
XP Expanded:
Distributed Extreme Programming

Keith Braithwaite and Tim Joyce

WDS Global, Forelle House, Marshes End, Upton Road, Poole
{keith.braithwaite,tim.joyce}@wdsglobal.com

Abstract. Colocation has come to be seen as a necessary precondition
for obtaining the majority of the benefits of XP. Without colocation
teams expect to struggle, to compromise and to trade off the benefits of
XP vs the benefits of distributed development. We have found that you
can stay true to the principles and not compromise the practices of XP in
a distributed environment. Thus, business can realize both the benefits
of distributed and of truly agile development.

Keywords: Agile, XP, Extreme Programming, Scrum, distributed,
multi-site, outsourcing

1 Introduction

The small but growing literature on “Distributed Agile development” takes a
largely pessimistic view. Often, writers assume that having the members of a
team distributed widely in space (and/or time) would deal a fatal blow to the
communication mechanisms upon which agile development relies. They then
infer that, should one attempt to use an Agile method (for example, XP) in
a distributed environment, those practices which embody the communication
value in a colocated setting would be near–fatally compromised. Thus that XP
itself would be compromised and various additional practices of a questionable
nature (often forms of documentation, or of process automation) would need to
be introduced. So it is believed that much of the benefit of “agile” development
would be lost, and that winning much of the rest would be very challenging.

Note the subjunctive mood throughout the previous paragraph. Much of the
Distributed Agile literature is speculative. The few reports of distributed agile
development in practice are stories of hedging, compromise, and of profoundly
mixed results. These are valuable data points, but do not address the question:
what happens if a team distributed in space and time works as fully as possible
in alignment with the principles of, say, XP?

Our observation is that such a team can succeed, and win for its business
sponsors both the advantages of agile development and of distributed working.

2 Distributed Agile Development

Various terms, such as Distributed Agile Development and Distributed Extreme
Programming are currently terms used to refer to a variety of process and prac-

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 180–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XP Expanded: Distributed Extreme Programming 181

tices associated with non-colocated development teams. When we need to refer
to teams that are not colocated we prefer to say “cross-site”.

We distinguish these three general cases for non-colocated, Agile aligned
development:

Agile Outsourcing (AO): Where an agile team is created at an appropriately
low cost offshore location. Requirements are generated onshore, and commu-
nicated offshore using documents, people and tests. There may be some code
sharing between the onshore and offshore team, but not shared ownership as
commonly understood. This approach has a degree of popularity and has been
widely discussed, notably in [10] and [14].

Agile Dispersed Development (ADD): As practiced by much of the Open
Source community and some commercial companies [6]. Developers tend to be
physically alone, but connected through a variety of communication channels.
Practices such as frequent releases and continuous integration are employed,
Pair Programming1 and other team based activities are not (or only in a very
limited form). Because of this, aspects of shared code ownership are often. In the
open source case, this results in practices such as Benign Dictator, and Trusted
Lieutenant.

Distributed Agile Development (DAD): Customers are distributed. One
development team is distributed evenly over several sites to remain close to the
customers. Rich, high density communication ensures that Agile principles and
practices are not compromised, locally or globally.

2.1 Wireless Data Services Case

WDS is a global business providing various services to mobile telephone network
operators and handset manufacturers. These include web based software for self-
serve device management. At the end of 2003, core services were developed and
deployed as APIs by a UK based team using XP. In each region a (non XP) team
would use these internal APIs to deliver on locally generated requirements.

At the beginning of 2004, we brought all developers together in the UK for an
XP and Java “boot camp”. This time was also used to establish a single global
team. Developers were then dispersed to three sites (UK, Seattle, Singapore), and
Distributed Extreme Programming (DXP) begun in April 2004. The business
considers the change to be successful.

3 How to Remain Extreme Around the World

Given that there is a business need to have developers around the world work
together, how can agility be preserved?
1 We distinguish the names of practices by using this face

182 Keith Braithwaite and Tim Joyce

At one level, the answer is quite simple: maintain a commitment to the value
judgments that characterise the core of all agile methods, the Agile Manifesto
[2]. Some writers take it that in applying agile approaches to distributed work-
ing must require sophisticated tools and complicated process models [12]. This
seems at odds with the spirit of the manifesto. Others report some success on
small–scale pilot projects using a much more direct approach [9]. We have shown
that the direct application of XP to full–scale commercial development can be
successful.

The implementation of the Agile Manifesto that we prefer is XP. As described
in [1], this uses various Primary and Corollary Practices to embody Principles
which manifest Values. We also apply many project management ideas adopted
from Scrum [3]. Of the XP Values, we find that in the DXP case, Communication
and Respect are especially emphasized. The key problems in DXP are to main-
tain sufficiently rich communication, and a sufficient level of respect, between
colleagues separated widely in time and space.

Our experience is that these problems are soluble in a way wholly aligned
with Agile principles. We consider that the defining characteristics of DXP are
the use of: One Team, Balanced Sites and Distributed Standup, One Team, One
Codebase.

4 Can Distributed Development Be Truly Agile?

The question is rather: can successful Distributed Development be anything
other than Agile?

4.1 Traditional Distributed Development

We did not investigate the literature particularly thoroughly before experiment-
ing with DXP 2. Instead, we expressed the XP value of Courage. Confident that
the principles of Agile development, and the practices of XP and Scrum, were
fundamentally sound we started with the obvious first steps to implement DXP.

Subsequently we read Carmel [4]. The most interesting feature of this work
(which predates the Agile revival) is that most of the content is aimed at con-
vincing a plan–following, top–down, command–and–control manager of the value
judgments captured in the Agile Manifesto. Carmel identifies “loss of teamness”
and “loss of communication richness” as two of the five centrifugal forces that
will damage a global team. His solutions revolve around such items as “lateral
communication” (communication between co–workers across the width of the or-
ganization chart), encouraging a common team culture, building trust through
face–to–face meetings, and so on.

It’s our claim that almost all of the best practices presented by Carmel for
building dispersed traditional development teams will be second nature to an
organisation practiced at XP.

2 Perhaps if we had, would have been scared off

XP Expanded: Distributed Extreme Programming 183

4.2 The Colocation Shibboleth

Having all team members in one room is a defining characteristic of default XP.
Beck gives Sit Together as the first Primary Practice of XP. However, he also
states clearly that “[...] teams can be distributed and do XP”.

By definition, distributed teams cannot achieve Sit Together as a whole, al-
though each regional group can and should be colocated itself (as developers in
WDS’s regions are). However, if we look beyond the one–room practice to the
value of Communication it manifests we can see the possibility of expressing that
value in other ways.

We submit that the injunction to put everyone in one room is an absolutely
necessary rule to apply when introducing XP. Non-agile development practice
often trains developers to be solitary, uncommunicative and non collaborative.
Together with pairing, Sit Together is very effective at breaking those habits—as
required to roll out the rest of XP. But, if a body of developers are available
already trained to work gregariously, to communicate as much as possible, to seek
out collaborators, then perhaps the need for colocation as the prime mechanism
to manifest the Communication value is weakened.

Beck’s discussion describes the XP practices as theories, with attached pre-
dictions. The Sit Together theory predicts that “[...] the more face time you have,
the more humane and productive the project.” We would generalise this to state
that the more, more rich, communication you have, the more humane and pro-
ductive the project. Face time is still much preferred, but it turns out not to be
a uniquely valuable medium.

5 Practices for DXP

We have identified a number of practices for cross-site development, with partic-
ular emphasis on agile techniques. We present them here as candidate patterns
in something like Portland Form [5]. The patterns are organised by thematic
area, and ordered by significance within an area—as indicated by the number of
*’s suffixed to the name.

5.1 People

These practices relate mostly to human interactions, the most difficult and also
most crucial aspect of DXP. Each site implementing these practices needs people
with experience of co-located XP.

One Team ***

Business needs lead to development resources distributed widely in space and
time. Communication between members is compromised. Trust and cooperation
can break down.
Therefore: Maintain as far as possible a singe team identity across all locations.
Encourage non-business communication, encourage any activity that lets team

184 Keith Braithwaite and Tim Joyce

members share a joke or a cultural reference. Cherish every successful interac-
tion. Let people play. A high level trust is maintained, resulting in fewer conflicts.
When work related conflicts arise, a joke can defuse the tension.

Relates to: Kickoff; Multiple Communication Modes; One Team, One Codebase; One

Team, One Build

As seen in: Seems to be novel as stated, we’d love to learn otherwise

Balanced Sites ***

Team members at one location are sometimes blocked while waiting for actions
or decisions taken at another site. This creates resentment on both sides; the
dependent site resents the productivity impact and the loss of decision making
power; the depended site resents the interruption of thought and activity.
Therefore: Make all sites equal in skill and numbers, and empowered to take
any decision, so that inter–site dependencies are minimized. There is no delay
between when a decision or action is required and when it is performed, main-
taining flow. All team members feel fully engaged.

Relates to: One Team; Distributed Standup (even though dependencies are minimized,

force communication anyway); Ambassador

As seen in: Seems to be novel, as described. We’d love to learn otherwise

Ambassador **

Members of a team in one location find it hard to understand the point of view
of members in another location. Trust and cooperation break down, it is hard
for one local group to work effectively with another.
Therefore: Send an ambassador from one region to another, for an extended
period. Such a local representative can interpret the communications of the re-
mote group, demonstrate that “they” are just like “us”, and influence locally
on behalf of the remote group when required. Ambassadors also carry business
domain knowledge between sites.

Relates to: Visits Build Trust; One Team; Balanced Sites; Multiple Communication Modes

As seen in: [8], [11], [7]

Visits Build Trust **

Team members find it hard to have faith in the good intentions of remove col-
leagues. Blamestorming replaces collaboration, fingerpointing replaces problem
solving.
Therefore: Have team members rotate through locations continually. Always
have at least one team member away from their home location. Trust in a team
member currently remote can be maintained, based on the experience of having
worked with them colocated in the past.

Relates to: AmbassadorOne Team, Multiple Communication Modes

As seen in: [4], [11], [8]

XP Expanded: Distributed Extreme Programming 185

Kickoff *

A new project is to start. All team members involved must synchronise their
ideas about it.
Therefore: Bring everyone involved in the project together in one place at the
same time. Future distributed working is informed by a cohesive view of the
project, and secure interpersonal relationships, formed while the advantages of
Sit Together were available.

Relates to: One Team; Multiple Communication Modes

As seen in: [4], [8], [11]

5.2 Communication

These patterns consider communication, the lifeblood of agile development and
the greatest challenge for DXP.

Distributed Standup ***

Team members remote from one another cannot easily see each other’s story
board, overhear technical discussions, share in resolving issues. Remote mem-
bers’ idea of the state of the team fall out of sync, damaging the cohesion of the
team.
Therefore: Have a video conference session running whenever possible, but at
least once a day, every day for each pair of sites adjacent in time. Force an over-
lap if required. No member can forget that the remote members have a stake,
status is shared (perhaps transitively).

Relates to: One Team; Balanced Sites

As seen in: [?]

Multiple Communication Modes ***

The members of a team cannot be colocated. Face–to–face communication (ex-
plicit and “overhearing”) cannot be used to maintain tacit knowledge. Many
different kinds of knowledge must be shared, often during sharply time–limited
handover slots.
Therefore: Provide team members with as many communication media as pos-
sible. At least these: individual and conference telephone, teleconference, video
conference, email, IM, wiki, VNC. Communication is fostered greatly, and many
different modes of communication can be applied in parallel. A good conversa-
tion to hear at a videoconference standup meeting would be: site 1: We had
an idea for that problem, I’ve just jabbered you the URL for the wiki page that
discusses our example code, see what you think. Site 2: Great! Let’s remote–pair
on this tomorrow.

Relates to: One Team; Wiki as Shared Location; Remote Pair Ambassador; Code is Com-

munication

As seen in: [8], [7], [4]

186 Keith Braithwaite and Tim Joyce

Wiki as Shared Location **

Team members can meet neither at the same time nor at the same place. Com-
munication has to be both over low bandwidth channels and asynchronous. Mem-
bers do not feel members of “one team” due to disjointed communication.
Therefore: Use a wiki. A shared virtual place is created where notices may be
posted, asynchronous conversations take place in a persistent form, and a feeling
of community fostered.

Relates to: Multiple Communication Modes; One Team; Code is Communication is dual

to this practice

As seen in: Many sources mention team wiki’s, but the notion of wiki as shared virtual

location is not explicit. The walls of public lavatories.

Remote Pair **

Developers that need to Pair are remote. Code changes need to be shared. A
familiar shared environment needs to be available to allow pair programming
between sites.
Therefore: Establish an easy-to-start environment with rich communication
(video, text and sound) and a shared development tool (use VNC or similar
to share an IDE). Agree a regular time when remote pairing will occur. Com-
plex, code-level decisions and communication will occur in a familiar way.

Relates to: One Team, One Codebase; Many Communication Modes; Code is Commu-

nication

As seen in: [12], many informal mentions on newsgroups, etc.

5.3 Code

These patterns address what is perhaps the easiest aspect of DXP, the technical.

One Team, One Codebase ***

Widely separated team members need to maintain a common identity as techni-
cal problem solvers. They need to share rights and responsibilities toward each
others’ work, just as colocated workers do.
Therefore: Have all team members everywhere use a single, shared codebase.
Technical problems and their solutions are shared. The whole team always has
a common point of reference.

Relates to: One Team; Code is Communication

As seen in: Seems to be novel as stated, we’d love to learn otherwise. This practice

largely opposed to much of the advice given in [13].

Functional Tests Capture Requirements **

Requirements need to be transmitted from one site to another. A great deal of
time and energy would be consumed to make requirements documents work as
a medium.

XP Expanded: Distributed Extreme Programming 187

Therefore: Use failing functional tests to express the required functionality. The
requirement is expressed unambiguously.

Relates to: Code is Communication; Tests Announce Intention

As seen in: [8]

One Team, One Build **

All team members need to share responsibility for maintaining all code in a
working state. With multiple integration machines, inevitable environment skew
can hide the reasons for build failure. Arguments break out between sites as to
whether a break is because of “your build machine” or “our code”, destroying
shared responsibility and respect.
Therefore: Have a single build server. Set up an RSS feed so that each site can
hear the build passing or failing. The build status of the global codebase is a
single boolean value.

Relates to: One Team, One Team, One Codebase

As seen in: Seems to be novel as stated, we’d love to learn otherwise. This contradicts

the advice given in [13] for large teams: §3.4 states “Each [sub]team can and should

set up their own automated integration server”

Code is Communication **

Colleagues far apart cannot discuss technical issues, design ideas, requirements
face–to–face. This can threaten the conceptual integrity of a code base (and
team).
Therefore: Use the code base as a communications medium between sites. Con-
verse with remote colleagues via the codebase. Express problems as failing tests
in a suite outside the build, express design ideas as working code in a scratch
area of the repository. Code is written for humans to read and only incidentally
for computers to execute — attributed to Knuth. A unique, unambiguous, shared
artifact exists to transmit technical ideas.

Relates to: Tests Announce Intention; Wiki as Shared Location is dual to this practice.

As seen in: Seems to be novel as described, we’d love to learn otherwise. Although “ask

the code” is a common XP slogan, it would seem to mean something rather different.

Tests Announce Intention *

Colleagues working on the same code base cannot “overhear” that they are about
to collide on the same region of the code and so coordinate their efforts. Remote
teams suffer integration races.
Therefore: Use functional and/or acceptance tests to publish the intention to
work in a particular area. Remote colleagues can identify, asynchronously and
unambiguously, what areas of the code others are likely to be changing soon.

Relates to: Code is Communication

188 Keith Braithwaite and Tim Joyce

6 Conclusion

A need for Distributed development exists in business, a desire to remain Ex-
treme exists in the developer community. There is no need to compromise the
second to accommodate the first.

Remaining firmly aligned to Agile principles allows development teams to
grow with businesses as they globalize.

References

1. Beck, K. with Andres, C.: Extreme Programming Explained: Embrace Change
(2nd Edition) Addison–Wesley (2004)

2. Beck, K. et al: The Agile Manifesto http://www.agilemanifesto.org/
3. Beedle, M., Schwaber, K.: Agile Software Development with Scrum Prentice Hall

(2002)
4. Carmel, E.: Global Software Teams Prentice Hall (1999)
5. Cunningham, W.: About the Portland Form

http://c2.com/ppr/about/portland.html (as at end 2004)
6. Daniels, J., Dyson, P.: CS2 Dispersed Development OT2004

http://www.spa2005.org/ot2004/programme.shtml (2004)
7. Jensen, B., Zilmer, A.: Cross-Continent Development Using Scrum and XP

http://www.informatik.uni-trier.de/˜ley/db/conf/xpu/xp2003.html (2003)
8. Fowler, M.: Using an Agile Software Process with Offshore Development

http://martinfowler.com/articles/agileOffshore.html (as at April 2004)
9. Kircher, M., Jain, P., Corsaro, A., Levine, D.: Distributed eXtreme Programming

10. Martin, A., Biddle, R., Noble, J.: When XP Met Outsourcing XP 2004, LNCS 3092
(2004)

11. Poole, C. J.: Distributed Product Development using Extreme Programming XP
2004, LNCS 3092 (2004)

12. Reeves, M., Zhu, J.: Moomba–A Collaborative Environment for Supporting Dis-
tributed Extreme Programming in Global Software Development. XP 2004, LNCS
3092 (2004)

13. Rogers, R. O.: Scaling Continuous Integration XP 2004, LNCS 3092 (2004)
14. Simons, M.: Internationally Agile Informit.com (2002)

http://www.informit.com/articles/article.asp?p=25929

	XP Expanded: Distributed Extreme Programming
	1 Introduction
	2 Distributed Agile Development
	2.1 Wireless Data Services Case

	3 How to Remain Extreme Around the World
	4 Can Distributed Development Be Truly Agile?
	4.1 Traditional Distributed Development
	4.2 The Colocation Shibboleth

	5 Practices for DXP
	5.1 People
	5.2 Communication
	5.3 Code

	6 Conclusion
	References

