
Solving Over-Constrained Problems with
SAT Technology�

Josep Argelich1 and Felip Manyà2

1 Computer Science Department, Universitat de Lleida,
Jaume II, 69, E-25001 Lleida, Spain

josep@eup.udl.es
2 Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, 08193 Bellaterra, Spain
felip@iiia.csic.es

Abstract. We present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form
formalism that deals with blocks of clauses instead of individual clauses,
and that allows one to declare each block either as hard (i.e., must be
satisfied by any solution) or soft (i.e., can be violated by some solu-
tion). We then present two Max-SAT solvers that find a truth assignment
that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms
equipped with original lazy data structures; the first one incorporates
static variable selection heuristics while the second one incorporates dy-
namic variable selection heuristics. Finally, we present an experimental
investigation to assess the performance of our approach on a representa-
tive sample of instances (random 2-SAT, Max-CSP, and graph coloring).

1 Introduction

The SAT-based problem solving approach presents some limitations when solv-
ing many real-life problems due to the fact that it only provides a solution when
the formula that models the problem we are trying to solve is shown to be sat-
isfiable. Nevertheless, in many combinatorial problems, some potential solutions
could be acceptable even when they violate some constraints. If these violated
constraints are ignored, solutions of bad quality are found, and if they are treated
as mandatory, problems become unsolvable. This is our motivation to extend the
SAT formalism to solve over-constrained problems. In such problems, the goal
is to find the solution that best respects the constraints of the problem.

In this paper we will consider that all the constraints are crisp (i.e., they
are either completely satisfied or completely violated), but constraints can be

� Research partially supported by projects TIN2004-07933-C03-03 and TIC2003-00950
funded by the Ministerio de Educación y Ciencia. The second author is supported
by a grant Ramón y Cajal.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 J. Argelich and F. Manyà

either hard (i.e., must be satisfied by any solution) or soft (i.e., can be violated
by some solution). A solution best respects the constraints of the problem if it
satisfies all the hard constraints and the maximum number of soft constraints. In
the literature of over-constrained problems, fuzzy constraints (i.e., intermediate
degrees of satisfaction are allowed), as well as other ways of defining that a
solution best respects the constraints of the problem, are considered. We invite
the reader to consult [12] for a recent survey on different CSP approaches to
solving over-constrained problems.

Given a combinatorial problem which can be naturally defined by a set of
constraints over finite-domain variables, we have that each constraint is often
encoded as a set (block) of Boolean clauses in such a way that a constraint
is satisfiable if all those clauses are satisfied by some truth assignment and is
violated if at least one of those clauses is not satisfied by any truth assign-
ment. Thus, in contrast to the usual approach, the concept of satisfaction in
SAT-encoded over-constrained problems refers to blocks of clauses instead of in-
dividual clauses. This led in turn to design Max-SAT-like solvers that deal with
blocks of clauses instead of individual clauses, and exploit the new structure of
the encodings.

In this paper we present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form formal-
ism that deals with blocks of clauses instead of individual clauses, and that allows
one to declare each block either as hard (i.e., must be satisfied by any solution)
or soft (i.e., can be violated by some solution). We call soft CNF formulas to this
new kind of formulas. We then present two Max-SAT solvers that find a truth
assignment that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms equipped
with original lazy data structures; the first one incorporates static variable se-
lection heuristics while the second one incorporates dynamic variable selection
heuristics. Finally, we present an experimental investigation to assess the perfor-
mance of our approach on a representative sample of instances (random 2-SAT,
Max-CSP, and graph coloring).

Problem solving of over-constrained problems with Max-SAT local search
algorithms has been investigated before in [8, 4]. In that case, the authors dis-
tinguish between hard and soft constraints at the clause level, but they do not
incorporate the notion of blocks of hard and soft clauses. The notion of blocks of
clauses provides a more natural way of encoding soft constraints. Besides, to the
best of our knowledge, the treatment of soft constraints with exact Max-SAT
solvers has not been considered before.

The paper is structured as follows. In Section 2 we introduce the formalism
of soft CNF formulas. In Section 3 we describe a solver for soft CNF formulas
with static variable selection heuristics. In Section 4 we describe a solver for soft
CNF formulas with dynamic variable selection heuristics. In Section 5 we report
the experimental investigation we performed to assess the performance of our
formalism and solvers. Finally, we present some concluding remarks.

Solving Over-Constrained Problems with SAT Technology 3

2 Soft CNF Formulas

We define the syntax and semantics of soft CNF formulas, which are an extension
of Boolean clausal forms that we use to encode over-constrained problems.

Definition 1. A soft CNF formula is formed by a set of pairs (clause, label),
where clause is a Boolean clause and label is either hi or si for some i ∈ N. A
hard block of a soft CNF formula is formed by all the pairs (clause, label) with
the same label hi, and a soft block is formed by all the pairs (clause, label) with
the same label si.

All the clauses with the same label hi (si) model the same hard (soft) con-
straint.

Definition 2. A truth assignment satisfies a hard block of a soft CNF formula
if it satisfies all the clauses of the block. A truth assignment satisfies a soft
CNF formula φ if it satisfies all the hard blocks of φ. We say then that φ is
satisfiable. A soft CNF formula φ is unsatisfiable if there is no truth assignment
that satisfies all the the hard blocks of φ. A truth assignment satisfies a soft block
if it satisfies all the clauses of the block. A truth assignment is a solution to a soft
CNF formula φ if it satisfies all the hard blocks of φ and the maximum number
of soft blocks.

Definition 3. The Soft-SAT problem is the problem of finding a solution to a
Soft CNF formula.

Example 1. We want to solve the problem of coloring a graph with two colors
in such a way that the minimum number of adjacent vertices are colored with
the same color. If we consider the graph with vertices {v1, v2, v3} and with edges
{(v1, v2), (v1, v3), (v2, v3)}, that problem is encoded as a Soft-SAT instance as
follows: (i) the set of propositional variables is {v1

1 , v2
1 , v1

2 , v2
2 , v1

3 , v2
3}; the intended

meaning of variable vj
i is that vertex vi is colored with color j; (ii) there is one

hard black formed by the following at-least-one and at-most-one clauses:

(v1
1∨v2

1 ,h1),(¬v1
1∨¬v2

1 ,h1),(v1
2∨v2

2 ,h1),(¬v1
2∨¬v2

2 ,h1),(v1
3∨v2

3 ,h1),(¬v1
3∨¬v2

3 ,h1);

and (iii) there is a soft block for every edge:

(¬v1
1 ∨ ¬v1

2 , s1), (¬v2
1 ∨ ¬v2

2 , s1),
(¬v1

1 ∨ ¬v1
3 , s2), (¬v2

1 ∨ ¬v2
3 , s2),

(¬v1
2 ∨ ¬v1

3 , s3), (¬v2
2 ∨ ¬v2

3 , s3).

The use of blocks is relevant for two reasons. On the one hand, it provides to
the user information in a more natural way about constraint violations. On the
other hand, it allows us to get more propagation at certain nodes (this point is
discusses in the next section). Besides, the structure of blocks will be important
when we extend our formalism to deal with fuzzy constraints.

4 J. Argelich and F. Manyà

3 Soft-SAT-S: A Solver with Static Variable Selection
Heuristic

The space of all possible assignments for a soft CNF formula φ can be represented
as a search tree, where internal nodes represent partial assignments and leaf
nodes represent complete assignments. The branch and bound algorithm for
solving the Max-SAT problem of soft CNF formulas with static variable selection
heuristics that we have designed and implemented, called Soft-SAT-S, explores
that search tree in a depth-first manner. At each node, the algorithm backtracks
if the current partial assignment violates some clause of the hard blocks, and
applies the one-literal rule1 to the literals that occur in unit clauses of hard
blocks.2 If the current partial assignment does not violate any clause of the
hard blocks, the algorithm compares the number of soft blocks unsatisfied by
the best complete assignment found so far, called upper bound (ub), with the
number of soft blocks unsatisfied by the current partial assignment, called lower
bound (lb). Obviously, if ub ≤ lb, a better assignment cannot be found from this
point in search. In that case, the algorithm prunes the subtree below the current
node and backtracks to a higher level in the search tree. If ub > lb, it extends the
current partial assignment by instantiating one more variable, say p, which leads
to create two branches from the current branch: the left branch corresponds to
instantiate p to false, and the right branch corresponds to instantiate p to true.
In that case, the formula associated with the left (right) branch is obtained from
the formula of the current node by applying the one-literal rule [11] using the
literal ¬p (p). The value that ub takes after exploring the entire search tree
is the minimum number of soft blocks that cannot be satisfied by a complete
assignment.

In branch and bound Max-SAT algorithms like [2, 17], the lower bound is
the sum of the number of unsatisfied clauses by the current partial assignment
plus an underestimation of the number of clauses that will become unsatisfied
if we extend the current partial assignment into a complete assignment, which
is calculated taking into account the inconsistency counts of the variables not
yet instantiated. The concept of inconsistency counts cannot be easily extended
to soft blocks3 and our lower bound is not so powerful as the lower bounds
of [2, 15, 17, 18]. In Soft-SAT-S, like in [2, 17], the initial lower bound is obtained
with a GSAT-like [14] local search algorithm.

In Section 5 we define the notion of inconsistency counts for SAT encoded
Max-CSP and graph coloring instances by exploiting the structure hidden in
the encoding, and we are able to define a lower bound that incorporates an

1 Given a literal ¬p (p), the one-literal rule [11] deletes all the clauses containing the
literal ¬p (p) and removes all the occurrences of the literal p (¬p).

2 Observe that this pruning technique cannot be applied to exact Max-SAT solvers
that deal with individual clauses; in Max-SAT solvers each clause can be viewed as
a soft block.

3 This is due to the fact that a block is unsatisfied by an interpretation I when I does
not satisfy one clause of the block.

Solving Over-Constrained Problems with SAT Technology 5

underestimation of the number of soft blocks that will become unsatisfied if we
extend the current partial assignment into a complete assignment.

When branching is done, algorithms for Max-SAT like [2, 17, 3] apply the
one-literal rule (simplifying with the branching literal) instead of applying unit
propagation (i.e., the repeated application of the one-literal rule until a satura-
tion state is reached) as in the Davis-Putnam-style [6] solvers for SAT. If unit
propagation is applied at each node, the algorithm can return a non-optimal
solution. For example, if we apply unit propagation to {p,¬q,¬p ∨ q,¬p} using
the unit clause ¬p, we derive one empty clause while if we use the unit clause
p, we derive two empty clauses. However, when the difference between the lower
bound and the upper bound is one, unit propagation can be safely applied, be-
cause otherwise by fixing to false any literal of any unit clause we reach the
upper bound. Soft-SAT-S performs unit propagation in that case too. Moreover,
as pointed out before, Soft-SAT-S applies the one-literal rule when a clause of
a hard block becomes unit. This propagation, which leads to substantial perfor-
mance improvements, cannot be safely applied in Max-SAT solvers like [2, 17, 3],
and is a key feature of our approach.

Our current version of Soft-SAT-S incorporates two static variable selection
heuristics:

– MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order.

– csp: In SAT encodings that model CSP variables, each CSP variable with
a domain of size k is represented by a set of k Boolean variables x1, . . . , xk.
We associate a weight to each one of these sets: the sum of the total number
of occurrences of each variable of the set. We order the sets according to
such weight. Heuristic csp instantiates, first and in lexicographical order, the
Boolean variables of the set with the highest weight. Then, it instantiates, in
lexicographical order, the Boolean variables of the set with the second highest
weight, and so on. This heuristic is used, in the experimental investigation, to
solve problems with finite-domain variables (Max-CSP and graph coloring).
The idea behind this heuristic is to instantiate first the CSP variables that
occur most often. This way, we emulate an n-ary CSP branching by means
of a binary branching (i.e., we consider all the possible values of the CSP
variable under consideration before instantiating another CSP variable). As
we will see in the experiments, we get some performance improvements for
the fact of dealing with n-ary branchings.

The fact of using static variable selection heuristics allows us to implement
extremely efficient data structures for representing and manipulating soft CNF
formulas. Our data structures take into account the following fact: we are only
interested in knowing when a clause has become unit or empty. Thus, if we have a
clause with four variables, we do not perform any operation in that clause until
three of the variables appearing in the clause have been instantiated; i.e., we
delay the evaluation of a clause with k variables until k − 1 variables have been
instantiated. In our case, as we instantiate the variables using a static order, we

6 J. Argelich and F. Manyà

do not have to evaluate a clause until the penultimate variable of the clause in
the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer
to the penultimate variable of the clause in the static order, and the clauses of
a soft CNF formula are ordered by that pointer. We also have a pointer to the
last variable of the clause. When a variable p is fixed to true (false), only the
clauses whose penultimate variable in the static order is ¬p (p) are evaluated.
This approach has two advantages: the cost of backtracking is constant (we do
not have to undo pointers like in adjacency lists) and, at each step, we evaluate
a minimum number of clauses.

4 Soft-SAT-D: A Solver with Dynamic Variable Selection
Heuristic

The second solver we have designed and implemented is Soft-SAT-D, which is like
Soft-SAT-S except for the fact that its variable selection heuristics are dynamic.
This fact, in turn, did not allow us to implement the data structures we have
described in the previous section. The data structures implemented in Soft-SAT-
D are the two-watched literal data structures of Chaff [13]. They are also lazy
data structures, but are not so efficient because here we need to maintain the
watched literals.

Our current version of Soft-SAT-D incorporates two dynamic variable selec-
tion heuristics:

– MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order. Observe that we do not use the
variable that appears most often in minimum size clauses (heuristic MOMS)
because this is difficult to know with the lazy data structures of Chaff. How-
ever, most of the instances we used in the experimental investigation contain
a big amount of binary clauses.

– MO-csp: This is the dynamic version of heuristic csp of Soft-SAT-S. We
associate a weight to each set of free Boolean variables that encode a same
CSP variable: the sum of the total number of occurrences of each variable of
the set that has not been yet instantiated. We select the set with the highest
weight and instantiate its variables in lexicographical order. Like in heuristic
csp, we emulate an n-ary branching.

5 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of our problem solving approach. All the experiments were performed
on a 2GHz Pentium IV with 512 Mb of RAM under Linux.

We performed experiments with ssoft-SAT solvers as well as with weighted
Max-SAT solvers and a Max-CSP solver [10]. The solvers used are the following
ones:

Solving Over-Constrained Problems with SAT Technology 7

– Soft-SAT-S with heuristic MO and csp.
– Soft-SAT-D with heuristic MO and MO-csp.
– WMax-SAT: It is a weighted Max-SAT solver that we have implemented.

WMax-SAT uses the code of Soft-SAT but does not take into account the
notion of hard and soft block; conceptually, WMax-SAT is like Soft-SAT but
every clause is treated as a different soft block. The lower bound of WMax-
SAT is better than the lower bound of Soft-SAT because it is the sum of
the number of unsatisfied clauses by the current partial assignment plus an
underestimation of the number of clauses that will become unsatisfied if we
extend the current partial assignment into a complete assignment, which is
calculated taking into account the inconsistency counts of the variables not
yet instantiated. WMax-SAT incorporates the following variable selection
heuristic: It instantiates the variables taking into account the number of
occurrences in decreasing order (MO).

– BF-improved: It is an improved version of Borchers and Furman’s algo-
rithm [3] described in [2]. It uses the popular dynamic variable selection
heuristics MOMS (most often in minimum size clauses).

– PFC-MPRDAC: This is a highly optimized solver from the Constraint Pro-
gramming community for solving binary Max-CSP problems [10].

The benchmarks we used in our experiments are:

– Random 2-SAT instances: We have generated random 2-SAT instances to
which we have then assigned, randomly and uniformly, a label corresponding
to a hard block or to a soft block. The generator has as parameter the number
of blocks: one block is declared to be hard and the rest of blocks are declared
to be soft.

– Max-CSP instances: We used SAT-encoded random binary CSPs and solved
the Max-CSP problem (the problem of finding an assignment to the vari-
ables that satisfies as many constraints as possible). We used Max-CSP in-
stances because they have a natural representation using the formalism of
soft CNF formulas. The instances were encoded using the support encoding4

and generated with a generator of uniform random binary CSPs5 —designed

4 In the support encoding [9, 7], the idea is to encode into clauses the support for a
value instead of encoding conflicts. The support for a value j of a CSP variable Xi

across a constraint is the set of values of the other variable in the constraint which
allow Xi = j. If v1, v2, . . . , vk are the supporting values of variable Xl for Xi = j,
we add the clause ¬xij ∨ xlv1 ∨ xlv2 ∨ · · · ∨ xlvk (called support clause). There is
one support clause for each pair of variables Xi, Xl involved in a constraint, and
for each value in the domain of Xi. We need a similar clause in each direction, one
for the pair Xi, Xl and one for Xl, Xi. Besides, we need to add the at-least-one and
at-most-one clauses for each CSP variable to ensure that each CSP variable takes
exactly one value of its domain. All the at-least-one and at-most-one clauses were
encoded as a hard block, and each set of clauses that encodes a CSP constraint was
encoded as a different soft block.

5 http://www.lirmm.fr/˜bessiere/generator.html

8 J. Argelich and F. Manyà

and implemented by Frost, Bessière, Dechter and Regin— that implements
the so-called model B [16]: in the class 〈n, d, p1, p2〉 with n variables of do-
main size d, we choose a random subset of exactly p1n(n − 1)/2 constraints
(rounded to the nearest integer), each with exactly p2d

2 conflicts (rounded
to the nearest integer); p1 may be thought of as the density of the problem
and p2 as the tightness of constraints.

– Graph coloring instances: we used unsatisfiable graph coloring instances and
the problem we solved was to find a coloring that minimizes the number of
adjacent vertices with the same color. We used individual instances from the
graph coloring symposium celebrated in CP-2002, and randomly generated
instances using the generator of Culberson [5]. We use the generator with
option IID (independent random edge assignment). The parameters of the
generator are: number of vertices (n), optimum number of colors to get a
valid coloring (k), and number of colors we use to color the graph (c).

All the benchmarks encoded as Soft CNF formulas were also encoded as
Boolean weighted Max-SAT instances in order to compare our solvers with
Boolean weighted Max-SAT solvers. The encoding is as follows: A soft block
si formed by a set of clauses {C1, . . . , Cm} is replaced with the set of clauses
{si; 1, C1 ∨ ¬si; 2, . . . , Cm ∨ ¬si; 2}, where si is a new Boolean variable and 1
and 2 are weights associated with the clauses. Moreover, we associate a weight
w +1, where w is the sum of weights of the clauses that encode soft blocks, with
each clause belonging to a hard block. Any truth assignment where the sum of
unsatisfied clauses is less than w + 1 is a feasible solution. A solution of a soft
CNF formula corresponds to a feasible solution of its weighted Max-SAT encod-
ing with the minimum sum of weights of unsatisfied clauses. Actually, with our
encoding, the minimum sum of weights of unsatisfied clauses is identical to the
minimum number of soft blocks unsatisfied by a truth assignment that satisfies
all the hard blocks.

The Max-CSP instances and the graph coloring instances were also encoded
as binary CSP using the format used by PFC-MPRDAC [10], which consists of
defining a constraint network by means of a list of nogoods. We believe that it
is important to compare our approach with the problem solving approach for
over-constrained problems developed in the constraint programming community
because they have worked for a long time on this topic and, in contrast to the
SAT community, it is a very active research subject.

5.1 Experiments with Random 2-SAT Instances

We compared Soft-SAT-S, Soft-SAT-D and WMax-SAT on random 2-SAT in-
stances using heuristic MO.6 Figure 1 shows the results for instances with 50
variables and with a number of clauses ranging from 200 to 430, and Figure 2
shows the results for instances with a number of variables ranging from 50 to 100

6 We tried also to solve the instances with BF-improved, but the results were not
competitive.

Solving Over-Constrained Problems with SAT Technology 9

 0

 50

 100

 150

 200

 250

 300

 350

 200 250 300 350 400 450

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of clauses

Soft-SAT-D (MO)
Soft-SAT-S (MO)
WMax-SAT (MO)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200 250 300 350 400 450

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of clauses

Soft-SAT-D (MO)
Soft-SAT-S (MO)
WMax-SAT (MO)

Fig. 1. Random 2-SAT instances with 50 variables and with a number of clauses rang-
ing from 200 to 430

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 50 60 70 80 90 100

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

Number of variables

Soft-SAT-D (MO)
Soft-SAT-S (MO)
WMax-SAT (MO)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 60 70 80 90 100

M
ed

ia
n

C
P

U
 ti

m
e

in
 s

ec
on

ds

Number of variables

Soft-SAT-D (MO)
Soft-SAT-S (MO)
WMax-SAT (MO)

Fig. 2. Random 2-SAT instances with a number of variables ranging from 50 to 100
and with 300 clauses

and with 300 clauses. In both figures we give mean and median time, and each
data point corresponds to the time needed to solve a set of 100 instances. In Fig-
ure 1 we observe that, in general, Soft-SAT-D is slightly better that Soft-SAT-S,
and in Figure 2 we observe that Soft-SAT-D is superior than Soft-SAT-S. WMax-
SAT is much worse: Even the fact of having a better lower bound in WMax-SAT
does not compensate the extra propagation achieved by exploiting the fact that
Soft-SAT knows which clauses encode hard constraints.

5.2 Experiments with Max-CSP Instances

In this section we describe a number of experiments we performed on random
binary CSP. For instances with CSP variables with domain size greater than 2,
we defined a lower bound that incorporates an underestimation of the number of
soft blocks that will become unsatisfied if we extend the current partial assign-
ment into a complete assignment. Each CSP variable with a domain of size k is
represented by a set of k Boolean variables x1, . . . , xk in a SAT encoding. The
inconsistency count associated with a Boolean variable xi (1 ≤ i ≤ k) is the

10 J. Argelich and F. Manyà

Table 1. Comparison of Soft-SAT-S without underestimation and Soft-SAT-S with
underestimation on Max-CSP instances. Time in seconds

Soft-SAT-S Soft-SAT-S
(with underestimation) (without underestimation)

〈n, d, p1, p2〉 mean median mean median

〈10, 15, 45/45, 190/225〉 12.25 10.31 605.03 547.52

〈12, 13, 60/66, 130/169〉 17.94 16.21 2256.91 2010.26

〈13, 8, 78/78, 50/64〉 12.51 11.28 1028.91 973.41

〈15, 10, 50/105, 75/100〉 1.63 1.39 77.54 57.97

〈17, 5, 110/136, 18/25〉 3.35 2.83 394.82 343.61

〈18, 5, 80/153, 18/25〉 0.86 0.76 53.64 46.52

〈20, 5, 90/190, 18/25〉 3.06 2.42 406.53 378.00

〈22, 6, 70/231, 28/36〉 7.10 4.13 910.97 493.15

〈23, 4, 150/253, 12/16〉 16.25 13.59 4615.67 3797.04

〈25, 3, 160/300, 7/9〉 2.66 2.09 142.80 112.51

number of soft blocks violated when xi is set to true. The inconsistency count
associated with a CSP variable X, which is encoded by the Boolean variables
x1, . . . , xk, is the minimum of the inconsistency counts of xi (1 ≤ i ≤ k). As
underestimation for the lower bound, we consider exactly one CSP variable for
each soft block and take the sum of the inconsistency counts of such variables.

In Table 1 we compare Soft-SAT-S without underestimation with Soft-SAT-S
with underestimation for sets of 100 instances of a representative sample of Max-
CSP instances. The first column shows the parameters given to the generator of
random binary CSPs, and the remaining columns show the experimental results
obtained. For each set we give the mean and median time needed to solve an
instance of the set. The heuristic used is csp. Table 2 shows the number of
backtracks instead of the CPU time for the same instances. In both cases we

Table 2. Comparison of Soft-SAT-S without underestimation and Soft-SAT-S with
underestimation on Max-CSP instances. Mean and median number of backtracks

Soft-SAT-S Soft-SAT-S
(with underestimation) (without underestimation)

〈n, d, p1, p2〉 mean median mean median

〈10, 15, 45/45, 190/225〉 2.619.160 2.257.644 807.841.884 735.579.551

〈12, 13, 60/66, 130/169〉 3.432.624 3.005.897 >2.000.000.000 >2.000.000.000

〈13, 8, 78/78, 50/64〉 2.450.851 2.129.608 1.093.257.769 1.168.573.259

〈15, 10, 50/105, 75/100〉 339.848 267.922 141.343.132 96.429.278

〈17, 5, 110/136, 18/25〉 611.488 521.378 564.618.781 520.298.372

〈18, 5, 80/153, 18/25〉 175.118 145.393 114.017.436 92.915.266

〈20, 5, 90/190, 18/25〉 681.346 516.087 601.459.493 631.196.627

〈22, 6, 70/231, 28/36〉 1.750.568 934.992 416.141.039 513.696.823

〈23, 4, 150/253, 12/16〉 2.513.565 2.075.907 >2.000.000.000 >2.000.000.000

〈25, 3, 160/300, 7/9〉 424.359 318.227 337.120.904 262.771.567

Solving Over-Constrained Problems with SAT Technology 11

Table 3. Comparison of Soft-SAT-S, PFC-MPRDAC and WMax-SAT on Max-CSP
instances. Time in seconds

Soft-SAT-S PFC-MPRDAC WMax-SAT

〈n, d, p1, p2〉 mean median mean median mean median

〈10, 8, 45/45, 48/64〉 0.33 0.32 0.19 0.19 11.95 11.41

〈12, 6, 66/66, 27/36〉 0.48 0.47 0.23 0.23 45.50 45.48

〈14, 5, 91/91, 18/25〉 0.82 0.77 0.35 0.35 188.75 193.30

〈16, 4, 120/120, 12/16〉 0.37 0.32 0.22 0.22 275.45 276.25

〈18, 3, 153/153, 6/9〉 1.00 0.93 0.31 0.31 68.04 62.71

〈15, 6, 60/105, 27/36〉 0.25 0.24 0.20 0.20 777.94 538.63

〈18, 5, 80/153, 18/25〉 0.67 0.58 0.33 0.30 5382.68 3364.17

〈20, 5, 70/190, 18/25〉 0.54 0.44 0.33 0.31 4701.25 2714.86

observe that the fact of adding a lower bound of better quality leads to dramatic
performance improvements. In the rest of the paper, all the results reported take
into account the above described underestimation.

In the second experiment we compared Soft-SAT-S with heuristic csp,7 PFC-
MPRDAC and WMax-SAT on Max-CSP instances. The results obtained are
shown in Table 3. We observe that solver PFC-MPRDAC (which is specialized
on solving Max-CSP instances) is about 2 times faster than Soft-SAT-S, but
the Weighted Max-SAT approach is much worse. We do not display results with
BF-improved because they are worse than the results of WMax-SAT. Even when
our solver is not the best, it is quite competitive.

In the third experiment, whose results are shown in Table 4, we solve the
same instances of the previous experiment with Soft-SAT-D with heuristic MO-
csp and with Soft-SAT-D with heuristic MO in order to compare the n-ary
branching with the binary branching. We see that the fact of using an n-ary
branching allows us to solve the instances up to 3 times faster. Also observe that
Soft-SAT-S (which also uses an n-ary branching) is about 2 times faster than
Soft-SAT-D with heuristic MO-csp, and up to 6 times faster than Soft-SAT-D
with heuristic MO.

5.3 Experiments with Graph Coloring Instances

The last benchmark we used was graph coloring. In the first experiment we con-
sidered 7 sets of randomly generated instances, where each set had 100 instances.
We solved the instances with Soft-SAT-S with heuristic csp, Soft-SAT-D with
heuristic MO-csp, Soft-SAT-D with heuristic MO, and PFC-MPRDAC.8 The
results obtained are shown in Table 5: the first column displays the parameters

7 We used this solver of soft CNF formulas because is the best performing one for
Max-CSP instances.

8 We do not give results with Weighted Max-SAT because is not competitive with the
solvers used.

12 J. Argelich and F. Manyà

Table 4. Comparison of Soft-SAT-D with heuristic MO-csp and Soft-SAT-D with
heuristic MO on Max-CSP instances. Time in seconds

Soft-SAT-D Soft-SAT-D

(MO-csp) (MO)

〈n, d, p1, p2〉 mean median mean median

〈10, 8, 45/45, 48/64〉 0.69 0.68 1.83 1.76

〈12, 6, 66/66, 27/36〉 1.20 1.11 2.92 2.66

〈14, 5, 91/91, 18/25〉 2.55 2.33 6.82 6.27

〈16, 4, 120/120, 12/16〉 2.69 2.54 5.44 5.11

〈18, 3, 153/153, 6/9〉 0.69 0.65 1.40 1.28

〈15, 6, 60/105, 27/36〉 1.16 1.01 2.21 1.92

〈18, 5, 80/153, 18/25〉 2.97 2.48 5.98 4.38

〈20, 5, 70/190, 18/25〉 1.85 1.52 3.80 2.82

Table 5. Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with heuris-
tic MO-csp, Soft-SAT-D with heuristic MO, and PFC-MPRDAC on randomly gener-
ated graph coloring instances. Time in seconds

Soft-SAT-S Soft-SAT-D-MO-csp Soft-SAT-D-MO PFC-MPRDAC

〈n, k, c〉 mean median mean median mean median mean median

〈15, 15, 8〉 103.62 10.47 318.75 26.73 743.64 20.12 132.73 21.29

〈15, 15, 10〉 102.69 0.05 261.64 0.06 653.74 0.06 139.89 0.15

〈16, 14, 6〉 197.13 49.00 986.61 224.60 1350.28 342.58 234.14 78.63

〈16, 14, 8〉 164.81 19.38 391.85 29.45 611.52 42.81 207.56 26.26

〈16, 16, 6〉 208.48 129.61 950.25 545.06 1503.82 1089.34 250.16 180.93

〈16, 16, 8〉 91.87 23.33 224.92 37.11 287.99 46.66 147.50 37.01

〈18, 10, 5〉 72.17 32.84 314.09 144.96 435.76 212.44 73.74 42.64

given to the generator, and the rest of columns display the mean and median
time needed to solve an instance of the set with each one of the solvers used.

We repeated the previous experiments but using a representative sample of
individual instances from the graph coloring symposium celebrated in CP-2002.
The results obtained are shown in Table 6: the first column displays the name of
the instance, the optimum number of colors to get a valid coloring (k), and the
number of colors we used to color the graph (c); the second column displays the
number of violated constraints; and the rest of columns display the time needed
to solve the instance with each one of the solvers used.

We observe that, in both cases, our approach is superior to the constraint pro-
gramming approach. For all the sets of randomly generated instances, Soft-SAT-
S outperforms PFC-MPRDAC, while for the individual instances some times is
better Soft-SAT-S and sometimes Soft-SAT-D. We also observe in both exper-
iments that the n-ary branchings analyzed lead to better performance profiles
than the binary branching.

We have also solved some graph coloring instances with the pseudo-Boolean
solver PBS v2.1 [1]. Our preliminary results indicate that, at least for the in-

Solving Over-Constrained Problems with SAT Technology 13

Table 6. Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with heuris-
tic MO-csp, Soft-SAT-D with heuristic MO, and PFC-MPRDAC on individual graph
coloring instances. Time in seconds

〈Instance, k, c〉 vc Soft-SAT-S Soft-SAT-D-MO-csp Soft-SAT-D-MO PFC-MPRDAC

〈myciel5.col, 6, 3〉 16 11.04 46.39 50.47 12.11

〈myciel5.col, 6, 4〉 4 78.50 226.59 344.79 96.41

〈myciel5.col, 6, 5〉 1 3177.85 31.87 73.73 44.34

〈GEOM30a.col, 6, 3〉 11 9.31 27.22 36.11 14.33

〈GEOM30a.col, 6, 4〉 4 4.48 2.35 7.29 22.89

〈GEOM30a.col, 6, 5〉 1 0.49 0.15 0.22 0.18

〈GEOM40.col, 6, 2〉 22 3.89 20.58 21.01 4.42

〈GEOM40.col, 6, 3〉 7 10.83 30.63 65.97 770.46

〈GEOM40.col, 6, 4〉 3 95.18 14.67 69.55 >7200.00

〈GEOM40.col, 6, 5〉 1 1.58 0.51 1.89 1574.44

〈queen5 5.col, 5, 3〉 29 57.60 167.60 205.37 27.27

〈queen5 5.col, 5, 4〉 12 37.50 124.24 148.27 73.67

stances tested, our Soft-SAT solvers outperform PBS. We plan to perform a
comprehensive comparison with more pseudo-Boolean solvers in an extended
version of this paper.

6 Concluding Remarks

We have presented a new generic problem solving approach for over-constrained
problems based on Max-SAT algorithms that deals with hard and soft blocks of
clauses. The distinction between hard and soft blocks allows us to model prob-
lems in a more natural way, and to traverse the search space of all possible truth
assignments in a more efficient way; the extra level of propagation achieved in
our solvers is a key factor of the good performance profiles obtained. Our ex-
periments indicate that our approach is better than reducing over-constrained
problems to weighted Max-SAT problems. Interestingly, for graph coloring in-
stances, we have shown that the problem solving approach based on Soft CNF
formulas also outperforms the approach based on Max-CSP instances. Taking
into account the amount of efforts devoted in the constraint programming com-
munity on investigating methods of solving over-constrained problems, we believe
that the results of this paper open an interesting research avenue.

An important point of our experimental investigation is the good results we
obtained due to the lower bound we have implemented, as well as to the fact of
using n-ary branching instead of binary branching. It is worth to consider these
two points when designing weighted Max-SAT solvers that have to solve more
realistic instances. One problem of state-of-the-art Max-SAT solvers is that they
are biased to solve randomly generated 2-SAT and 3-SAT instances. They are
rarely evaluated with more structured instances and with instances that encode

14 J. Argelich and F. Manyà

CSP variables with domain size greater than 2. The results reported here can
provide some hints to improve Max-SAT solvers on more realistic instances.

Another important point of our experimental investigation is the good results
we obtained with Soft-SAT-S. The extremely efficient data structures that we
have implemented are the key of its success. We believe that the incorporation
of more sophisticated variable selection heuristics into Soft-SAT-D, will provide
us with faster Soft-SAT-D solvers.

As future work, we plan to extend the language of soft CNF formulas to
capture fuzzy constraints, to define alternative notions of “the solution that
best respects the constraints of the problem”, and to incorporate more advanced
variable selection heuristics.

It is worth mentioning that we have not found in the SAT literature any
approach of solving problems with hard and soft constraints using exact Max-
SAT algorithms. All the papers we have found refer to local search algorithms,
and do not incorporate the notion of block of clauses.

Finally, we would like to point out that we believe that it is worth exploring
how the SAT technology developed for decision problems can be applied to solve
optimization problems. This paper has tried to make a step forward in that
direction.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo-
Boolean solver. In Symposium on the Theory and Applications of Satisfiability
Testing, SAT-2002, 2002.

2. T. Alsinet, F. Manyà, and J. Planes. Improved branch and bound algorithms for
Max-SAT. In Proceedings of the 6th International Conference on the Theory and
Applications of Satisfiability Testing, 2003.

3. B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and
weighted MAX-SAT problems. Journal of Combinatorial Optimization, 2:299–306,
1999.

4. B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algorithms for
partial MAXSAT. In Proceedings of the 14th National Conference on Artificial
Intelligence, AAAI’97, Providence/RI, USA, pages 263–268. AAAI Press, 1997.

5. J. Culberson. Graph coloring page: The flat graph generator. See
http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/flat.html, 1995.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

7. I. P. Gent. Arc consistency in SAT. In Proceedings of the 15th European Conference
on Artificial Intelligence (ECAI), Lyon, France, pages 121–125, 2002.

8. Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In Proceedings of the 1st International
Workshop on Artificial Intelligence and Operations Research, 1995.

9. S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45:275–286, 1990.

10. J. Larrosa. Algorithms and Heuristics for Total and Partial Constraint Satisfaction.
PhD thesis, FIB, Universitat Politècnica de Catalunya, Barcelona, 1998.

Solving Over-Constrained Problems with SAT Technology 15

11. D. W. Loveland. Automated Theorem Proving. A Logical Basis, volume 6 of Fun-
damental Studies in Computer Science. North-Holland, 1978.

12. P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, and M. Sánchez. Current
approaches for solving over-constrained problems. Constraints, 8(1):9–39, 2003.

13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In 39th Design Automation Conference, 2001.

14. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard sat-
isfiability problems. In Proceedings of the 10th National Conference on Artificial
Intelligence, AAAI’92, San Jose/CA, USA, pages 440–446. AAAI Press, 1992.

15. H. Shen and H. Zhang. Study of lower bound functions for max-2-sat. In Proceed-
ings of AAAI-2004, pages 185–190, 2004.

16. B. Smith and M. Dyer. Locating the phase transition in binary constraint satis-
faction problems. Artificial Intelligence, 81:155–181, 1996.

17. R. Wallace and E. Freuder. Comparative studies of constraint satisfaction and
Davis-Putnam algorithms for maximum satisfiability problems. In D. Johnson and
M. Trick, editors, Cliques, Coloring and Satisfiability, volume 26, pages 587–615.
1996.

18. Z. Xing and W. Zhang. Efficient strategies for (weighted) maximum satisfiability.
In Proceedings of CP-2004, pages 690–705, 2004.

	Introduction
	Soft CNF Formulas
	Soft-SAT-S: A Solver with Static Variable Selection Heuristic
	Soft-SAT-D: A Solver with Dynamic Variable Selection Heuristic
	Experimental Investigation
	Experiments with Random 2-SAT Instances
	Experiments with Max-CSP Instances
	Experiments with Graph Coloring Instances

	Concluding Remarks
	References

