
5 Preorder Relations
∗

Stefan D. Bruda

Department of Computer Science
Bishop’s University
Lennoxville, Quebec J1M 1Z7, Canada
bruda@cs.ubishops.ca

5.1 Introduction

The usefulness of formalisms for the description and the analysis of reactive sys-
tems is closely related to the underlying notion of behavioral equivalence. Such
an equivalence should formally identify behaviors that are informally indistin-
guishable from each other, and at the same time distinguish between behaviors
that are informally different.

One way of determining behavioral equivalences is by observing the systems
we are interesting in, experimenting on them, and drawing conclusions about
the behavior of such systems based on what we see. We refer to this activity
as testing. We then consider a set of relevant observers (or tests) that interact
with our systems; the tests are carried out by human or by machine, in many
different ways (i.e., by using various means of interaction with the system being
tested).

In this context, we may be interested in finding out whether two systems are
equivalent; for indeed two equivalent (sub)systems can then be replaced with
each other without affecting the overall functionality, and we may also want
to compare the specification of a system with its implementation to determine
whether we actually implemented what we wanted to implement. We could then
create an equivalence relation between systems, as follows: two systems are equiv-
alent (with respect to the given tests) if they pass exactly the same set of tests.
Such an equivalence can be further broken down into preorder relations on
systems, i.e., relations that are reflexive and transitive (though not necessarily
symmetric).

Preorders are in general easier to deal with, and one can reconstruct an
equivalence relation by studying the preorder that generates it. Preorders are
also more convenient—indeed, more meaningful—than equivalences in compar-
ing specifications and their implementation: If two systems are found to be in a
preorder relation with each other, then one is the implementation of the other,
in the sense that the implementation is able to perform the same actions upon
its computational environment as the other system (by contrast with equiva-
lences the implementation may be now able to perform more actions, but this

∗
This work was supported by the Natural Sciences and Engineering Research Council
of Canada, and by the Fond québécois de recherche sur la nature et les technologies.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 117-149, 2005.
 Springer-Verlag Berlin Heidelberg 2005

118 Stefan D. Bruda

is immaterial as far as the capacity to implement is concerned). Preorders can
thus be practically interpreted as implementation relations.

Recall from the first paragraph that we are interested in a formal approach
to systems and their preorders. We are thus not interested how this system is
built, whether by system we mean a reactive program or a protocol, they are all
representable from a behavioral point of view by a common model. We shall refer
to the behavior of a system as a process, and we start this chapter by offering a
formal definition for the notion of process.

Depending on the degree of interaction with processes that we consider al-
lowable, many preorder relations can be defined, and many have been indeed
defined. In this chapter we survey the most prominent preorder relations over
processes that have been developed over time. We leave the task of actually using
these preorders to subsequent chapters.

Preorders are not created equal. Different preorders are given by varying the
ability of our tests to examine the processes we are interested in. For example we
may restrict our tests and only allow them to observe the processes, but we may
also allow our tests to interact with the process being observed in some other
ways. By determining the abilities of the tests we establish a testing scenario,
under the form of a set of tests. By varying the testing scenario—i. e., the capa-
bilities of tests to extract information about the process being tested—we end
up with different preorders. We start with a generic testing scenario, and then
we vary it and get a whole bunch of preorders in return.

It is evident that one testing scenario could be able to extract more informa-
tion about processes (and thus to differentiate more between them). It is however
not necessarily true that more differentiation between processes is better, simply
because for some particular application a higher degree of differentiation may be
useless. It is also possible that one testing scenario may be harder to implement1

than another. In our discussion about various testing scenarios and their associ-
ated preorders we shall always keep in mind these practical considerations, and
compare the preorders in terms of how much differentiation they make between
processes, but also in terms of the practical realization of the associated test-
ing scenario. In other words, we keep wondering how difficult is to convince the
process being tested to provide the information or perform the actions required
by the testing scenario we have in mind. For instance, it is arguably harder to
block possible future action of the process under test (as we need to do in the
testing scenario inducing the refusal preorder and presented in Section 5.6 on
page 137) than to merely observe the process and write down the actions that
have been performed (as is the case with the testing scenario inducing trace
preorders presented in Section 5.3 on page 127). The increase in differentiation

1 Implementing a testing scenario means implementing the means of interaction be-
tween a process and a test within the scenario. Implementing a preorder then means
implementing an algorithm that takes two processes and determines whether they
are in the given preorder relation or not by applying tests from the associated testing
scenario.

5 Preorder Relations 119

power of refusal preorder over trace preorder comes thus at a cost which may or
may not be acceptable in practice.

One reason for which practical considerations are of interest is that preorders
are a key element in conformance testing [Tre94]. In such a framework we are
given a formal specification and a possible implementation. The implementation
is treated as a black box (perhaps somebody else wrote a poorly commented
piece of code) exhibiting some external behavior. The goal is then to deter-
mine by means of testing whether the implementation implements correctly the
specification. Such a goal induces naturally an implementation relation, or a
preorder. Informally, the practical use of a preorder relation � consists then in
the algorithmic problem of determining whether s � i for two processes i (the
implementation) and s (the specification) by means of applying on the two pro-
cesses tests taken from the testing scenario associated with �. If the relation
holds then i implements (or conforms to) s (according to the respective testing
scenario). The formal introduction of conformance testing is left to the end of
this chapter, namely to Section 5.9 on page 145 to which we direct the interested
reader for details. For now we get busy with defining preorders and analyzing
their properties.

Where we go from here We present in the next section the necessary prelimi-
naries related to process representation and testing (including a first preorder to
compare things with). Sections 5.3 to 5.8 are then the main matter of this chap-
ter; we survey here the most prominent preorders and we compare them with
each other. We also include a presentation of conformance testing in Section 5.9.

5.1.1 Notations and Conventions

It is often the case that our definitions of various sets (and specifically inductive
definitions) should feature a final item containing a statement along the line that
“nothing else than the above constructions belong to the set being defined.” We
consider that the presence of such an item is understood and we shall not repeat
it over and over. “Iff” stands for “if and only if.” We denote the empty string,
and only the empty string by ε.

We present a number of concepts throughout this chapter based on one par-
ticular paper [vG01] without citing it all the time, in order to avoid tiresome
repetitions.

Many figures show processes that are compared throughout the paper using
various preorders. We show parenthetically in the captions of such figures the
most relevant relations established between the depicted processes. Parts of these
parenthetical remarks do not make sense when the figures are first encountered,
but they will reveal themselves as the reader progresses through the chapter.

5.2 Process Representation and Testing

Many formal descriptions for processes have been developed in the past, most
notably under the form of process algebraic languages such as CCS [Mil80] and

120 Stefan D. Bruda

LOTOS [BB87]. The underlying semantics of all these descriptions can be de-
scribed by labeled transition systems. We will use in what follows the labeled
transition system as our semantical model (feeling free to borrow concepts from
other formalisms whenever they simplify the presentation).

Our model is a slight variation of the model presented in Appendix 22 in
that we need a notion of divergence for processes, and we introduce the concept
of derived transition system; in addition, we enrich the terminology in order
to blend the semantic model into the bigger picture on an intuitive level. For
these reasons we also offer here a short presentation of labeled transition systems
[vG01, Abr87]. Our presentation should be considered a complement to, rather
than a replacement for Appendix 22.

5.2.1 Processes, States, and Labeled Transition Systems

Processes are capable of performing actions from a given, countable set Act. By
action we mean any activity that is a conceptual entity at a given, arbitrary
level of abstraction; we do not differentiate between, say input actions and out-
put actions. Different activities that are indistinguishable on the chosen level of
abstraction are considered occurrences of the same action.

What action is taken by a process depends on the state of the process. We
denote the countable set of states by Q. A process goes from a state to another by
performing an action. The behavior of the process is thus given by the transition
relation −→ ⊆ Q× Act×Q.

Sometimes a process may go from a state to another by performing an internal
action, independent of the environment. We denote such an action by τ , where
τ �∈ Act.

The existence of partially defined states stem from (and facilitate) the se-
mantic of sequential computations (where Ω is often used to denote a partial
program whose behavior is totally undefined). The existence of such states is also
useful for reactive programs. They are thus introduced by a divergence predicate
↑ ranging over Q and used henceforth in postfix notation; a state p for which
p ↑ holds is a “partial state,” in the sense that its properties are undefined; we
say that such a state diverges (is divergent, etc.). The opposite property (that a
state converges) is denoted by the postfix operator ↓.

Note that divergence (and thus convergence) is a property that is inherent to
the state; in particular, it does not have any relation whatsoever with the actions
that may be performed from the given state. Consider for example state x from
Figure 5.4 on page 130 (where states are depicted by nodes, and the relation −→
is represented by arrows between nodes, labeled with actions). It just happens
that x features no outgoing actions, but this does not make it divergent (though it
may be divergent depending on the definition of the predicate ↑ for the respective
labeled transition system). Divergent states stand intuitively for some form of
error condition in the state itself, and encountering a divergent state during
testing is a sure sign of failure for that test.

5 Preorder Relations 121

To summarize all of the above, we offer the following definition:

Definition 5.1. A labeled transition system with divergence (simply la-
beled transition system henceforth in this chapter) is a tuple (Q,Act∪{τ}, −→ , ↑),
where Q is a countable set of states, Act is a countable set of (atomic) actions,
−→ is the transition relation, −→ ⊆ Q× (Act∪{τ})×Q, and ↑ is the divergence
predicate. By τ we denote an internal action, τ �∈ Act.

For some state p ∈ Q we write p ↓ iff ¬ (p ↑). Whenever (q, a, p) ∈ −→
we write p a−−→ q (to be read “p offers a and after executing a becomes q”).
We further extend this notation to the reflexive and transitive closure of −→ as
follows: p ε−→ p for any p ∈ Q; and p σ−−→ q, with σ ∈ Q∗, iff σ = σ1σ2 and there
exists q ′ ∈ Q such that p σ1−−→ q ′ σ2−−→ q. 	

We use the notation p σ−−→ as a shorthand for “there exists q ∈ Q such that
p σ−−→ q,” and the notation −−→/ as the negation of −→ (p a−−→/ q iff it is not the
case that p a−−→ q, etc.).

Assume now that we are given a labeled transition system. The internal
action τ is unobservable. In order to formalize this unobservability, we define an
associated derived transition system in which we hide all the internal actions;
the transition relation ⇒ of such a system ignores the actions τ performed by
the system. Formally, we have:

Definition 5.2. Given a transition system B = (Q,Act ∪ {τ}, −→ , ↑B), its de-
rived transition system is a tuple D = (Q,Act ∪ {ε}, ⇒ , ↑), where ⇒ ⊆
Q× (Act ∪ {ε})×Q and is defined by the following relations:

p
a⇒ q iff p τ∗a−−−→ q

p
ε⇒ q iff p τ∗−−→ q

The divergence predicate is defined as follows: p ↑ iff there exists q such that
q ↑B and p

ε⇒ q, or there exists a sequence (pi)i≥0, such that p0 = p and for
any i > 0 it holds that pi

τ−−→ pi+1. 	

In passing, note that we deviate slightly in Definition 5.2 from the usual
definition of ⇒ (p

a⇒ q iff p τ∗aτ∗−−−−−→ q, see Appendix 22), as this allows for a
clearer presentation.

Also note that a state can diverge in two ways in a derived transition system:
it can either perform a number of internal actions and end up in a state that
diverges in the associated labeled transition system, or evolve perpetually into
new states by performing internal actions. Therefore this definition does not
make distinction between deadlock (first case) and livelock (second variant).
We shall discuss in subsequent sections whether such a lack of distinction is a
good or a bad thing, and we shall distinguish between these variants using the
original labeled transition system (since the derived system is unable to make
the distinction).

It is worth emphasizing once more (this time using an example) that the
definition of divergence in a derived transition system is different from the cor-
respondent definition in a labeled transition system. Indeed, consider state y

122 Stefan D. Bruda

a c

b c

b c

b c

b . . .

(a)

a

b

c

(b)

Fig. 5.1. Representation of infinite process trees: an infinite tree (a), and its graph
representation (b).

from Figure 5.6 on page 133 (again, states are depicted by nodes, and the rela-
tion −→ is represented by arrows between nodes, labeled with actions). It may
be the case that y is a nice, convergent state in the respective labeled transition
system (i.e., y ↓B). Still, it is obviously the case that y ↑ in the derived transition
system (we refer to this as “y may diverge” instead of “y diverges,” given that y
may decide at some time to perform action b and get out of the loop of internal
actions).

Again, we shall use in what follows natural extensions of the relation ⇒
such as p

a⇒ and �⇒ . We also use by abuse of notation the same operator for
the reflexive and transitive closure of ⇒ (in the same way as we did for −→).

A transition system gives a description of the actions that can be performed
by a process depending on the state that process is in. A process does in addition
start from an initial state. In other words, a process is fully described by a
transition system and an initial state. In most cases we find it convenient to
fix a global transition system for all the processes under consideration. In this
setting, a process is then uniquely defined by its initial state. We shall then blur
the distinction between a process and a state, often referring to “the process
p ∈ Q.”

Finally, a process can be represented as a tree in a natural way: Tree nodes
represent states. The root node is the initial state. The edges of the tree will
be labeled by actions, and there exists an edge between nodes p and q labeled
with a iff it holds that p a−−→ q in the given transition system (or that p

a⇒ q
if we talk about a derived transition system). We shall not make use of this
representation except when we want to represent a process (or part thereof)
graphically for illustration purposes. Sometimes we find convenient to “abbrevi-
ate” tree representation by drawing a graph rather than a tree when we want
to represent infinite trees with states whose behavior repeats over and over (in
which case we join those states in a loop). The reader should keep in mind that
this is just a convenient representation, and that in fact she is in front of a finite
representation of an infinite tree. As an example, Figure 5.1 shows such a graph
together with a portion of the unfolded tree represented by the graph.

5 Preorder Relations 123

Two important properties of transition systems are image-finiteness and
sort-finiteness. A transition system is image-finite if for any a ∈ Act, p ∈ Q
the set {q ∈ Q | p a−−→ q} is finite, and is sort-finite if for any p ∈ Q the set
{a ∈ Act | ∃σ ∈ Act∗, ∃ q ∈ Q such that p σ−−→ q a−−→} is finite. This definition
also applies to derived transition systems.

In all of the subsequent sections we shall assume a transition system (Q,Act∪
{τ}, −→ , ↑B) with its associated derived transition system (Q,Act∪{τ}, ⇒ , ↑),
applicable to all the processes under scrutiny; thus a process shall be identified
only by its initial state.

5.2.2 Processes and Observations

As should be evident from the need of defining derived transition systems, we
can determine the characteristics of a system by performing observations on it.
Some observations may reveal the whole internal behavior of the system being
inspected, some may be more restricted.

In general, we may think of a set of processes and a set of relevant observers
(or tests). Observers may be thought of as agents performing observations. Ob-
servers can be viewed themselves as processes, running in parallel with the pro-
cess being observed and synchronizing with it over visible actions. We can thus
represent the observers as labeled transition systems, just as we represent pro-
cesses; we prefer however to use a different, “denotational” syntax for observers
in our presentation.

Assume now that we have a predefined set O of observers. The effect of
observers performing tests is formalized by considering that for every observer
o and process p there exists a set of runs Runs(o, p). If we have r ∈ Runs(o, p)
then the result of o testing p may be the run r .

We take the outcomes of particular runs of a test as being success or failure
[Abr87, dNH84] (though we shall differentiate between two kinds of failure later).
We then represent outcomes as elements in the two-point lattice

O
def=

|
⊥

The notion of failure incorporates divergence, so for some observer o and some
process p, the elements of O have the following meaning:

• the outcome of o testing p is if there exists r ∈ Runs(o, p) such that r is
successful;
• the outcome of o testing p is ⊥ if there exists r ∈ Runs(o, p) such that

either r is unsuccessful, or r contains a state q such that q ↑ and q is not
preceded by a successful state.

Note that for the time being we do not differentiate between runs with a deadlock
(i.e., in which a computation terminates without reaching a successful state) and
runs that diverge; the outcome is ⊥ in both cases.

124 Stefan D. Bruda

Processes may be nondeterministic, so there may be different runs of a given
test on a process, with different outcomes. In effect, the (overall) outcome of an
observer testing a process is a set, and therefore we are led to use powerdomains
of O. In fact, we have three possible powerdomains:

Pmay
def=
{} = {⊥,}
|
{⊥}

Pconv
def=

{}
|

{⊥,}
|
{⊥}

Pmust
def=
{}
|
{⊥} = {⊥,}

The names of the three powerdomains are not chosen haphazardly. By consid-
ering Pmay as possible outcomes we identify processes that may pass a test in
order to be considered successful. Similarly, Pmust identifies tests that must be
successful, and by using Pconv we combine the may and must properties. The
partial order relations induced by the lattices Pmay, Pmust, and Pconv shall be
denoted by ⊆may, ⊆must, and ⊆conv, respectively.

We also need to introduce the notion of refusal. A process refuses an action
if the respective action is not applicable in the current state of the process, and
there is no internal transition to change the state (so that we are sure that the
action will not be applicable unless some other visible action is taken first).

Definition 5.3. Process p ∈ Q refuses action a ∈ Act, written p ref a, iff p ↓B ,
p τ−−→/ , and p a−−→/ . 	

We thus described the notions of test and test outcomes. We also introduce
at this point a syntax for tests. In fact tests are as we mentioned just processes
that interact with the process under test, so we can represent tests in the same
way as we represent processes. Still, we find convenient to use a “denotational”
representation for tests since we shall refer quite often to such objects. We do
this by defining a set O of test expressions.

While we are at it, we also define the “semantics” of tests, i.e., the way tests
are allowed to interact with the processes being tested. Such a semantics for tests
is defined using a function obs : O × Q → P , where P ∈ {Pmay,Pconv,Pmust}
such that obs(o, p) is the set of all the possible outcomes.

To concretize the concepts of syntax and semantics, we introduce now our first
testing scenario (i.e., set of test expressions and their semantics), of observable
testing equivalence2[Abr87]. This is a rather comprehensive testing model, which
we will mostly restrict in order to introduce other models—indeed, we shall
restrict this scenario in all but one of our subsequent presentations. A concrete
model for tests also allows us to introduce our first preorder.

For the remainder of this section, we fix a transition system (Q,Act∪{τ}, −→ ,
↑B) together with its derived transition system (Q,Act ∪ {ε}, ⇒ , ↑).
2 Just testing equivalence originally [Abr87]; we introduce the new, awkward termi-

nology because the original name clashes with the names of preorders introduced
subsequently.

5 Preorder Relations 125

∧ ⊥ �
⊥ ⊥ ⊥
� ⊥ �

∧ {⊥} {⊥,�} {�}
{⊥} {⊥} {⊥} {⊥}
{⊥,�} {⊥} {⊥,�} {⊥,�}
{�} {⊥} {⊥,�} {�}

∀
{⊥} {⊥}
{⊥,�} {⊥}
{�} {�}

∨ ⊥ �
⊥ ⊥ �
� � �

∨ {⊥} {⊥,�} {�}
{⊥} {⊥} {⊥,�} {�}
{⊥,�} {⊥,�} {⊥,�} {�}
{�} {�} {�} {�}

∃
{⊥} {⊥}
{⊥,�} {�}
{�} {�}

Fig. 5.2. Semantics of logical operators on test outcomes.

Definition 5.4. The set O of test expressions inducing the observable testing
equivalence contains exactly all of the following constructs, with o, o1, and o2

ranging over O:

o def= Succ (5.1)
| Fail (5.2)
| ao for a ∈ Act (5.3)
| ão for a ∈ Act (5.4)
| εo (5.5)
| o1 ∧ o2 (5.6)
| o1 ∨ o2 (5.7)
| ∀ o (5.8)
| ∃ o (5.9)

	

Intuitively, Expressions (5.1) and (5.2) state that a test can succeed or fail by
reaching two designated states Succ and Fail, respectively. A test may check
whether an action can be taken when into a given state, or whether an action
is not possible at all; these are expressed by (5.3) and (5.4). We can combine
tests by means of boolean operators using expressions of form (5.6) and (5.7).
By introducing tests of form (5.5) we allow a process to “stabilize” itself through
internal actions. Finally, we have universal and existential quantifiers for tests
given by (5.8) and (5.9). Nondeterminism is introduced in the tests themselves
by the Expressions (5.7) and (5.9), the latter being a generalization of the former.

Definition 5.5. With the semantics of logical operators as defined in Figure 5.2,
the function obs inducing the observable testing equivalence, obs : O × Q →
Pconv, is defined as follows:

126 Stefan D. Bruda

obs(Succ, p) = {}
obs(Fail, p) = {⊥}

obs(ao, p) =
⋃

{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {⊥ | p ε⇒ p′, p′ ref a}

obs(ão, p) =
⋃

{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ { | p ε⇒ p′, p′ ref a}

obs(εo, p) =
⋃

{obs(o, p′) | p ε⇒ p′} ∪ {⊥ | p ↑}
obs(o1 ∧ o2, p) = obs(o1, p) ∧ obs(o2, p)
obs(o1 ∨ o2, p) = obs(o1, p) ∨ obs(o2, p)

obs(∀ o, p) = ∀ obs(o, p)
obs(∃ o, p) = ∃ obs(o, p)

	

The function from Definition 5.5 follows the syntax of test expressions faith-

fully, so most cases should need no further explanation. We note that tests of
form (5.3) are allowed to continue only if the action a is available to, and is
performed by the process under test; if the respective action is not available, the
test fails. In contrast, when a test of form (5.4) is applied to some process, we
record a success whenever the process refuses the action (the primary purpose of
such a test), but then we go ahead and allow the action to be performed anyway,
to see what happens next (i.e., we remove the block on the action; maybe in ad-
dition to the noted success we get a failure later). As we shall see in Section 5.7
such a behavior of allowing the action to be performed after a refusal is of great
help in identifying crooked coffee machines (and also in differentiating between
processes that would otherwise appear equivalent).

As a final thought, we note again that tests can be in fact expressed in the
same syntax as the one used for processes. A test then moves forward synchro-
nized with the process under investigation, in the sense that the visible action
performed by the process should always be the same as the action performed
by the test. This synchronized run is typically denoted by the operator |, and
the result is itself a process. We thus obtain an operational formulation of tests,
which is used as well [Abr87, Phi87] and is quite intuitive. Since we find the
previous version more convenient for this presentation, we do not insist on it
and direct instead the reader elsewhere [Abr87] for details.

5.2.3 Equivalence and Preorder Relations

The semantics of tests presented in the previous section associates a set of out-
comes for each pair test–process. By comparing these outcomes (i.e., the set
of possible observations one can make while interacting with two processes, or
the observable behavior of the processes) we can define the observable testing
preorder3 �. Given the preorder one can easily define the observable testing
equivalence �.
3 Recall that this was originally named testing preorder [Abr87], but we introduce the

new name because of name clashes that developed over time.

5 Preorder Relations 127

Definition 5.6. The observable testing preorder is a relation �⊆ Q ×Q,
where p � q iff obs(o, p) ⊆ obs(o, q) for any test o ∈ O. The observable testing
equivalence is a relation �⊆ Q×Q, with p � q iff p � q and q � p. 	

If we restrict the definition of O (and thus the definition of the function obs),
we obtain a different preorder, and thus a different equivalence. In other words, if
we change the set of possible tests that can be applied to processes (the testing
scenario), then we obtain a different classification of processes.

We will present in what follows various preorder relations under various test-
ing scenarios. These preorders correspond to sets of changes imposed on O and
obs, and we shall keep comparing various scenarios with the testing scenario
presented in Section 5.2.2. As it turns out, the changes we impose on O are in
all but one case restrictions (i.e., simplification of the possible tests).

We will in most cases present an equivalent modal characterization corre-
sponding to these restrictions. Such a modal characterization (containing a set
of testing formulae and a satisfaction operator) will in essence model exactly the
same thing, but we are able to offer some results that are best shown using the
modal characterization rather than other techniques.

When we say that a preorder �α makes more distinction than another pre-
order �β we mean that there exist processes that are distinguishable under �α

but not under �β . This does not imply that �α and �β are comparable, i.e., it
could be possible that �α makes more distinction than �β and that �β makes
more distinction than �α. Whenever �α makes more distinction than �β but
not the other way around we say that �α is coarser than �β, or that �β is finer
than �α.

5.3 Trace Preorders

We thus begin our discussion on preorder and equivalence relations with what
we believe to be the simplest assumption: we compare two processes by their
trace, i.e., by the sequence of actions they perform. In this section we follow
roughly [vG01, dN87].

We consider that the divergence predicate ↑B of the underlying transition
system is empty (no process diverges). The need for such a strong assumption
will become clear later, when we discover that trace preorders do not cope well
with divergence.

The trace preorder is based on the following testing scenario: We view a
process as a black box that contains only one interface to the real world. This
interface is a window displaying at any given moment the action that is currently
carried out by the process. The process chooses its execution path autonomously,
according to the given transition system. As soon as no action is carried out, the
display becomes empty. The observer records a sequence of actions (a trace), or
a sequence of actions followed by an empty window (a complete trace). Internal
moves are ignored (indeed, by their definition they are not observable). We
regard two processes as equivalent if we observe the same complete trace using
our construction for both processes.

128 Stefan D. Bruda

p

a

b c

q

a a

b c

r

a a

b c

Fig. 5.3. Three sample processes (p �CT q �CT r ; q �	B p).

Specifically, σ ∈ Act∗ is a trace of a process p iff there exists a process q
such that p

σ⇒ q. A complete trace σ ∈ Act∗ is a trace such that p
σ⇒ q and

q �⇒ .
The set LCT of complete trace formulae is inductively defined as follows:

• ∈ LCT (marks the end of a trace);
• 0 ∈ LCT (0 marks the end of a complete trace);
• if ψ ∈ LCT and a ∈ Act then aψ ∈ LCT .

A modal characterization for trace formulae is given by the satisfaction oper-
ator �⊆ Q× LCT inductively defined by:

• p � for all p ∈ Q;
• p � 0 if p �⇒ ;
• p � aψ if p

a⇒ q and q � ψ for some q ∈ Q.

We can now define the complete trace preorder �CT and implicitly the
complete trace equivalence �CT :

Definition 5.7. p �CT q iff p � ψ implies q � ψ for any ψ ∈ LCT . 	

The complete trace preorder induces the equivalence used in the theory of
automata and languages. Indeed, consider the processes as language generators
and then the trace preorder is given by the inclusion of the language of complete
traces generated by one process into the language of complete traces generated
by the other process. Take for instance the processes shown in Figure 5.3. We
notice that p �CT q since they both generate the language {, a, ab0, ac0},
and that q �CT r (since r generates the larger language {, a, ab0, ac0, a0}).

We note in passing that an even weaker (in the sense of making less dis-
tinction) preorder relation can be defined [vG01] by eliminating the distinction
between traces and complete traces (by putting whenever we put 0). Under
such a preorder (called trace preorder), the three processes in Figure 5.3 are
all equivalent, generating the language {, a, ab, ac}. (We note however
that the complete trace preorder is quite limited so we do not find necessary to
further elaborate on an even weaker preorder.)

5 Preorder Relations 129

For one thing, trace preorder (complete or not) does not deal very well with
diverging processes. Indeed, we need quite some patience in order to determine
whether a state diverges or not; no matter how long we wait for the action
to change in our display window, we cannot be sure that we have a diverging
process or that we did not reach the end of an otherwise finite sequence of internal
moves. We also have the problem of infinite traces. This is easily fixed in the
same language theoretic spirit that does not preclude an automaton to generate
infinite words, but then we should arm ourselves with the same immense amount
of patience. Trace preorders imply the necessity of infinite observations, which
are obviously impractical.

Despite all these inconveniences, trace preorders are the most elementary
preorders, and perhaps the most intuitive (that’s why we chose to start our
presentation with them). In addition, such preorders seem to capture the finest
differences in behavior one would probably like to distinguish (namely, the dif-
ference between observable sequences of actions). Surprisingly, it turns out that
other preorders make an even greater distinction. Such a preorder is the subject
of the next section.

5.4 Observation Preorders and Bisimulation

As opposed to the complete trace preorder that seems to capture the finest
observable differences in behavior, the observation preorder [Mil80, HM80],
the subject of this section, is the finest behavioral preorder one would want to
impose; i.e., it incorporates all distinctions that could reasonably be made by
external observation. The additional discriminating power is the ability to take
into account not only the sequences of actions, but also some of the interme-
diate states the system goes through while performing the respective sequence
of actions. Indeed, differences between intermediate states can be exploited to
produce different behaviors.

It has also been argued that observation equivalence makes too fine a distinc-
tion, even between behaviors that cannot be really differentiated by an observer.
Such an argument turns out to be pertinent, but we shall postpone such a dis-
cussion until we introduce other preorder relations and have thus something to
compare.

The observation preorder �B is defined using a family of preorder rela-
tions �n , n ≥ 0 [Abr87]:

(1) it is always the case that p �0 q;
(2) p �n+1 q iff, for any a ∈ Act it holds that

• for any p′ such that p
a⇒ p′ there exists q ′ such that q

a⇒ q ′ and p′ �n

q ′, and
• if p ↓ then (i) q ↓ and (ii) for any q ′ such that q

a⇒ q ′ there exists p′

such that p
a⇒ p′ and p′ �n q ′;

(3) p �B q iff for any n ≥ 0 it holds that p �n q.

130 Stefan D. Bruda

p

u

x

a

b c

q

v w

a a

b c

Fig. 5.4. Processes not equivalent under observation preorder (p ��B q ; p �CT q ;
p �R q).

The equivalence �B induced by �B (p �B q iff p �B q and q �B p) is called
observation equivalence.

The observation equivalence is often called (weak) bisimulation equiv-
alence, hence the B subscript (the other logical–and often used–subscript O
having the inconvenience of being easily confused with a zero).

It is clear that the observation preorder makes more distinction than trace
preorders. Consider the processes p and q from Figure 5.3, shown again in Fig-
ure 5.4 this time with names for some of the extra states. It is immediate that
v �1 u, and that w �1 u. It follows that q �2 p. However, it is not the case
that u �1 v , and thus q ��2 p. We have a strict implementation relation between
q and p. Recall however that these two processes are equivalent under trace
preorders.

Observation preorder corresponds to a testing scenario identical with the
general scenario presented in Definitions 5.4 and 5.5 (in Section 5.2.2). As is
the case with trace preorder we can inspect the sequence of actions performed
by the process under scrutiny. This is given by expressions of form (5.1), (5.2),
and (5.3).

As a side note, we mentioned at the beginning of this section that observation
preorder makes more distinction than trace preorder. The expressions we allow
up to this point are enough to show this: Then the tests only have the form
a1a2 . . . anSucc or a1a2 . . . anFail for some n ≥ 0. This way we can actually
distinguish between processes such as p and q from Figure 5.4. Indeed, we notice
that

obs(abSucc, p) = {}

whereas

obs(abSucc, q) = {,⊥}

(we can start on the ac branch of q, which will produce ⊥). In other words, we
are able to distinguish between distinct paths in the run of a process, not only
between different sequences of actions.

5 Preorder Relations 131

We close the side remark and go on with the description of the testing sce-
nario for observation preorder. The addition of expressions of form (5.4) intro-
duces the concept of refusals, which allow one to obtain information about the
failure of the process to perform some action (as opposed to its ability to per-
form something). The expressions of form (5.6) and (5.7) allows us to copy the
process being tested at any time during its execution, and to further test the
copies by performing separate tests. Global testing is possible given expressions
of form (5.8) and (5.9). This is a generalization of the two copy operations, in
the sense that information is gathered independently for each possible test, and
the results are then combined together. Finally, nondeterminism is introduced
in the tests themselves by Expression (5.5). Such a nondeterminism is however
controlled by the process being tested; indeed, if the process is convergent then
we will eventually perform test o from an εo construction. By this mechanism
we allow the process to “stabilize” before doing more testing on it.

Proposition 5.8. With the set O of tests as defined in the above testing sce-
nario, p �B q iff obs(o, p) ⊆ obs(o, q) for any test o ∈ O.

In other words, observation preorder and observable testing preorder are the
same, i.e., observation equivalence corresponds exactly to indistinguishability
under testing.

A modal characterization of observation equivalence can be given in terms
of the set LHM of Hennessy-Milner formulae:

• ,⊥ ∈ LHM ;
• if φ, ψ ∈ LHM then φ ∧ ψ, φ ∨ ψ, [a]ψ, 〈a〉φ ∈ LHM for some a ∈ Act.

The satisfaction operator �∈ Q× LHM is defined in the following manner:

• p � is true;
• p � ⊥ is false;
• p � φ ∧ ψ iff p � φ and p � ψ;
• p � φ ∨ ψ iff p � φ or p � ψ;
• p � [a]φ iff p ↓ and for any p′ such that p

a⇒ p′ it holds that p′ � φ;
• p � 〈a〉φ iff there exists p′ such that p

a⇒ p′ and p′ � φ.

The following is then the modal characterization of the observation equivalence
[Abr87]:

Proposition 5.9. In an underlying sort-finite derived transition system, p �B

q iff p � ψ implies q � ψ for any ψ ∈ LHM .

The translation between expressions in LHM and tests is performed by the
function (·)∗ : LHM → O defined as follows [Abr87]:

()∗ = Succ (⊥)∗ = Fail

(ψ ∧ φ)∗ = (ψ)∗ ∧ (φ)∗ (ψ ∨ φ)∗ = (ψ)∗ ∨ (φ)∗

([a]ψ)∗ = ∀ ã(ψ)∗ (〈a〉ψ)∗ = ∃ a(ψ)∗

([ε]ψ)∗ = ∀ ε(ψ)∗ (〈ε〉ψ)∗ = ∃ ε(ψ)∗
(5.10)

132 Stefan D. Bruda

p

τ τ

a a

b c

q

a a

b c

Fig. 5.5. More processes not equivalent under observation preorder (p ��B q ; p �CT q ;
p �must q ; p �R q).

Essentially all the testing techniques from the general testing scenario are
combined together in a rather comprehensive set of testing techniques to create
observation preorder. The comprehensiveness of the testing scenario itself is a
problem. While it has an elegant proof theory (which is not presented here, the
interested reader is directed elsewhere [Abr87]), observation preorder induces a
too complex testing scenario. We have constructed indeed a very strong notion of
observability; most evidently, according to Expressions (5.8) and (5.9) we assume
the ability to enumerate all possible operating environments, so as to guarantee
that all the nondeterministic branches of the process are inspected. The number
of such branches is potentially infinite. It is not believed that global testing is
really acceptable from a practical point of view. Preorder relations that will be
presented in what follows place restrictions in what we can observe, and thus
have a greater practical potential.

It is also the case that observation preorder makes too much of a distinction
between processes. One example of distinction not made in trace preorder has
been given in Figure 5.4. One can argue that such a distinction may make sense in
some cases, but such an argument is more difficult in the case of processes shown
in Figure 5.5, which are slight modifications of the processes from Figure 5.4.
Under (any) trace preorder the two processes p and q are equivalent, and we
argue that this makes sense; for indeed by the very definition of internal moves
they are not manifest to the outside world, and besides internal moves the two
processes behave similarly. However, it is not the case that q �B p. Indeed,
notice that q ref b, whereas it is not the case that p ref b (since p can move
ahead by means of internal actions, and thus the refusal does not take place
according to Definition 5.3). Then the test b̃Succ introduces a outcome in
q but not in p according to Definition 5.5; the non-equivalence follows. This
certainly looks like nitpicking; we shall introduce below preorders that are not
that sensitive to internal moves.

We observe on the other hand that the processes s and t from Figure 5.6 are
equivalent under observation preorder. We saw observation preorder giving too
much weight to internal moves; now we see the same preorder ignoring this kind
of moves altogether. The reason for this is that the internal move never changes

5 Preorder Relations 133

s
a b

t
y

a b

τ

Fig. 5.6. Processes equivalent under observation preorder (s �B t ; s �R t ; s ��must t ;
s �fmust t).

the state, so no matter how many times we go through it we end where we left
from. Still, the τ -loop is not without significance in practice since such a loop
may produce divergence (if the process keeps iterating through it). However, it
can also be argued that the τ -loop is executed an arbitrary but finite number of
times and so the process executes b eventually (under some notion of fairness).
We shall actually argue back and forth about these two processes as we go along
with the description of other preorder relations, so you do not have to make up
your mind just yet.

5.5 Testing Preorders

Testing preorders [dNH84] are coarser than observation preorder. Essentially,
testing preorders differentiate between processes based on differences in deadlock
behavior. We may differentiate by the ability to respond positively to a test, or
the ability to respond negatively to a test, or both. In practical cases this is often
sufficient.

Recall the concept of outcome of a test presented in Section 5.2.2. For a test
o and a process p the result of applying o to p is the set of runs Runs(o, p)
with outcomes from the set {⊥,}. Also recall the lattices Pmay, Pmust, and
Pconv over the powerset of {⊥,}, together with the corresponding partial order
relations.

We then have the following testing scenario for testing preorders: We run
a test in parallel to the process being tested, such that they perform the same
actions. If the test reaches a success state, then the test succeeds; if on the other
hand the process reaches a deadlock state (i.e., a state with no way out), or if
the process diverges before the test has reached a success state, the test fails.
Sometimes we are interested in running the same test repeatedly and collect all
of the possible outcomes; we need this when we want to make sure that a test
succeeds no matter what.

Formally, we change in what follows (simplify in fact) the semantics of Ex-
pression (5.3) from Definition 5.4 on page 125 to

obs(ao, p) =
⋃

{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {⊥ | p �⇒ } (5.11)

Then we look at two alternative ways to restrict the set of tests O:

(1) Let Omay be defined only by expressions of form (5.1), (5.3), and (5.5). We
do not need any test that signifies failure; instead, failure under test happens

134 Stefan D. Bruda

whenever we reach a deadlock, according to Expression (5.11). Indeed, we
are not allowed to combine different testing outcomes at all (there are no
boolean operators such as ∧, ∨ on outcomes), so a test that fails does not
differentiate between anything (it fails no matter what); therefore these tests
are excluded as useless. According to the same Expression (5.11) we do not
differentiate between deadlock and divergence—both constitute failure under
test.
Incidentally, the inability to combine test outcomes makes sense in practice;
for indeed recall our criticism with respect to the “global testing” allowed in
the observation preorder and that we considered impractical. As it turns out
it may also be a too strong restriction, so we end up introducing it again in
our next set of tests.

(2) We are now interested in all the possible outcomes of a test. First, let Omust

be defined only by expressions of form (5.1), (5.2), (5.3), and (5.5). This time
we do like to combine tests, but only by taking the union of the outcomes
without combining them in any smarter way. This is the place where we
deviate from (i.e., enhance) our generic testing scenario, and we add the
following expression to our initial set of tests O:

o = o1 + o2 (5.12)

with the semantics

obs(o1 + o2, p) = obs(o1, p) ∪ obs(o2, p)

(3) A combination between these two testing scenarios is certainly possible, so
put O = Omay ∪ Omust.

In order to complete the test scenario, we define the following relations be-
tween processes and tests:

Definition 5.10. Process p may satisfy test o, written p may o iff∈ obs(o, p).
Process p must satisfy test o, written p must o iff {} = obs(o, p). 	

The two relations introduced in Definition 5.10 correspond to the lattices
Pmay and Pmust, respectively. When we use the may relation we are happy with
our process if it does not fail every time; if we have a successful run of the test,
then the test overall is considered successful. Relation must on the other hand
considers failure catastrophic; here we accept no failure, all the runs of the test
have to be successful for a test to be considered a success. An intuitive compar-
ison with the area of sequential programs is that the may relation corresponds
to partial correctness, and the must relation to total correctness. We have one
lattice left, namely Pconv; this obviously corresponds to the conjunction of the
two relations.

Based on this testing scenario, and according to our discussion on the rela-
tions may and must we can now introduce three testing preorders4 �may,�must

,�conv⊆ Q×Q:
4 These preorders were given numerical names originally [dNH84]. We choose here to

give names similar to the lattices they come from in order to help the intuition.

5 Preorder Relations 135

(1) p �may q if for any o ∈ Omay, p may o implies that q may o.
(2) p �must q if for any o ∈ Omust, p must o implies that q must o.
(3) p �conv q if p �may q and p �must q.

The equivalence relations corresponding to the three preorders are denoted by
�may, �must, and �conv, respectively. We shall use �T (for “testing preorder”)
instead of �conv in subsequent sections.

Note that the relation �conv is implicitly defined in terms of observers from
the set O = Omay ∪Omust. Also note that actually we do not need three sets of
observers, since all the three preorders make sense under O. The reason for intro-
ducing these three distinct sets is solely for the benefit of having different testing
scenarios for the three testing preorders (that are also tight, i.e., they contain
the smallest set of observers possible), according to our ways of presenting things
(in which the testing scenario defines the preorder).

The most discerning relation is of course �conv. It is also the case that in
order to see whether two processes are in the relation �conv we have to check
both the other relations, so our subsequent discussion will deal mostly the other
two preorders (since the properties of �conv will follow immediately).

One may wonder what we get out of testing preorders in terms of practical
considerations. First, as opposed to trace preorders, we no longer need to record
the whole trace of a process; instead we only distinguish between success and
failure of tests. It is also the case that we do not need to combine all the outcomes
of test runs as in observation preorder. We still have a notion of “global testing,”
but the combination of the outcomes is either forbidden (in �may) or simplified.
In all, we arguably get a preorder that is more practical. We also note that, by
contrast to trace preorders we can have finite tests (or observers) even if the
processes themselves consist in infinite runs. Indeed, in trace preorders a test
succeeds only when the end of the trace is reached, whereas we can now stop
our test whenever we are satisfied with the behavior observed so far (at which
time we simply insert a Succ or Fail in our test).

In terms of discerning power, recall first the example shown in Figure 5.5 on
page 132, where the two processes p and q are not equivalent under observa-
tion preorder. We argued that this is not necessarily a meaningful distinction.
According to this argument testing preorders are better, since they do not differ-
entiate between these two processes. Indeed, p and q always perform an action
a followed by either an action b or an action c, depending on which branch of
the process tree is taken (recall that the distinction between p and q under ob-
servation preorder was made in terms of nitpicking refusals, that are no longer
present in testing preorders). We thus revert to the “good” properties of trace
preorders.

Recall now our argument that the processes from Figure 5.6 on page 133
should be considered the same. We also argued the other way around, but for
now we stick with the first argument because we also have s �may t . Indeed,
it is always the case that processes such as the ones depicted in Figure 5.7 are
equivalent under �may, and the equivalence of s and t follows. In other words,
we keep the “good” properties of observation preorder.

136 Stefan D. Bruda

τ

Fig. 5.7. Processes equivalent under �may.

u

τ

τ

τ

a

b

c

v

τ

τ τ

τ

b c

b a

a c

Fig. 5.8. Two processes not equivalent under testing preorder (u ��must v ; u �CT v).

α β

a
a

α β α β

a
a

a

Fig. 5.9. Processes equivalent under any testing preorder.

In general,�may ignores the tree structure of processes, which shows that this
preorder is a very weak relation. This is not the case with �must. It is now the
time to argue that the two processes depicted in Figure 5.6 should be considered
different. They are so under �must, for indeed one branch of t diverges while
no divergent computations are present in s . A suitable test such as abSucc

will exploit this property under the must operator. In general, the presence of
divergence in the form of an infinite path of internal moves will ruin a test under
�must. Whether this is desired or not depends on one’s interpretation of such an
infinite path of internal moves.

Continuing with examples for �must, consider the processes shown in Fig-
ure 5.8. No matter what internal move is chosen by v , it can always perform either
a or b. It follows that v must (aSucc+bSucc). On the other hand, at its point
of choosing which way to go, u has the choice of performing c. It thus follow that
u may (aSucc+bSucc), but it is not the case that u must (aSucc+bSucc).
In general, it is easy to see that u �may v , but that u ��must v . Incidentally, these
processes are equivalent in trace preorders.

We should emphasize that, though �must takes into consideration the tree
structure of the process under scrutiny, it does so in a more limited way. This

5 Preorder Relations 137

p′

τ b

a

p′′

τ τ

a a b

Fig. 5.10. More processes equivalent under testing preorders (p′ �T p′′; p′ ��R p′′).

was shown in our discussion based on Figure 5.5. More generally, the processes
depicted in Figure 5.9 are equivalent under any testing preorder.

Finally, an example that will come in handy when we compare testing pre-
orders with refusal preorders (that is the subject of the next section) is given by
the two processes shown in Figure 5.10, which are equivalent under �conv.

All of the examples presented here allow us to conclude the following: The
preorder �may is a very weak relation, but has the advantage of needing no
global testing. The other testing preorders do make use of global testing, but in
a restricted way compared with observation preorder. The distinctions they make
are not as rich as in the case of observation preorder, but they are nonetheless
quite rich. On the principle that the most distinction we can make between
processes the better we are, one now wonders whether we can do better in
distinctions without the complexity of observation preorder.

Since �conv is clearly the testing preorder that makes the most distinctions,
we shall henceforth understand this preorder when we refer simply to testing
preorder. Recall that we also decided to denote it by �T in subsequent sections
(with �T as the name of the induced equivalence).

5.6 Refusal Testing

The only reasonable way in which one can obtain information about a process
is by communicating with it by means of actions. This is precisely what we
modeled in all this chapter. For example, we just inspect the actions performed
by a process in trace preorders; we then take it one step further in the testing
preorder, where we request sequences of actions that depend on the information
gained about the process as the test progresses. In our generic testing scenario
presented in Section 5.2.2 we go even further by adding to tests the ability of
refusing actions. This is an interesting feature, that looks powerful and arguably
practically feasible. Recall on the other hand that we definitely did not see
observation preorder (the only preorder involving the concept of refusals) as
practical, at least not as practical as testing preorders.

So on one hand we have refusals, that look promising (and practical enough),
and on the other hand we have testing preorders, that look practical. We now

138 Stefan D. Bruda

combine them. While we are at it, we also differentiate between failure by dead-
lock (no outgoing actions) and divergence. We thus obtain the refusal pre-
orders [Phi87].

Refusal preorders rely on the following testing scenario: We start from the
scenario of complete trace semantics, i.e., we view a process as a black box with
a window that displays the current action and becomes empty when a deadlock
occurs. We now equip our box with one switch for each possible action a ∈ Act.
By flipping the switch for some action a to “on” we block a; the process continues
to choose its execution path autonomously, but it may only start by executing
actions that are not blocked by our manipulation of switches. The configuration
of switches can be changed at any time during the execution of the process.

Formally, we restrict our set of tests O introduced in Definition 5.4 on
page 125 by allowing only expressions of form (5.1)–(5.5), and a restricted variant
of (5.12) on page 134 as follows:

o = ao1 + ão2 (5.13)

The semantics of this kind of expressions is immediately obtained by the seman-
tics of Expressions (5.12) and (5.4) (since we are starting here from the scenario
of the testing preorder, the semantics of tests of form (5.4) is given by Expres-
sion (5.11)). This is our “switch” that we flip to blocks a (and then we follow
with o2) or not.

We also differentiate between deadlock and divergence. We did not make such
a differentiation in the development of previous preorders, because we could not
do this readily (and in those cases when we could, we would simply express this
in terms of the divergence predicate). However, now that we talk about refusals
we will need to distinguish between tests that fail because of divergent processes,
and tests that fail because all the actions are blocked. We find it convenient to
do this explicitly, so we enrich our set of test outcomes to {, 0,⊥}, with ⊥ now
signifying only divergence, while 0 stands for deadlock. In order to do this, we
alter the semantics of expressions of form (5.2), (5.3), and (5.4) to

obs(Fail, p) = {0}
obs(ao, p) =

⋃

{obs(o, p′) | p a−−→ p′} ∪ {⊥ | p ↑} ∪ {0 | p a−−→/ }

obs(ão, p) =
⋃

{obs(o, p) | p a−−→/ , p τ−−→/ } ∪ {⊥ | p ↑} ∪ {0 | p a−−→ or p τ−−→}

Note that in the general testing scenario we count a failure whenever we learn
about a refusal. In this scenario, a refusal generates a failure only when no other
action can be performed. Also note that this scenario imposes further restric-
tions on the applicable tests by restricting the semantics of the allowable test
expressions. As a further restriction, we have the convention that test expres-
sions of form (5.5) shall be applied with the highest priority of all the expressions
(i.e., internal actions are performed before anything else, such that the system
is allowed to fully stabilize itself before further testing is attempted—this is also
the reason for replacing relation ⇒ with the stronger −→ in the semantics of
the tests ao and ão).

5 Preorder Relations 139

It should be mentioned that the original presentation of refusal testing [Phi87]
allows initially to refuse sets of actions, not only individual actions. In this setting
we can flip sets of switches as opposed to one switch at a time as we allow by
the above definition of O. However, it is shown later in the same paper [Phi87]
that refusing sets of actions is not necessary, hence our construction. Now that
the purpose of our test scenario is clear, we shall further restrict the scenario.
Apparently this restriction is less expressive, but the discussion we mentioned
above [Phi87] shows that—against intuition—we do not lose anything; although
the language is smaller, it is equally expressive. In the same spirit as for testing
preorders, we restrict our set of tests in two ways, and then we introduce a new
version of the operators may and must.

(1) Let the set O1 contain exactly all the expressions of form (5.1) and a re-
stricted version of form (5.13) where either o1 = Fail or o2 = Fail.
Let then p may o iff ∈ obs(p, o).

(2) Let the set O2 contain exactly all the expressions of form (5.2) and a re-
stricted version of form (5.13) where either o1 = Succ or o2 = Succ.
Let then p must o iff {} = obs(p, o).

(3) As usual, put O = O1 ∪ O2.

In other words, at any given time we either block an action and succeed or fail
(as the case may be), or we follow the action we would have blocked otherwise
and move forward; no other test involving blocked actions is possible. One may
wonder about the cause of the disappearance of form (5.5). Well, this expression
was not that “real” to begin with (we never wrote ε down in our test expressions,
we provided it instead to allow the process to “stabilize” itself), and we can now
replace the expression εo by eFail + ẽo, where e is a new action we invent
outside Act (thus knowing that the process will never perform it).

With these helper operators and sets of tests we now define the refusal
preorder �R as follows: p �R q iff (a) p may o implies q may o for any
o ∈ O1, and (b) p must o implies q must o for any o ∈ O2. The induced
refusal equivalence �R is defined in the usual way.

The alert reader has noticed that the refusal preorder is by far the most
restricted preorder we have seen. Let us now take a look at its power of discrimi-
nation. Since it has been shown that the generic refusal testing scenario (that we
started with) and our restricted variant are in fact equally expressive, we shall
feel free to use either of them as it suits our needs.

We now compare refusal preorder with the testing preorder. First, it is im-
mediate that processes depicted in Figures 5.4 on page 130, 5.5 on page 132,
and 5.9 on page 136 continue to be equivalent under refusal preorders.

On the other hand, consider the processes shown in Figure 5.10 on page 137
which are equivalent under testing preorder. We then notice that under refusal
preorder we have obs(bSucc, p′) = {0}, for indeed the internal action is per-
formed first to stabilize the process, and after this no b action is possible. How-
ever, it is immediate that obs(bSucc, p′′) = {, 0}. We do not even use refusals
here, the two processes become non-equivalent because our convention that test
expressions of form (5.5) shall always be performed first.

140 Stefan D. Bruda

p

a a

b a a a

a

q

a a

b a a

a

Fig. 5.11. Processes not equivalent under refusal preorder (p ��R q ; p �T q).

Even in the absence of such a convention we have a more precise preorder.
Consider for instance the processes from Figure 5.11. They are immediately
equivalent under testing preorder, but not so under refusal preorder. Indeed, it
holds that obs(ab̃aãSucc, p) = {, 0} and obs(ab̃aãSucc, q) = {0} (the path
circled in the figure is the only successful path under this test).

It is then apparent that refusal preorder makes more distinction than the
testing preorder. We shall tackle the reverse comparison by giving a precise
comparison of refusal preorder with the observation preorder. Such a comparison
is possible by developing a modal characterization for the refusal preorder. As
it turns out, this characterization can also be given in terms of a subset of LHM

(which is the set of formulae corresponding to observation preorder). This subset
(denote it by LR) is the domain of the following partial function (·)∗ : LHM → O
translating between expressions in LHM and tests and given by:

()∗ = Succ (⊥)∗ = Fail

([a]ψ)∗ = a(ψ)∗ ([a]ψ)∗ = ã(ψ)∗

(〈ε〉([a]⊥ ∧ [ε]ψ))∗ = ã(ψ)∗ ([ε](〈a〉 ∨ 〈ε〉ψ))∗ = a(ψ)∗
(5.14)

For succinctness we abbreviated ao+ãFail by ao, aFail+ão by ão, ao+ãSucc

by ao, and aSucc + ão by ão. We have [Phi87]:

Proposition 5.11. For any process p ∈ Q and for any expression ψ ∈ LR, it
holds that p � ψ iff p may (ψ)∗, and that p � ψ iff p must (ψ)∗. It then follows
that p �R q iff p � ψ implies q � ψ for any expression ψ ∈ LR.

It then follows that:

Theorem 5.12. For any two processes p and q, p �B q implies p �R q, but
not the other way around.

Proof. The implication is immediate from Proposition 5.11 given that LR is a
strict subset of LHM . That observation preorder is strictly finer than refusal
preorder is shown by the example depicted in Figure 5.5 on page 132. 	

5 Preorder Relations 141

e

coin

coin

c

coin

coin τ

coin

coffee

Fig. 5.12. Two vending machines (e 	R c; e �	FT c).

So we find that refusal preorder is coarser than observation preorder. This also
allows us to compare refusal and testing preorders. Indeed, recall that the infinite
processes shown in Figure 5.6 on page 133 are equivalent under observation
preorder (and then according to Proposition 5.12 under refusal preorder). We
have shown in the previous section that these processes are not equivalent under
testing preorder. Given that on the other hand refusal preorder distinguishes
between processes indistinguishable in testing preorder, we have

Corollary 5.13. The preorders �T and �R are not comparable.

We note here an apparent contradiction with results given elsewhere [Phi87]
that the two preorders are comparable. This contradiction turns out to be caused
by the unfortunate (and incorrect) terminology used in [Phi87].

In practical terms, refusal preorder is clearly more appealing than observation
preorder. Arguably, it is also more appealing than testing preorder, because of
the simplicity of tests; indeed, we eliminated all nondeterminism from the tests
in O1 and O2 (and thus in O). The only possible practical downside (of refusal
preorder compared with testing preorder) is that we need the ability to block
actions.

5.7 Failure Trace Testing

In refusal testing, whenever we observe a process that cannot continue because
we blocked all of its possible actions we have a failed test. This seems a reasonable
testing strategy, but we end up with surprising preorder relations because of it.
Consider for example the rather instructive example [Lan90] of the two vending
machines c and e depicted in Figure 5.12. Machine c may give us coffee if we

142 Stefan D. Bruda

insert two coins, while machine e eats up our money, period. In terms of refusal
preorder, it is immediate that c passes strictly more tests than e, so e �R c. In
other words, e is an implementation of c! Clearly, this contradicts most people’s
idea of a working coffee machine.

Such a strange concept of correct implementation is corrected by the fail-
ure trace preorder [Lan90]. This preorder is based on the following testing
scenario: We have the same black box we did in the testing scenario for refusal
preorder. The only difference is in our actions; when we observe the deadlock
(by the empty window) we record such an occurrence (as a failure) and then we
are allowed to flip switches off to allow the process to continue.

Formally, we allow exactly the same test expressions for the set O as we
did initially in the previous section, but we revert the semantics of expressions
of form (5.4) to its original form (continuing to make the distinction between
failure as deadlock versus failure as divergence), i.e.,

obs(ão, p) =
⋃

{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {0 | p ε⇒ p′, p′ ref a}

We then define the operators may and must exactly as we did in the previous
section, i.e., p may o iff ∈ obs(p, o), and p must o iff {} = obs(p, o).
Finally, the failure trace preorder �FT is defined as p �FT q iff for all o ∈ O
it holds that p may o implies q may o and p must o implies q must o. As
usual, the failure trace preorder induces the failure trace equivalence �FT .

Let us go back to our vending machines from Figure 5.12, and consider the
test

o = coin c̃oin coin coffee Succ

As opposed to refusal testing, we now have obs(o, e) = {0} (the action “coffee”
is not available for the test), whereas obs(o, c) = {, 0} (we record a failure
when we block action “coin” and then we move on to obtain a successful test on
the right side branch). We thus notice that c may o but that it is not the case
that e may o; a machine that does not give us coffee does not pass this test.
Our two vending machines become thus incomparable (and justly so).

Failure trace preorder thus makes more distinction than refusal preorder. It
is also easy to see that refusal preorder does not distinguish between processes
that are not distinguishable under failure trace. Indeed, it is enough to place a
Fail test after each action that is blocked in the tests and those tests become
tests for the refusal preorder.

It is immediate to see that observation preorder is strictly finer than failure
trace preorder. Indeed, we introduced on top of refusal order a semantics that is
otherwise included in the semantics of observation preorder. So we have:

Proposition 5.14. For any two processes p and q, p �B q implies p �FT q
(but not the other way around), and p �FT q implies p �R q (but not the other
way around).

Using the failure trace preorder we can make distinctions that cannot be
made using refusal preorder. However, this increase does not necessarily come

5 Preorder Relations 143

for free. Indeed, the tests in the sets O1 and O2 described in the previous sections
are sequential, in the sense that unions always occur between a test whose result
that is immediately available (Succ or Fail) and some other, possibly longer
test. In testing preorders as well as in failure trace preorder we need to copy the
process while it runs; indeed, we may need to combine the outcomes of two (or
more) different runs of the process, which means that we need to run two copies
of the process to obtain these outcomes independently from each other. Because
of the sequential tests used by refusal preorder copying is no longer necessary
(but it becomes necessary once more in failure trace preorder). This being said,
the definition of the must operator from refusal preorder implies that processes
need to be copied anyway (since we have to apply many tests on them), so the
failure trace testing scenario is not that bad after all.

5.8 Fair Testing

Recall the processes depicted in Figure 5.6 on page 133 and our back and forth
argument that they should be considered equivalent (or not). When we consid-
ered them under the testing preorder, s and t were not equivalent, whereas they
are so under the other preorders. Testing preorder, with its habit that the pres-
ence of divergence may ruin a test, will differentiate between these two processes
as opposed to all the other preorders we have seen so far. As we mentioned,
whether such a behavior is a good or bad thing depends on one’s opinion about
divergences.

For those who prefer to ignore divergences as long as there is a hope that
the process will continue with its visible operation, i.e., for those who prefer to
consider the processes shown in Figure 5.6 equivalent, fair testing is available
[BRV95].

We have the same testing scenario for fair testing as the one used in Sec-
tion 5.5, except that the operator must is enhanced, such that it chooses a visible
action whenever such an action is available. With the same set O of observers as
the one used to define the testing preorder, the new operator fmust is defined
as follows:

p fmust o iff for any σ ∈ Act∗ and o′ ∈ O with o = σo′, it holds that:
obs(o′, p′) = obs(o, p) for some p′ ∈ Q, p

σ⇒ p′, implies that there
exists a ∈ Act ∪ {Succ} such that o′ = ao′′, o′′ ∈ O ∪ {ε}.

The preorder �fmust, as well as the equivalence �fmust induced by the oper-
ator fmust are defined in the usual manner.

The operator fmust is the “fair” variant of the operator must of testing
preorder lineage. It ignores the divergences as long as there is a visible action (a
in the above definition) accessible to the observer. The following characterization
of �fmust in terms of other preorders is easily obtained from the results presented
elsewhere [BRV95]:

144 Stefan D. Bruda

p

a a

b c

a

a

q

a a

b c

a a

Fig. 5.13. Processes different after hiding {a}.

Proposition 5.15. For any two processes p and q, p �R q implies p �fmust q
(but not the other way around), and p �must q implies p �fmust q (but not the
other way around).

The modification of the testing preorder introduced by the preorder �fmust

brings us back into the generic testing scenario. In the following we go even
further and tackle a problem that we did not encounter up to this point, but
that is common to many preorders. This problem refers to the process of hiding
a set of actions.

Given a transition system B = (Q,Act∪{τ}, −→ , ↑B) and some set A ⊆ Act,
the result of hiding A is a transition system B/A = (Q,Act \A∪ {τ}, −→ h , ↑B),
where −→ h is identical to −→ except that all the transitions of form p a−−→ q for
some a ∈ A are replaced by p τ−−→ hq.

Under a suitable transition system B , consider now the processes depicted
in Figure 5.13, and the equivalent processes in B/{a}; the processes become
non-equivalent under �R. Similar examples can be found for the other preorders
presented in this chapter. These preorders are not pre-congruence relations under
hiding.

A preorder based on the testing preorder and that is pre-congruent can also be
introduced [BRV95]. Call such a preorder should-testing. The testing scenario
is again the same as the one presented in Section 5.5, with the exception that
the operators must and may are replaced by the operator should defined as
follows (again, we have the same set O of observers as the one used to define the
testing preorder):

p should o iff for any σ ∈ Act∗ and o′ ∈ O with o = σo′, it holds that:
obs(o, p) = obs(o′, p′) for some p′ ∈ Q, p

σ⇒ p′, implies that there
exists σ′ ∈ Act∗ such that o′ = σ′

Succ and ∈ obs(o′, p′).

The preorder and the equivalence induced by the should operator are de-
noted by �should and �should, respectively.

The idea of should-testing is that in a successful test there is always a reach-
able successful state, so if the choices are made fairly that state will eventually
be reached. Fair testing states that a system passing the test may not dead-
lock unless success has been reported before; should-testing requires a stronger

5 Preorder Relations 145

condition in that a successful state must be reached from every state in the
system.

It is immediate that �should is coarser than�fmust (since the success condition
is stronger). This relationship is even stronger for processes with only finite
visible runs:

Proposition 5.16. For any two processes p and q, p �should q implies p �fmust

q (but not the other way around); for any two processes p and q for which all
the visible runs are finite p �should q iff p �fmust q.

In addition �should is a pre-congruence under hiding—as well as under pre-
fixing and synchronization [BRV95]; in fact we have:

Proposition 5.17. The relation �should is the largest relation contained in
�fmust that is a pre-congruence under synchronization and hiding.

5.9 Conformance Testing, or Preorders at Work

This section is different from the previous ones, because it does not introduce
new testing scenarios and new preorders. Instead, it puts the existing scenarios
in a formalization of the concept of conformance testing [Tre94]. The description
of such an environment in which preorders are put to good use is indeed a nice
wrap up of our presentation.

We mentioned at least two times that preorders can be interpreted as imple-
mentation relations. In this sections we elaborate on this idea. We thus present
here the application of everything we talked about before.

Conformance testing consists in testing the implementation of a system
against that system’s specification. Formally, we are given a formal specifica-
tion language LFDT (such as CCS [Mil80] or even labeled transition systems),
and we have to determine for some specification s ∈ LFDT what are the imple-
mentations that conform to s (i.e., are a correct implementation of s). Of course,
implementations are physical objects, so we analyze their properties by means
of formal models of such implementations, that are also members of LFDT . We
assume that any concrete implementation can be modeled in LFDT .

There usually are more than one correct implementation of some specifica-
tion, so we actually work with a set CONFORMs of implementations conforming
to a specification s . This set can be defined using either a behavior (or model-
based) specification, or a requirement (or logical) specification.

In the behavior specification approach the set CONFORMs is defined by
means of an implementation relation imp, such that i imp s iff i conforms
to s :

CONFORMs = {i ∈ LFDT | i imp s}.

In the requirement specification approach we define the set CONFORMs by
giving all the properties that should hold for all of its elements. Such properties,

146 Stefan D. Bruda

or requirements are specified in a formal language LRQ , and if an implementation
i has property r we say that i satisfies r and we write i sat r . A conforming
implementation will have to satisfy all the properties from a set R ⊆ LRQ , so
we have:

CONFORMs = {i ∈ LFDT | for all r ∈ R, i sat r}.

If a suitable specification language has been chosen, we can define a specifica-
tion relation spec ⊆ LFDT × LRQ which expresses the requirements that are
implicitly specified by a behavior specification. Our definition for CONFORMs

then becomes:

CONFORMs = {i ∈ LFDT | for all r ∈ LRQ , s spec r implies i sat r}.

Both these approaches to the definition of CONFORMs are valid and they
can be used independently from each other. They are both useful too: if we want
to check an implementation against a specification the behavioral specification is
appropriate; if on the other hand we want to determine conformance by testing
the implementation, it is typically more convenient to derive requirements from
the specification and then test them.

Of course, the two descriptions of CONFORMs should be compatible to each
other, i.e., they should define the same set. We then have the following restriction
on the relations imp, sat, and spec:

for all i ∈ LFDT , i imp s iff (for all r ∈ LRQ , s spec r implies i sat r).

We note that the formal specification s is in itself not enough to allow for con-
formance testing. We need instead either a pair s and imp, or the combination
of s , LRQ , sat, and spec.

Consider now our definition of processes, tests, and preorders, and pick one
particular preorder �α. We clearly have a specification language LFDT given
by the set of processes and the underlying transition system. We then model s
using our language and we obtain a specification. Then the relation imp is pre-
cisely given by the preorder �α. The preorder gives us the tools for conformance
testing using the behavior specification. If we provide a modal characterization
for the preorder we can do testing using requirement specification too. Indeed,
the set LRQ is the set of formulae that constitute the modal characterization,
the relation sat is our satisfaction predicate �, and the function (·)∗ defines the
relation spec.

It turns out that our theory of preorders has an immediate application in
conformance testing. Indeed, all we did in this section was to translate the nota-
tion used elsewhere [Tre94] into the notation that we used in this chapter, and
presto, we have a framework for formal conformance testing.

However, our framework is not fully practical because of the number of tests
one needs to apply in order to check for conformance, which is often countably
infinite. Elegant proof systems are not enough from a practical point of view,
we also need to test implementations in a reasonable amount of time. We come

5 Preorder Relations 147

�←→�B −→ �FT −→ �R −→ �fmust −→�should

↗
�T

Fig. 5.14. Relations between preorders. The arrows 	α−→	β stand for “p 	α q
implies p 	β q , but not the other way around.”

back to our discussion on practical considerations. The observation preorder for
instance, with its strong notion of observability, is unlikely in our opinion to
create a realistic framework for conformance testing.

In any case, testing and test case generation in particular are also the subject
of subsequent chapters, so our discussion about applications ends here.

5.10 Summary

We now conclude our presentation of preorder relations. We have surveyed quite
a number of preorders, so before going any further a summary is in order. We
have talked throughout this chapter about the following preorders:

� the observational testing preorder, as a general framework
presented in Section 5.2.3

�CT the complete trace preorder, presented in Section 5.3;
�B observation preorder, the subject of Section 5.4;
�T (aka �conv, together with �may and �must), surveyed in Sec-

tion 5.5;
�R refusal preorder, presented in Section 5.6;
�FT failure trace preorder, in Section 5.7;
�fmust fair testing preorder, the subject of Section 5.8;
�should should-testing preorder, a variant of �fmust, also a pre-

congruence.

In addition, we have defined a generic testing scenario and the associated
observable testing preorder �. There exist preorders we did not consider specif-
ically, such as Darondeau’s preorder, because they were shown to coincide with
preorders presented here [dN87]. We introduced trace preorders only because we
had to start with something (and we decided to start with something simple),
and because sometimes they make for useful comparison tools. However, trace
preorders are awkward to work with, so we do not give too much thought to
them henceforth.

One of the comparison criteria between preorders is their power of discrimi-
nation. In this respect, the observation preorder has been shown to coincide with
the generic preorder �. The remaining preorders are strictly less discriminating
and arrange themselves in a nice hierarchy. The only exception is the testing
preorder, which is not comparable with the observation, failure trace, and re-
fusal preorders. This is one reason for the introduction of �fmust, which has its

148 Stefan D. Bruda

place in the hierarchy alright. This comparison has been shown throughout the
chapter by examples and propositions, and is summarized in Figure 5.14.

The relation �fmust was also introduced because of fairness considerations
(hence the name fair testing preorder). Specifically, the testing preorder deals
unfairly with divergence, in the sense that divergence is reported as failure. In
contrast, the fair interpretation of divergence implies that the tests succeed in
presence of divergences as long as the system has a chance to eventually perform
a visible action despite divergences. Since �fmust is not a pre-congruence relation,
the variant �should (which is the largest pre-congruence included in �fmust) has
also been defined.

Of course, the presence of fairness, or the greater power of discrimination
are not an a priori good thing; it all depends on the desired properties one is
interested in. The unfair interpretations of divergence in particular are useful
in differentiating between livelock and deadlock, i.e., in detecting whether the
system under test features busy-waiting loops and other such behaviors that are
not deadlocked but are nonetheless unproductive (and undetectable under the
fair testing scenario).

In terms of power of discrimination, we have noticed in Section 5.4 that the
most discriminating preorder differentiates between processes that are for all
practical purposes identical (see for example the processes shown in Figures 5.4
on page 130 and 5.5 on page 132). This is not to say that more differentiation
is bad either, just look at the coffee machine examples from Figure 5.12 on
page 141, which are in a strange implementation relation under refusal testing
(only a crooked merchant would accept this) but are not comparable under
failure trace preorder.

Another comparison of preorders can be made in terms of the complexity
of the tests and their practical feasibility. It is no surprise that the most dis-
criminating preorder, namely the observation preorder, appears to be the least
practical of them all. In this respect the award of the most practically realizable
preorder seems to go to refusal preorder. This is the only preorder based exclu-
sively on sequential tests. This being said, we are not necessarily better off since
in the general case we need a number of tests to figure out the properties of the
system, so that the advantage of the tests being sequential pales somehow.

Another practical issue in refusal preorder is the concept of refusal itself.
One can wonder how practical such a concept is. Recall that actions are an
abstraction; in particular, they do not necessarily represent the acceptance of
input. So how does one refuse an action without modifying the process under
scrutiny itself? This does not seem realizable in the general case (whenever we
cannot access the internals of the process under test). Do we take away the award
from refusal preorder?

In all, practical considerations do differentiate between the preorders we
talked about, especially for the observation preorder which combines results in
a more complex way than other preorders (that simply take the union of the
results of various runs and tests) and requires a rather unrealistic concept of
global testing. However, when testing systems we are in the realm of the halting
problem, so practical considerations cannot ever make an a priori distinction.

5 Preorder Relations 149

The utility of various preorders should thus be estimated by taking all of their
features into consideration.

In the same line of thought, namely practical applications, we have presented
a practical framework for conformance testing based on the theory of preorders.

Finally, it is worth pointing out that our presentation has been made in
terms of labeled transition systems, as opposed to most of the literature, in
which process algebraic languages such as CCS, LOTOS, and variants thereof
are generally used. Labeled transition systems define however the semantics of
all these languages, so the translation of the results surveyed here into various
other formalisms should not be a problem. The upside of our approach is the
uniform and concise characterization of the preorders, although we lose some
expressiveness in doing so (however the literature cited therein always offers a
second, most of the time process algebraic view of the domain).

As well, we did not pay attention to contexts. Contexts admit however a
relatively straightforward approach once the rest of the apparatus is in place.

	5.1 Introduction
	5.2 Process Representation and Testing
	5.3 Trace Preorders
	5.4 Observation Preorders and Bisimulation
	5.5 Testing Preorders
	5.6 Refusal Testing
	5.7 Failure Trace Testing
	5.8 Fair Testing
	5.9 Conformance Testing, or Preorders at Work
	5.10 Summary

