the empty clause.

2.3 The Cutting Plane Proof System

The proof lines in the Cutting Plane proof system (CP) are linear inequalities
with integer coefficients. To refute a formula in CNF in this system, one trans-
lates each its clause l1 ∨ . . . ∨ lk into the inequality l1 + . . . + lk ≥ 1, where
a negative literal li = ¬xi is written as 1 − xi; the obtained system of linear
inequalities has the same 0/1-solutions as the original set of clauses (where 1
corresponds to True, and 0 corresponds to False). The proof lines are algebraic,
i.e., when we write x+(1−y) ≥ 1, we mean x−y ≥ 0. CP allows to derive a con-
tradiction (i.e., the inequality 0 ≥ 1) if and only if the original set of inequalities
has no 0/1-solutions.

We state the initial inequalities as axioms, and add also the axioms

x ≥ 0
,

1 − x ≥ 0
(1)

for every variable x. The derivation rules are (xi’s denote variables, i ranges over
all variables subscripts, other letters denote integer constants):

– Addition:
∑

aixi ≥ A
∑

bixi ≥ B
∑

(ai + bi)xi ≥ A + B
. (2)
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– Rounding rule:
∑

aixi ≥ A
∑ ai

c xi ≥ �A
c �

, (3)

provided c ≥ 1 and ∀i c|ai.

– Multiplication rule:
∑

aixi ≥ A
∑

caixi ≥ cA
, (4)

where c ≥ 1.

The notion of the degree of falsity of an inequality was introduced by Goerdt
in [Goe91] as follows:

Definition 1. Consider an inequality ι of the form
∑n

i=1 aixi ≥ A, and let π
be a truth assignment for the variables of ι. The degree of falsity of ι under π
is given by

DGF(ι, π) = A − LHS(ι, π),

where LHS(ι, π) is the value of the left-hand side of ι under π.
The degree of falsity of ι is given by

DGF(ι) = max
π

DGF(ι, π).

The degree of falsity of a Cutting Plane proof Π is given by

DGF(Π) = max
ι∈Π

DGF(ι).

3 Boolean Representations of Inequalities

Definition 2. The literal form of an inequality is obtained from its canonical
form

∑
i cixi ≤ A by replacing each summand cixi where ci < 0 with −ci(1−xi)

and adding the corresponding constant −c to the free coefficient. (The terms of
the form xi or (1 − xi) are called literals.)

Example 1. For example, 2(1 − x) + 2y + (1 − z) ≥ 3 is the literal form of
−2x + 2y − z ≥ 0.

Lemma 1. DGF(ι) is the free coefficient of ι written in the literal form.

Proof. Note that minimizing LHS(ι, π) in the definition of DGF(ι) is a trivial
task: we should assign 0 to each variable xi such that ai > 0, and assign 1 to
each xi such that ai < 0 (in terms of Definition 1). This assignment π0 yields
DGF(ι, π0) = A−∑

i:ai<0 ai, which is equal to the free coefficient of ι in the literal
form. 	
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Lemma 2. An integer inequality ι with DGF(ι) ≤ n
2 can be represented as a

conjunction of at most
(

n
DGF(ι)−1

)
Boolean clauses, where n is the number of

variables in it.

Proof. Consider all inequalities obtained by satisfying literals occurring in the
literal form of ι with sum of coefficients up to DGF(ι)−1. That is, we satisfy literals
one by one and stop just before the inequality trivializes (i.e., the degree of falsity
becomes non-positive), whatever coefficient we would choose next; we consider
all inequalities that can be obtained from ι in this way (dropping duplicates,
of course). It is easy to see that the obtained inequalities are equivalent to
Boolean clauses. Indeed, consider an inequality

∑n
1 aili ≥ c, where ∀i ai ≥ c.

This inequality holds iff any one of li is true, which is equivalent to l1∨l2∨. . .∨ln.
The number of clauses is as claimed, because we cannot satisfy more than

DGF(ι) − 1 literals without making ι trivial, and if an assignment results in a
clause, its sub-assignments don’t.

We have so far established a set of clauses that follows from the initial inequal-
ity. To prove the converse, consider an assignment π that falsifies ι. Substitute
its part that satisfies literals of (the literal representation of) ι. The obtained
inequality

∑
j∈J aj lj ≥ c′ > 0 is still non-trivial, because the original assignment

falsifies ι. Then continue satisfying the remaining lj ’s similarly to the construc-
tion above until the inequality becomes a clause. Clearly, this clause is falsified
by (the remaining part of) π. 	


Definition 3. We call the set of clauses obtained from an inequality ι by the
procedure described in the proof of Lemma 2 the Boolean representation of an
inequality ι and denote it by B(ι).

Lemma 3. If ι is derived from {ιj}j∈S in CP then, for each C ∈ B(ι), there is
a resolution proof of C from

⋃
j∈S B(ιj) that only contains literals occurring in

{C} ∪ ⋃
j∈S B(ιj).

Proof. By Lemma 2, ι and B(ι) have the same set of 0/1 solutions. Since the
Cutting Plane proof system is sound and the resolution proof system is impli-
cationally complete, the lemma follows (it is easy to see that one can get rid of
the literals that do not occur in {C} ∪ ⋃

j∈S B(ιj): it suffices to eliminate the
applications of the weakening rule introducing such literals). 	


4 Simulation by Resolution

In this section we prove the bounds by establishing a direct connection between
proofs in CP and proofs in the resolution proof system.

Lemma 4. The rounding and multiplication rules do not change the Boolean
representation.
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Proof. Suppose that ι′ is obtained from ι by the rounding rule

ι :
∑

i∈I

cili ≥ A

ι′ :
∑

i∈I

ci

c
li ≥

⌈
A

c

⌉ ,

where c|ci for all i ∈ I. For each clause C ∈ B(ι), there is a (partial) assignment
π that produced C from ι:

ι|π :
∑

i∈J

cili ≥ A −
∑

i∈I\J

ci.

Substitute this assignment into ι′:

ι′|π :
∑

i∈J

ci

c
li ≥

⌈
A

c

⌉

−
∑

i∈I\J

ci

c
.

Then ι′|π is also equivalent to a clause, because �A
c � −

∑
i∈I\J

ci

c ≥ 1
c · (A −

∑
i∈I\J ci) > 0 and (since c|ck for all k) ∀j ∈ J

cj

c
−

⎛

⎝
⌈

A

c

⌉

−
∑

i∈I\J

ci

c

⎞

⎠ =

⎢
⎢
⎢
⎣cj

c
−

⎛

⎝A

c
−

∑

i∈I\J

ci

c

⎞

⎠

⎥
⎥
⎥
⎦

=

⎢
⎢
⎢
⎣1

c
·
⎛

⎝cj −
⎛

⎝A −
∑

i∈I\J

ci

⎞

⎠

⎞

⎠

⎥
⎥
⎥
⎦ ≥ 0

Similarly, every assignment that produces a clause from ι′ also produces a clause
from ι.

The same holds (by an easier yet very similar argument) for the multiplication
rule. 	

Lemma 5. Let integer inequality ι be an integer linear combination of integer
inequalities ι1 and ι2, let DGF(ι1), DGF(ι2) ≤ A. Then every clause C of the
Boolean representation B(ι) (given by Lemma 2) can be derived from B(ι1)∪B(ι2)
in at most 26A−2 resolution steps.

Proof. We may rewrite our inequalities as follows (here xi, yi, zi denote literals):

ι1 :
N∑

1

e′izi +
K∑

1

aixi +
L∑

1

diyi ≥ A1,

ι2 :
N∑

1

e′′i zi +
K∑

1

bi(1 − xi) +
L∑

1

di(1 − yi) ≥ A2,

ι :
N∑

1

eizi +
K∑

1

(ai − bi)xi ≥ A1 + A2 −
K∑

1

bi −
L∑

1

di.
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Here all coefficients are strictly positive, possibly except for some of the e′i’s
and e′′j ’s, which are nonnegative. In other words, Z contains literals that are
not cancelled by the application of the addition rule, X contains literals that
are partially cancelled, and Y contains literals that are cancelled completely.
We denote X = {x1, . . . , xK}, Y = {y1, . . . , yL}, Z = {z1, . . . , zN}. Also denote
S = {s | s ∈ S} for any set S.

By Lemma 3 there exists a resolution proof Π of C from the clauses of
B(ι1) ∪ B(ι2). Note that Z ∩ C = ∅ and Z ∩ D = ∅ for every D ∈ B(ι1) ∪ B(ι2).
Hence, Lemma 3 provides Π that does not contain any negative occurrences of
zi’s. Let π be the assignment that turns ι into C; denote Zπ = {z ∈ Z |π(z) = 1}
and Z ′ = Z \ Zπ. Note that Z ′ ⊆ C. Therefore, if one adds Z ′ to each clause
in Π, the proof will remain a valid proof of C from the clauses D∗

i = Di ∪ Z ′,
where Di ∈ B(ι1) ∪ B(ι2). Note that |X| + |Y | + |Zπ| < 2A; otherwise DGF(ι|π)
would be non-positive, and the clause C would be a constant True. There are
at most 23|X∪Y ∪Zπ| ≤ 26A−3 possible clauses of the form Z ′ ∪ T , where T ⊆
X ∪X ∪Y ∪Y ∪Zπ, hence the modified (dag-like) version of the proof Π cannot
contain more than 26A−3 clauses. It remains to add at most 26A−3 steps needed
to obtain D∗

i ’s from Di’s by the weakening rule. 	

Theorem 1. A Cutting Plane proof Π with maxι∈Π DGF(ι) ≤ d ≤ n/2 of a
formula in CNF with n variables can be transformed into a resolution proof of
size at most

(
n

d−1

)|Π|26d.

Proof. Each step
ι1, ι2

ι
or

ι1
ι

of Π can be replaced by at most
(

n
d−1

)
26d−2 res-

olution steps inferring the
(

n
d−1

)
(see Lemma 2) possible clauses of B(ι) from

⋃
i B(ιi), by a 26d−2-length resolution proof each. (For addition steps such a res-

olution proof is given by Lemma 5, for other steps it is not needed by Lemma 4.)
	


Corollary 1. If formulas Fn (where Fn contains n variables) have no resolution
proofs containing less than 2cresn clauses (cres > 0 is a constant), then these
formulas do not have Cutting Plane proofs of size less than 2cCPn and degree of
falsity bounded by cDGFn for every choice of positive constants cCP < cres and
cDGF ≤ 1

2 such that

cCP + 6cDGF − cDGF log2 cDGF − (1 − cDGF) log2(1 − cDGF) ≤ cres. (5)

In particular, formulas Fn have only exponential-size Cutting Plane proofs of
degree of falsity bounded by an appropriate linear function of n.

Proof. By Theorem 1 Cutting Plane proofs of size less than 2cDGFn could be
converted into resolution proofs of size less than
(

n
cDGFn−1

)
2cCPn+6cDGFn = o(2(cCP+6cDGF−cDGF log2 cDGF−(1−cDGF) log2(1−cDGF))n) = o(2cresn)

(the first equality uses Stirling’s formula).
Finally, note that f(c) = 6c − c log2 c − (1 − c) log2(1 − c) decreases to 0

as c decreases from 1
2 to 0. Therefore, for every cCP < cres there is cDGF that

satisfies (5). 	
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Corollary 2. There exists a positive constant δ such that Tseitin-Urquhart for-
mulas of n variables (described in [Urq87]) have only 2Ω(n)-size Cutting Plane
proofs with degree of falsity bounded by δn.

Proof. Follows immediately from Corollary 1 and Urquhart’s theorem:
Theorem. ([Urq87–Theorem 5.7]) There is a constant c > 1 such that for suf-
ficiently large m, any resolution refutation of Sm contains cn distinct clauses,
where Sm is of length O(n), n = m2. 	


5 Further Research

A straightforward open question is to prove an exponential lower bound on the
lengths of CP refutations of Tseitin tautologies without the restriction on the
degree of falsity. One way to do it could be to characterize the inequalities that
follow from subformulas of these tautologies and have a large degree of falsity.
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