
1 Homing and Synchronizing Sequences

Sven Sandberg

Department of Information Technology
Uppsala University
svens@it.uu.se

1.1 Introduction

1.1.1 Mealy Machines

This chapter considers two fundamental problems for Mealy machines, i.e., finite-
state machines with inputs and outputs. The machines will be used in subsequent
chapters as models of a system or program to test. We repeat Definition 21.1 of
Chapter 21 here: readers already familiar with Mealy machines can safely skip
to Section 1.1.2.

Definition 1.1. A Mealy Machine is a 5-tuple M = 〈I ,O ,S , δ, λ〉, where I ,O
and S are finite nonempty sets, and δ : S × I → S and λ : S × I → O are total
functions.

The interpretation of a Mealy machine is as follows. The set S consists of
“states”. At any point in time, the machine is in one state s ∈ S . It is possible
to give inputs to the machine, by applying an input letter a ∈ I . The machine
responds by giving output λ(s , a) and transforming itself to the new state δ(s , a).
We depict Mealy machines as directed edge-labeled graphs, where S is the set of
vertices. The outgoing edges from a state s ∈ S lead to δ(s , a) for all a ∈ I , and
they are labeled “a/b”, where a is the input symbol and b is the output symbol
λ(s , a). See Figure 1.1 for an example.

We say that Mealy machines are completely specified, because at every state
there is a next state for every input (δ and λ are total). They are also determin-
istic, because only one next state is possible.

Applying a string a1a2 · · · ak ∈ I ∗ of input symbols starting in a state s1
gives the sequence of states s1, s2, . . . , sk+1 with sj+1 = δ(sj , aj). We extend

the transition function to δ(s1, a1a2 · · · ak) def= sk+1 and the output function to
λ(s1, a1a2 · · · ak) def= λ(s1, a1)λ(s2, a2) · · ·λ(sk , ak), i.e., the concatenation of all
outputs. Moreover, if Q ⊆ S is a set of states then δ(Q , x) def= {δ(s , x) : s ∈ Q}.
We sometimes use the shorthand s a−−→t for δ(s , a) = t , and if in addition we know
that λ(s , a) = b then we write s a/b−−−→t . The number |S | of states is denoted n.

Throughout this chapter we will assume that an explicit Mealy machine
M = 〈I ,O ,S , δ, λ〉 is given.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 5-33, 2005.
 Springer-Verlag Berlin Heidelberg 2005

6 Sven Sandberg

s1s2

s4s3

a/0 b/0

b/1 a/0

a/0

b/1

a/1

b/0

Fig. 1.1. A Mealy machine M = 〈I ,O ,S , δ, λ〉 with states S = {s1, s2, s3, s4}, input
alphabet I = {a, b}, and output alphabet O = {0, 1}. For instance, applying a starting
in s produces output λ(s, a) = 0 and moves to next state δ(s, a) = t .

1.1.2 Synchronizing Sequences

In the problems of this chapter, we do not know the initial state of a Mealy
machine and want to apply a sequence of input symbols so that the final state
becomes known. A synchronizing sequence is one that takes the machine to
a unique final state, and this state does not depend on where we started. Which
particular final state is not specified: it is up to whoever solves the problem to
select it. Thus, formally we have:

Definition 1.2. A sequence x ∈ I ∗ is synchronizing (for a given Mealy ma-
chine) if |δ(S , x)| = 1. 1 ��

Note that synchronizing sequences are independent of the output. Conse-
quently, when talking about synchronizing sequences we will sometimes omit
stating the output of the machine. For the same reason, it is not meaningful
to talk about synchronizing sequences “for minimized machines”, because if we
ignore the output then all machines are equivalent.

Example 1.3. Synchronizing sequences have many surprising and beautiful ap-
plications. For instance, robots that grasp and pick up objects, say, in a factory,
are often sensitive to the orientation of the object. If objects are fed in a random
1 The literature uses an amazing amount of synonyms (none of which we will use

here), including synchronizing word [KRS87], synchronization sequence [PJH92], re-
set sequence [Epp90], reset word [Rys97], directing word [ČPR71], recurrent word
[Rys92], and initializing word [Göh98]. Some texts talk about the machine as being
a synchronized [CKK02], synchronizing [KRS87], synchronizable [PS01], resettable
[PJH92], reset [Rys97], directable [BIĆP99], recurrent [Rys92], initializable [Göh98],
cofinal [ID84] or collapsible [Fri90] automaton.

1 Homing and Synchronizing Sequences 7

orientation, the problem arises of how to rotate them from an initially unknown
orientation to a known one. Using sensors for this is expensive and complicated.
A simple and elegant solution is depicted in Figure 1.2. Two parallel “pushing
walls” are placed around the object, and one is moved toward the other so that
it starts pushing the object, rotating it until a stable position between the walls
is reached. Given the possible directions of these pushing walls, one has to find
a sequence of pushes from different directions that takes the object to a known
state. This problem can be reduced to finding a synchronizing sequence in a
machine where the states are the possible orientations, the input alphabet is the
set of possible directions of the walls, and the transition function is given by
how a particular way of pushing rotates the object into a new orientation. This
problem has been considered by, e.g., Natarajan [Nat86] and Eppstein [Epp90],
who relate the problem to automata but use a slightly different way of pushing.
Rao and Goldberg [RG95] use our way of pushing and their method works for
more generally shaped objects. ��

(a) (b) (c) (d)

Fig. 1.2. Two pushing walls rotating the object to a new position. (a) The object. (b)
One wall moves toward the object until (c) it hits it and starts pushing it, rotating it
to the final stable position (d).

An alternative way to formulate the synchronizing sequence problem is as
follows. Let S be a finite set, and f1, . . . , fk : S → S total functions. Find a
composition of the functions that is constant. Function fi corresponds to δ(·, ai),
where ai is the i ’th input symbol.

Example 1.4. To see that synchronizing sequences do not always exist, consider
the Mealy machine in Figure 1.1. If the same sequence of input symbols is applied
to two states that are “opposite corners”, then the respective final states will be
opposite corners too. So in particular no sequence x satisfies δ(s1, x) = δ(s3, x)
or δ(s2, x) = δ(s4, x). ��

Besides the parts orienting problem in Example 1.3, synchronizing sequences
have been used to generate test cases for synchronous circuits with no reset
[CJSP93], and are also important in theoretical automata theory and structural
theory of many-valued functions [Sal02].

8 Sven Sandberg

1.1.3 Homing Sequences

The second problem of this chapter, homing sequences, are sequences of input
symbols such that the final state after applying it can be determined by looking
at the output:

Definition 1.5. A sequence x ∈ I ∗ is homing (for a given Mealy machine) if
for every pair s , t ∈ S of states, δ(s , x) �= δ(t , x)⇒ λ(s , x) �= λ(t , x). 2 ��

Note that every synchronizing sequence is a homing sequence, but the con-
verse is not true. See Figure 1.1 for an example: we saw earlier that it does not
have a synchronizing sequence, but it has a homing sequence. After applying
ab, the possible outputs are λ(s1, ab) = 01, λ(s2, ab) = 01, λ(s3, ab) = 10, and
λ(s4, ab) = 00. Hence, if we observe output 00 or 10, the initial and hence also
final state becomes known. For output 01 we only know the initial state was s
or t , but in both cases the final state is u. Thus the output uniquely determines
the final state, and the sequence is homing.

Homing sequences can be either preset3, as in Definition 1.5, or adaptive.
While preset sequences are completely determined before the experiment starts,
adaptive sequences are applied to the machine as they are constructed, and
the next symbol in the sequence depends on the previous outputs. Thus, preset
sequences can be seen as a special case of adaptive sequences, where this de-
pendence is not utilized. Formally one can define adaptive homing sequences as
decision trees, where each node is labeled with an input symbol and each edge
is labeled with an output symbol. The test consists in walking from the root of
the tree toward a leaf: apply the input on the node, observe the output and walk
to the successor through the edge with the corresponding label. When a leaf is
reached, the sequence of outputs determines the final state (but unlike preset
sequences, the sequence of inputs would not necessarily determine the final state
if the initial state had been different).

Homing sequences are typically used as building blocks in testing problems
with no reset. Here, a reset is a special input symbol that takes every input to the
same state, i.e., it is a synchronizing sequence of length one. They have been used
in conformance testing (Section 4.5), and in learning (by Rivest and Schapire
[RS93]; see also Chapter 19). For machines with output, homing sequences
are often preferable to synchronizing sequences: first, they are usually shorter;
second, they always exist if the automaton is minimized (cf. Theorem 1.17), a
natural criterion that is often required anyway.

1.1.4 Chapter Outline

Section 1.2 introduces the important notion of current state uncertainty, used
when computing homing sequences. Section 1.3 presents algorithms for several
2 Synonyms (not used here) are homing word [Rys83], terminal state experiment

[Hib61], Identification experiment of the second kind (IE 2) [Sta72] and experiment
which distinguishes the terminal state of a machine [Gin58].

3 A synonym is uniform [Gin58].

1 Homing and Synchronizing Sequences 9

versions of the homing and synchronizing sequences problems: first an algorithm
to compute homing sequences for minimized Mealy machines (Section 1.3.1),
then an algorithm to compute synchronizing sequences (Section 1.3.2). Sec-
tion 1.3.3 unifies these algorithms into one for computing homing sequences
for general (not necessarily minimized) machines – this algorithm can be used
both to compute homing and synchronizing sequences. The two algorithms for
computing homing sequences are then modified to compute adaptive homing
sequences in Section 1.3.4. Finally, Section 1.3.5 gives exponential algorithms to
compute minimal length homing and synchronizing sequences.

Section 1.4 turns from algorithms to complexity. First, Section 1.4.1 shows
that it is NP-hard to find the shortest homing or synchronizing sequence. Second,
Section 1.4.2 shows that it is PSPACE-complete to determine if a machine has
a homing or synchronizing sequence, if it is known that the initial state is in a
particular subset Q ⊆ S . In both cases it means that polynomial algorithms for
the problems are unlikely to exist.

Section 1.5 gives an overview of research in the area and mentions some re-
lated areas, and Section 1.6 summarizes the most important ideas in the chapter.

Flogsta Ekeby

H̊aga Eriksberg K̊abo

Fig. 1.3. The subway map of Uppsala. The five stations are connected by two one-way
lines: white and grey.

Exercise 1.1. The schematic map of the subway in Uppsala looks as in Figure 1.3.
You do not know at which station you are, and there are no signs or other
characteristics that reveal the current station, but you have to get to Flogsta
by moving from station to station, in each step taking either the white or the
grey line. What type of sequence does this correspond to? Find a sequence if one
exists.

(Hint: use that if you are in Flogsta or H̊aga, the white line takes you to Eriksberg

for sure.)

1.2 Initial and Current State Uncertainty

Consider a Mealy machine to which we apply some input string and receive an
output string. Even if the input string was not homing, we may still draw some

10 Sven Sandberg

partial conclusions from the output. The initial state uncertainty describes what
we know about the initial state, and the current state uncertainty describes what
we know about the final state. Current state uncertainty is crucial when com-
puting homing sequences, and the definition relies on initial state uncertainty.

Definition 1.6. The initial state uncertainty (with respect to a Mealy ma-
chine) after applying input sequence x ∈ I ∗ is a partition

π(x) def= {B1,B2, . . . ,Br} ⊂ P(S)

of the states. Two states s , t are in the same block Bi if and only if λ(s , x) =
λ(t , x). ��

Thus, after applying input x , for a certain output we know the initial state
was in B1, for another output we know it was in B2, and so on. Although initial
state uncertainty will not be used explicitly until Sections 2 and 3.4.3, it provides
intuitions that will be useful here, and we also need it to define the current state
uncertainty.

The current state uncertainty is a data structure that, given an input string,
describes for each output string the set of possible final states. Thus, computing
a homing sequence means to find an input string for which the current state
uncertainty associated with each output string is a singleton.

Definition 1.7. The current state uncertainty (with respect to a Mealy
machine) after applying input sequence x ∈ I ∗ is σ(x) def= {δ(Bi , x) : Bi ∈
π(x)} ⊂ P(S). ��

The elements of both the initial and the current state uncertainty are called
blocks. If B is a block of π(x) or σ(x) then |B | denotes its size, whereas |π(x)|
and |σ(x)| denote the number of blocks. While the initial state uncertainty is
a partition (i.e., any two blocks are disjoint, and the union of all blocks is the
entire set of states), Example 1.8 will show that the current state uncertainty
does not need to be one: a state may belong to several different blocks, and the
union of all blocks does not need to be the whole set of states.

We will frequently take the viewpoint that the current state uncertainty
evolves as more input symbols are applied. Namely, the current state uncertainty
σ(xy) is obtained by applying δ(·, y) to each block of σ(x), splitting the result
if some states gave different outputs on y.

Example 1.8. To see how the current state uncertainty works, consider the ma-
chine in Figure 1.4. Initially, we do not know the state, so it may be either s1,
s2, or s3. Thus the current state uncertainty is σ(ε) = {{s1, s2, s3}}. Apply the
string a to the machine. If we receive the output 1, then we were in state s2
so the current state is s1. If we receive the output 0, then we were in either
s1 or s3 and the current state is either s1 or s3. We then describe the current
state uncertainty as σ(a) = {{s1}1, {s1, s3}0} (the subscripts, included only in
this example for clarity, show which outputs correspond to each block). Now we

1 Homing and Synchronizing Sequences 11

s1

s2 s3

b/0a/1

a/0

a/0

b/0

b/0
Fig. 1.4. Example illustrating current state uncertainty

additionally apply the letter b. If we were in s1 then we end up in s3 and receive
output 0, and if we were in either s3 or s1 then we end up in either s2 or s3, in
both cases receiving output 0. Thus the current state uncertainty after applying
ab is σ(ab) = {{s3}10, {s2, s3}00}. Finally, we apply the letter a at this point.
If we were in s3, then we move to s3 with output 0, and if we were in s2, then
we move to s1 and receive output 1. Thus the current state uncertainty becomes
σ(aba) = {{s3}100 or 000, {s1}001}. We end the example with an important re-
mark: since every set in the current state uncertainty is now a singleton, we can
determine the current state uniquely, by looking at the output. Thus aba is a
homing sequence. (Verify this using Definition 1.5!) ��

We conclude this section with two important observations. First, as the se-
quence is extended, the initial state uncertainty becomes more and more refined.
I.e., by applying more input symbols the blocks of the partition may be split but
not merged:

Lemma 1.9. For any sequences x , y ∈ I ∗, the following holds.

∀Bi ∈ π(xy)∃Bj ∈ π(x) : Bi ⊆ Bj .

Proof. All states in a block of π(xy) give the same output on xy. In particular
they give the same output on x , so they all belong to the same block of π(x). ��

Second, as a sequence x is extended, the sum
∑

B∈σ(x)|B | of sizes of all blocks
in the current state uncertainty can never increase. This is because if B ∈ σ(xy)
then B = δ(Q , y), where Q ⊆ B ′ is a subset of some block B ′ ∈ σ(x): here we
must have |B ′| ≥ |Q | ≥ |B |. (When is each inequality strict?) Moreover, the
number of blocks can only decrease if two blocks are mapped to the same block,
in which case the sum of sizes of all blocks also decreases. This (very informally)
explains the following lemma, whose proof we delegate to Exercise 1.2.

12 Sven Sandberg

Lemma 1.10. If x , y ∈ I ∗ are any two sequences, the following holds.

∑

B∈σ(x)

|B |

− |σ(x)| ≥

∑

B∈σ(xy)

|B |

− |σ(xy)|. ��

As we will see in the next section, algorithms for computing homing se-
quences work by concatenating sequences so that in each step the inequality in
Lemma 1.10 is strict : note that x is homing when

∑
B∈σ(x)|B | − |σ(x)| reaches

zero.
Initial and current state uncertainty has been used since the introduction of

homing sequences [Moo56, Gil61] although we use a slightly different definition
of current state uncertainty [LY96].

Exercise 1.2. Prove Lemma 1.10.

Exercise 1.3. Recall from the discussion before Lemma 1.10 that if B ∈ σ(xy)
then B = δ(Q , y) where Q ⊆ B ′ for some B ′ ∈ σ(x). When is |B ′| > |Q |, and
when is |Q | > |B |?

1.3 Algorithms for Computing Homing and
Synchronizing Sequences

1.3.1 Computing Homing Sequences for Minimized Machines

This section presents an algorithm to compute homing sequences, assuming the
machine is minimized (for definitions and algorithms for minimization, refer to
Chapter 21). This is an important special case that occurs in many practical
applications, cf. Section 4.5 and the article by Rivest and Schapire [RS93]. The
algorithm for minimized machines is a simpler special case of the general Algo-
rithm 3 in Section 1.3.3: they can be implemented to act identically on minimized
machines. Both algorithms run in time O(n3 + n2 · |I |), but the one for mini-
mized machines requires less space (O(n) instead of O(n2+n ·|I |)) and produces
shorter sequences (bounded by (n2 − n)/2 instead of (n3 − n)/6). The general
algorithm, on the other hand, gives additional insight into the relation between
homing and synchronizing sequences, and is of course applicable to more problem
instances.

The algorithm of this section builds a homing sequence by concatenating
many separating sequences. A separating sequence for two states gives different
output for the states:

Definition 1.11. A separating sequence for two states s , t ∈ S is a sequence
x ∈ I ∗ such that λ(s , x) �= λ(t , x). ��

1 Homing and Synchronizing Sequences 13

The Algorithm. Algorithm 1 computes a homing sequence for a minimized
machine as follows. It first finds a separating sequence for some two states of the
machine. By the definition of separating sequence, the two states give different
outputs, hence they now belong to different blocks of the resulting current state
uncertainty. Next iteration finds two new states that belong to the same block of
the current state uncertainty and applies a separating sequence for them. Again,
the two states end up in different blocks of the new current state uncertainty. This
process is repeated until the current state uncertainty contains only singleton
blocks, at which point we have a homing sequence.

Algorithm 1 Computing a homing sequence for a minimized machine.

1 function Homing-For-Minimized(Minimized Mealy machine M)
2 x ← ε
3 while there is a block B ∈ σ(x) with |B | > 1
4 find two different states s , t ∈ B
5 let y be a separating sequence for s and t
6 x ← xy
7 return x

Step 5 of the algorithm can always be performed because the machine is
minimized. Since y is separating, the block B splits into at least two new blocks
(one containing s and one containing t). Thus, Lemma 1.10 holds with strict
inequality between any two iterations, i.e., the quantity

∑
B∈σ(x)|B | − |σ(x)|

strictly decreases in each iteration. When the algorithm starts, it is n − 1 and
when it terminates it is 0. Hence the algorithm terminates after concatenating
at most n − 1 separating sequences.

The algorithm is due to Ginsburg [Gin58] who relies on the adaptive version
of Moore [Moo56] which we will see more of in Section 1.3.4.

Length of Separating Sequences. We now show that any two states in a
minimized machine have a separating sequence of length at most n − 1. Since
we only need to concatenate n − 1 separating sequences, this shows that the
computed homing sequence has length at most (n − 1)2. The argument will also
help understanding how to compute separating sequences.

Define a sequence ρ0, ρ1, . . . of partitions, so that two states are in the same
class of ρi if and only if they do not have any separating sequence of length i .
Thus, ρi is the partition induced by the relation s ≡i t def⇔ “λ(s , x) = λ(t , x) for
all x ∈ I ∗ of length at most i”. In particular, ρ0 = {S}, and ρi+1 is a refinement
of ρi . These partitions are also used in algorithms for machine minimization; cf.
Section 21. The following lemma is important.

Lemma 1.12 ([Moo56]). If ρi+1 = ρi for some i, then the rest of the sequence
of partitions is constant, i.e., ρj = ρi for all j > i.

14 Sven Sandberg

Proof. We prove the equivalent, contrapositive form: ρi+1 �= ρi ⇒ ρi �= ρi−1

for all i ≥ 1. If ρi+1 �= ρi then there are two states s , t ∈ S with a shortest
separating sequence of length i +1, say ax ∈ I i+1 (i.e., a is the first letter and x
the tail of the sequence). Since ax is separating for s and t but a is not, x must
be separating for δ(s , a) and δ(t , a). It is also a shortest separating sequence,
because if y ∈ I ∗ was shorter than x , then ay would be a separating sequence for
s and t , and shorter than ax . This proves that there are two states δ(s , a), δ(t , a)
with a shortest separating sequence of length i , so ρi �= ρi−1. ��

Since a partition of n elements can only be refined n times, the sequence
ρ0, ρ1, . . . of partitions becomes constant after at most n steps. And since the
machine is minimized, after this point the partitions contain only singletons.
So any two states have a separating sequence of length at most n − 1, and the
homing sequence has length at most (n − 1)2.

Hibbard [Hib61] improved this bound, showing that the homing sequence
computed by Algorithm 1 has length at most n(n−1)/2, provided we choose two
states with the shortest possible separating sequence in each iteration. Moreover,
for every n there is an n-state machine whose shortest homing sequence has
length n(n − 1)/2, so the algorithm has the optimal worst case behavior in
terms of output length.

Computing Separating Sequences. We are now ready to fill in the last
detail of the algorithm. To compute separating sequences, we first construct the
partitions ρ1, ρ2, . . . , ρr described above, where r is the smallest index such that
ρr contains only singletons. Two states s , t ∈ S belong to different blocks of ρ1

if and only if there is an input a ∈ I so that λ(s , a) �= λ(t , a), and thus ρ1 can
be computed. Two states s , t ∈ S belong to different blocks of ρi for i > 1 if
and only if there is an input a such that δ(s , a) and δ(t , a) belong to different
blocks of ρi−1, and thus all ρi with i > 1 can be computed.

To find a separating sequence for two states s , t ∈ S , find the smallest index
i such that s and t belong to different blocks of ρi . As argued in the proof of
Lemma 1.12, the separating sequence has the form ax , where x is a shortest
separating sequence for δ(s , a) and δ(t , a). Thus, we find the a that takes s
and t to different blocks of ρi−1 and repeat the process until we reach ρ0. The
concatenation of all such a is our separating sequence.

This algorithm can be modified to use only O(n) memory, not counting the
space required by the output. Typically, the size of the output does not contribute
to the memory requirements, since the sequence is applied to some machine on
the fly rather than stored explicitly.

Exercise 1.4. Give an example of a Mealy machine that is not minimized but has
a homing sequence. Is there a Mealy machine that is not minimized and has a
homing but no synchronizing sequence?

1 Homing and Synchronizing Sequences 15

1.3.2 Computing Synchronizing Sequences

Synchronizing sequences are computed in a way similar to homing sequences. The
algorithm also concatenates many short sequences into one long, but this time
the sequences take two states to the same final state. Analogously to separating
sequences, we define merging sequences:

Definition 1.13. A merging sequence for two states s , t ∈ S is a sequence
x ∈ I ∗ such that δ(s , x) = δ(t , x). ��

The Algorithm. Algorithm 2 first finds a merging sequence y for two states.
This ensures that |δ(S , y)| < |S |, because each state in S gives rise to at most one
state in δ(S , y), but the two states for which the sequence is merging give rise to
the same state. This process is repeated, in each step appending a new merging
sequence for two states in δ(S , x) to the result x , thus decreasing |δ(S , x)|.

If at some point the algorithm finds two states that do not have a merging
sequence, then there is no synchronizing sequence: if there was, it would merge
them. And if the algorithm terminates by finishing the loop, the sequence x is
clearly synchronizing. This shows correctness. Since |δ(S , x)| is n initially and 1
on successful termination, the algorithm needs at most n − 1 iterations.

Algorithm 2 Computing a synchronizing sequence.

1 function Synchronizing(Mealy machineM)
2 x ← ε
3 while |δ(S , x)| > 1
4 find two different states s0, t0 ∈ δ(S , x)
5 let y be a merging sequence for s0 and t0

(if none exists, return Failure)
6 x ← xy
7 return x

As a consequence of this algorithm, we have (see, e.g., Starke [Sta72]):

Theorem 1.14. A machine has a synchronizing sequence if and only if every
pair of states has a merging sequence.

Proof. If the machine has a synchronizing sequence, then it is merging for every
pair of states. If every pair of states has a merging sequence, then Algorithm 2
computes a synchronizing sequence. ��

To convince yourself, it may be instructive to go back and see how this
algorithm works on Exercise 1.1.

16 Sven Sandberg

Computing Merging Sequences. It remains to show how to compute merg-
ing sequences. This can be done by constructing a product machine M′ =
〈I ′,S ′, δ′〉, with the same input alphabet I ′ = I and no outputs (so we omit
O ′ and λ′). Every state in M′ is a set of one or two states in M, i.e., S ′ =
{{s}, {s , t} : s , t ∈ S}. Intuitively, these sets correspond to possible final states
in M after applying a sequence to the s0, t0 chosen on line 4 of Algorithm 2.
Thus we define δ′ by setting {s , t} a−−→{s ′, t ′} in M′ if and only if s a−−→s ′ and
t a−−→t ′ in M, where we may have s = t or s ′ = t ′. In other words, δ′ is the re-
striction of δ to sets of size one or two. Clearly, δ′({s , t}, x) = {s ′, t ′} if and only
if δ({s , t}, x) = {s ′, t ′} (where in the first case {s , t} and {s ′, t ′} are interpreted
as states of M′ and in the second case as sets of states in M). See Figure 1.5
for an example of the product machine. Thus, to find a merging sequence for s
and t we only need to check if it is possible to reach a singleton set from {s , t}
in M′. This can be done, e.g., using breadth-first search [CLRS01].

s1

s2 s3

a, b

a

b

a

b

s1, s2

s2, s3 s1, s3

s1 s2 s3

a

b

b

a

a

ba, b

a

b

b

a
Fig. 1.5. A Mealy machineM and the corresponding product machineM′. Outputs
are omitted here. In the product machine, edges in the shortest path forest are solid
and other edges are dashed.

Efficient Implementation. The resulting algorithm is easily seen to run in
time O(n4 + n3 · |I |). In each of the O(n) iterations, we compute δ(S , xy) by
applying y to every element of δ(S , x). Since |y| = O(n2) and |δ(S , x)| = O(n),
this needs O(n3) time per iteration. The breadth first search needs linear time
in the size of M′, i.e., O(n2 · |I |). We now show how to save a factor n, using
several clever tricks due to Eppstein [Epp90].

Theorem 1.15 ([Epp90]). Algorithm 2 can be implemented to consume time in
O(n3 + n2 · |I |) and working space O(n2 + n · |I |) (not counting the space for
the output).

The extra condition “not counting the space for the output” is necessary be-
cause the only known upper bound on the length of synchronizing sequences is

1 Homing and Synchronizing Sequences 17

O(n3) (cf. Theorem 1.16). The output may not contribute to the space require-
ment, in case the sequence is not stored explicitly but applied to some machine
one letter at a time as it is being constructed.

Proof.
Overview. The proof is in several steps. First, we show how to implement the
algorithm to use only the required time, not bothering about how much space is
used. The real bottleneck is computing δ(S , x). For this to be fast, we precompute
one lookup table per node of the shortest path forest ofM′. Each table has size
O(n), and since there are O(n2) nodes, the total space is O(n3), which is too
big. To overcome this, we then show how to leave out all but every n’th table,
without destroying the time requirement.
The Shortest Path Forest. We first show how to satisfy the time requirements.
Run breadth-first search in advance, starting simultaneously from all singletons
in the product machine M′ and taking transitions backward. Let it produce a
shortest path forest, i.e., a set of trees where the roots are the singletons and
the path from any node to the root is of shortest length. This needs O(n2 · |I |)
time. For any {s , t} ∈ S ′, denote by τs,t the path from {s , t} to the root in this
forest. The algorithm will always select y = τs0,t0 on line 5.
Tables. Recall that we obtain δ(S , xy) by iterating through all elements u of
the already known set δ(S , x) and computing δ(u, y). In the worst case, y is
quadratically long and thus the total work for all O(n) choices of u in all O(n)
iterations becomes O(n4). We now improve this bound to O(n2). Since y = τs0,t0 ,
we precompute δ(u, τs,t) for every s , t , u ∈ S . Thus, computing δ(u, y) is done in
O(1) time by a table lookup and we obtain δ(S , xy) from δ(S , x) in O(n) time.
The tables need O(n3) space, but we will improve that later.
Computing Tables. We now show how to compute the tables. For every {s , t} ∈
S ′ we compute an n element table, with the entries δ(u, τs,t) for each u ∈ S , using
totally O(n3) time and space, as follows. Traverse the shortest path forest in pre-
order, again following transitions backward. When visiting node {s , t} ∈ S ′, let
{s ′, t ′} be its parent in the forest. Thus, there is some a such that τs,t = aτs′,t′ .
Note that δ(u ′, τs′,t′) has already been computed for all u ′ ∈ S , since we traverse
in pre-order. To compute δ(u, τs,t) we only need to compute δ(u, a) and plug
it into the table in the parent node: δ(u, τs,t) = δ(δ(u, a), τs′,t′). This takes
constant time, so doing it for every u ∈ S and every node in the tree requires
only O(n3) time.

We thus achieved the time bound, but the algorithm now needs O(n2 · |I |)
space to storeM′ and O(n3) to store the tables of all δ(u, τs,t). We will reduce
the first to O(n · |I |+ n2) and the second to O(n2).
Compact Representation ofM′. The graphM′ has O(n2) nodes and O(n2 · |I |)
edges. The breadth-first search needs one flag per node to indicate if it has
been visited, so we cannot get below O(n2) space. But we do not have to store
edges explicitly. The forward transitions δ′ can be computed on the fly using
δ. The breadth-first search takes transitions backward. To avoid representing
backwards transitions explicitly, we precompute for every s ′ ∈ S and a ∈ I ,
the set δ−1(s ′, a) def= {s ∈ S : δ(s , a) = s ′} (requiring totally O(n · |I |) space).

18 Sven Sandberg

By definition, the backward transitions on input a from some state {s ′, t ′} ∈ S ′

are all {s , t} so that s ∈ δ−1(s ′, a) and t ∈ δ−1(t ′, a). For a single state and a
single input, these can be found in time O(r), where r is the number of resulting
backward transitions. Consequently, the breadth-first search can still be done in
O(n2 · |I |) time even if edges are not represented explicitly.
Leaving out Tables. To reduce the space needed by tables, we will leave out the
tables for all but at most every n’th node of the forest, so the distribution of
tables in the forest becomes “sparse”. At the same time we will guarantee that
following the shortest path from any node toward a root, a node with a table
will be found after at most n steps. Thus, when the main algorithm computes
δ(δ(S , x), y) it has to follow the shortest path in the forest for at most n steps
per state in δ(S , x) before it can look up the answer. As a result, the total time
over all iterations to update δ(S , xy) grows to O(n3), but that is within the time
limit.
Which Tables to Leave out. To determine which nodes in the shortest path forest
that should have a table, we first take a copy of the forest. Take a leaf of maximal
depth, follow the path from this leaf toward the root for n steps and let {s , t}
be the node we arrive at. Mark {s , t} as a node for which the table should be
computed, and remove the entire subtree rooted at {s , t}. Repeat this process
as long as possible, i.e., until the resulting forest has depth less than n. Since
every removed subtree has depth n, the path from any node to a marked node
has length at most n, thus guaranteeing that updating δ(u, xy) needs at most n
steps. Moreover, every removed subtree has at least n nodes, so tables will be
stored in at most every n’th node.
Computing Tables When They Are Few. Finally, computing the tables when they
are more sparsely occurring is done almost as before, but instead of using the
table value from a parent, we find the nearest ancestor that has a table, requiring
O(n) time for every element of every table, summing up to O(n3) because there
are O(n) tables with n entries each.

We conclude the proof with a summary of the requirements of the algorithm.

• The graphM′ needs O(n2) space for nodes and O(n · |I |) for edges.
• There are O(n) tables, each one taking O(n) space, so totally O(n2).
• The breadth-first search needs O(n2 · |I |) time.
• Computing the tables needs O(n3) time.
• In each of the O(n) iterations, computing δ(S , xy) needs O(n2) time.
• In each iteration, writing the merging sequence to the output is linear in its

length, which is bounded by O(n2). ��

Length of Synchronizing Sequences. The merging sequences computed are
of minimal length, because breadth-first search computes shortest paths. Un-
fortunately, this does not guarantee that Algorithm 2 finds a shortest possible
synchronizing sequence, since the order in which states to merge are picked may
not be optimal. It is possible to pick the states that provide for the shortest
merging sequence without increasing the asymptotic running time, but there are
machines where this strategy is not the best. In fact, we will see in Section 1.4.1

1 Homing and Synchronizing Sequences 19

that finding shortest possible sequences is NP-hard, meaning that it is extremely
unlikely that a polynomial time algorithm exists.

Note that each merging sequence has length at most n(n − 1)/2 because it
is a simple path inM′; thus the length of the synchronizing sequence is at most
n(n − 1)2/2. We now derive a slightly sharper bound.

Theorem 1.16. If a machine has a synchronizing sequence, then it has one of
length at most n3/3.

Proof. At any iteration of Algorithm 2, among all states in Q def= δ(S , x), find
two that provide for a shortest merging sequence. We first show that when
|Q | = k , there is a pair of states in Q with a merging sequence of length at
most n(n − 1)/2− k(k − 1)/2 + 1. Every shortest sequence passes through each
node in the shortest path forest at most once: otherwise we could cut away
the sub-sequence between the repeated nodes to get a shorter sequence. Also,
it cannot visit any node in the forest that has both states in Q , because those
two states would then have a shorter merging sequence. There are n(n − 1)/2
nodes in the shortest path forest (not counting singletons)4, and k(k − 1)/2 of
them correspond to pairs with both nodes in δ(S , x). Thus, there is a merging
sequence of length at most n(n − 1)/2− k(k − 1)/2 + 1.

The number |δ(S , x)| of possible states is n initially, and in the worst case
it decreases by only one in each iteration until it reaches 2 just before the last
iteration. Thus, summing the length of all merging sequences, starting from the
end, we get

n∑

i=2

(
n(n − 1)

2
− i(i − 1)

2
+ 1
)

,

which evaluates to n3/3− n2 + 5
3n − 1 < n3/3. ��

This is not the best known bound: Klyachko, Rystsov, and Spivak [KRS87]
improved it to (n3−n)/6. Similarly to the proof above, they bound the length of
each merging sequence, but with a much more sophisticated analysis they achieve
the bound (n − k +2) · (n − k +1)/2 instead of n(n − 1)/2− k(k − 1)/2+1. The
best known lower bound is (n − 1)2, and it is an open problem to close the gap
between the lower quadratic and upper cubic bounds. Černý [Čer64] conjectured
that the upper bound is also (n − 1)2.

Exercise 1.5. Consider the problem of finding a synchronizing sequence that ends
in a specified final state. When does such a sequence exist? Extend Algorithm 2
to compute such a sequence.

Exercise 1.6. Show how to modify the algorithm of this section, so that it tests
whether a machine has a synchronizing sequence without computing it, in time
O(n2 · |I |).

A similar algorithm for the problem in Exercise 1.6 was suggested by Imreh
and Steinby [IS95].
4 Recall that |S ′ \ {singletons}| = the number of two-element subsets of S =

(
n
2

)
=

n(n − 1)/2.

20 Sven Sandberg

1.3.3 Computing Homing Sequences for General Machines

In this section we remove the restriction from Section 1.3.1 that the machine
has to be minimized. Note that for general machines, an algorithm to compute
homing sequences can be used also to compute synchronizing sequences: just
remove all outputs from the machine and ask for a homing sequence. Since there
are no outputs, homing and synchronizing sequences are the same thing. It is
therefore natural that the algorithm unifies Algorithm 1 of Section 1.3.1 and
Algorithm 2 of Section 1.3.2 by computing separating or merging sequences in
each step.

Recall Lemma 1.10, saying that the quantity
∑

B∈σ(x)|B | − |σ(x)| does not
increase as the sequence x is extended. Algorithm 3 repeatedly applies a sequence
that strictly decreases this quantity: it takes two states from the same block
of the current state uncertainty and applies either a merging or a separating
sequence for them. If the sequence is merging, then the sum of sizes of all blocks
diminishes. If it is separating, then the block containing the two states is split.
Since the quantity is n−1 initially and 0 when the algorithm finishes, it finishes
in at most n − 1 steps.

If the algorithm does not find either a merging or a separating sequence on
line 5, then the machine has no homing sequence. Indeed, any homing sequence
that does not take s and t to the same state must give different outputs for them,
so it is either merging or separating. This shows correctness of the algorithm.

Algorithm 3 Computing a homing sequence for a general machine.

1 function Homing(Mealy machineM)
2 x ← ε
3 while there is a block B ∈ σ(x) with |B | > 1
4 find two different states s , t ∈ B
5 let y be a separating or merging sequence for s and t

(if none exists, return Failure)
6 x ← xy
7 return x

Similar to Theorem 1.14, we have the following for homing sequences.

Theorem 1.17 ([Rys83]). A Mealy machine has a homing sequence if and only
if every pair of states either has a merging sequence or a separating sequence.

Note that, as we saw already in Section 1.3.1, every minimized machine has a
homing sequence.

Proof. Assume there is a homing sequence and let s , t ∈ S be any pair of states.
If the homing sequence takes s and t to the same final state, then it is a merging
sequence. Otherwise, by the definition of homing sequence, it must be possible

1 Homing and Synchronizing Sequences 21

to tell the two final states apart by looking at the output. Thus the homing
sequence is a separating sequence.

Conversely, if every pair of states has either a merging or a separating se-
quence, then Algorithm 3 computes a homing sequence. ��

We cannot hope for this algorithm to be any faster than the one to compute
synchronizing sequences, because they have to do the same job if there is no
separating sequence. But it is easy to see that it can be implemented not to be
worse either. By definition, two states have a separating sequence if and only if
they are not equivalent (two states are equivalent if they give the same output for
all input sequences: see Section 21). Hence, we first minimize the machine to find
out which states have separating sequences. As long as possible, the algorithm
chooses non-equivalent states on line 4 and only looks for a separating sequence.
Thus, the first half of the homing sequence is actually a homing sequence for
the minimized machine, and can be computed by applying Algorithm 1 to the
minimized machine. The second half of the sequence is computed as described in
Section 1.3.2, but only selecting states from the same block of the current state
uncertainty.

1.3.4 Computing Adaptive Homing Sequences

Recall that an adaptive homing sequence is applied to a machine as it is
being computed, and that each input symbol depends on the previous outputs.
An adaptive homing sequence is formally defined as a decision tree, where each
node is labeled with an input symbol and each edge is labeled with an output
symbol. The experiment consists in first applying the input symbol in the root,
then following the edge corresponding to the observed output, applying the input
symbol in the reached node and so on. When a leaf is reached, the final state can
be uniquely determined. The length of an adaptive homing sequence is defined
as the depth of this tree.

Using adaptive sequences can be an advantage because they are often shorter
than preset sequences. However, it has been shown that machines possessing the
longest possible preset homing sequences (of length n(n − 1)/2) require equally
long adaptive homing sequences [Hib61].

It is easy to see that a machine has an adaptive homing sequence if and only if
it has a preset one. One direction is immediate: any preset homing sequence cor-
responds to an adaptive one. For the other direction, note that by Theorem 1.17
it is sufficient to show that if a machine has an adaptive homing sequence, then
every pair of states has a merging or a separating sequence. Assume toward a
contradiction that a machine has an adaptive homing sequence but there are two
states s , t ∈ S that have neither a merging nor a separating sequence. Consider
the leaf of the adaptive homing sequence tree that results when the initial state
is s . Since s and t have no separating sequence, the same leaf would be reached
also if t was the initial state. But since s and t have no merging sequence, there
are at least two possible final states, contradicting that there must be only one
possible final state in a leaf.

22 Sven Sandberg

Algorithms 1 and 3 for computing preset homing sequences can both be
modified so that they compute adaptive homing sequences. To make the sequence
adaptive (and possibly shorter), note that it can always be determined from
the output which block of the current state uncertainty that the current state
belongs to. Only separating or merging sequences for states in this block need to
be considered. Algorithm 4 is similar to Algorithm 3, except we only consider the
relevant block of the current state uncertainty (called B in the algorithm). For
simplicity, we stretch the notation a bit and describe the algorithm in terms of
the intuitive definition of adaptive homing sequence, i.e., it applies the sequence
as it is constructed, rather than computes an explicit decision tree.

Algorithm 4 Computing an adaptive homing sequence.

1 function Adaptive-Homing(Mealy machine M)
2 B ← S
3 while |B | > 1
4 find two different states s , t ∈ B
5 let y be a separating or merging sequence for s and t

(if none exists, return Failure)
6 apply y toM and let z be the observed output sequence
7 B ← {u ∈ δ(B , y) : λ(B , y) = z}

The same arguments as before show correctness and cubic running time.
Algorithm 1 for minimized machines can similarly be made adaptive, resulting
in the same algorithm except with the words “or merging” on line 5 left out.
Although the computed sequences are never longer than the non-adaptive ones
computed by Algorithms 1 and 3, we stress once more that they do not have to
be the shortest possible.

Algorithm 4 occurred already in the paper by Moore [Moo56], even before
the algorithm of Section 1.3.1 for preset sequences.

Adaptive synchronizing sequences were suggested by Pomeranz and Reddy
[PR94]. They can be computed, e.g., by first applying a homing sequence (pos-
sibly adaptive), and then from the final known state find a sequence that takes
the machine to one particular final state.

1.3.5 Computing Minimal Homing and Synchronizing Sequences

The algorithms we saw so far do not necessarily compute the shortest possible se-
quences. It is of practical interest to minimize the length of sequences: the Mealy
machine may be a model of some system where each transition is very expensive,
such as a remote machine or the object pushing in Example 1.3 where making a
transition means moving a physical object, which can take several seconds. An
extreme example is the subway map in Exercise 1.1, where, for each transition, a
human has to buy a ticket and travel several kilometers. Moreover, the sequence

1 Homing and Synchronizing Sequences 23

may be computed once and then applied a large number of times. We will see
in Section 1.4.1 that finding a minimal length sequence is an NP-complete prob-
lem, hence unlikely to have a polynomial time algorithm. The algorithms in this
section compute minimal length sequences but need exponential time and space
in the worst case.

To compute a shortest synchronizing sequence, we define the synchronizing
tree. This is a tree describing the behavior of the machine for each possible input
string, but pruning off branches that are redundant when computing synchro-
nizing sequences:

Definition 1.18. The synchronizing tree (for a Mealy machine) is a rooted
tree where edges are labeled with input symbols and nodes with sets of states,
satisfying the following conditions.

(1) Each non-leaf has exactly |I | children, and the edges leading to them are
labeled with different input symbols.

(2) Each node is labeled with δ(S , x), where x is the sequence of input symbols
occurring as edge labels on the path from the root to the node.

(3) A node is a leaf iff:
(a) either its label is a singleton set,
(b) or it has the same label as a node of smaller depth in the tree. ��

By (2), the root node is labeled with S . To find the shortest synchronizing
sequence, compute the synchronizing tree top-down. When the first leaf satis-
fying condition (3a) is found, the labels on the path from the root to the leaf
form a synchronizing sequence. Since no such leaf was found on a previous level,
this is the shortest sequence and the algorithm stops and outputs it. To prove
correctness, it is enough to see that without condition (3b) the algorithm would
compute every possible string of length 1, then of length 2, and so on until it
finds one that is synchronizing. No subtree pruned away by (3b) contains any
shortest synchronizing sequence, because it is identical to the subtree rooted in
the node with the same label, except every node has a bigger depth.

The term “smaller depth” in (3b) is deliberately a bit ambiguous: it is not
incorrect to interpret it as “strictly smaller depth”. However, an algorithm that
generates the tree in a breadth-first manner would clearly benefit from making a
node terminal also if it occurs on the same level and has already been generated.

Example 1.19. Figure 1.6 depicts a Mealy machine and its synchronizing tree.
The root note is labeled with the set of all states. It has two children, one per
input symbol. The leftmost child is labeled with δ({s1, s2, s3}, a) = {s1, s2} and
the rightmost with δ({s1, s2, s3}, b) = {s1, s2, s3}. Thus, it is pointless for the
sequence to start with a b, and the right child is made a leaf by rule (3b) of the
definition. The next node to expand is the one labeled by {s1, s2}. Applying a
gives again δ({s1, s2}, a) = {s2, s2}, so we make the left child a leaf. Applying
b gives the child δ({s1, s2}, b) = {s1, s3}. Finally, we expand the node labeled
{s1, s3}, and arrive at the singleton δ({s1, s3}, a) = s3. It is not necessary to
expand any further, as the labels from the root to the singleton leaf form a
shortest synchronizing sequence, aba.

24 Sven Sandberg

s1 s2 s3

a b

a, ba
b

s1, s2, s3

s1, s2 s1, s2, s3

s1, s2 s1, s3

s2

ba

a b

a

Fig. 1.6. A machine and its corresponding synchronizing tree. Note that the rightmost
and leftmost nodes of the tree have been made leaves due to rule (3b) of Definition 1.18.
Since the lowest leaf is labeled with a singleton s2, the path leading to it from the root
indicates a shortest synchronizing sequence, aba.

It is possible to replace condition (3b) of Definition 1.18 with a stronger one,
allowing to prune the tree more: stipulate that a node becomes a leaf also if its
label is a superset of some node of smaller depth. This clearly works, because if
P ⊆ Q ⊆ S are the node labels, then δ(P , x) ⊆ δ(Q , x) for all sequences x . The
drawback is that it can be more costly to test this condition.

The homing tree is used analogously to compute shortest homing sequences.

Definition 1.20. The homing tree (for a Mealy machine) is a rooted tree
where edges are labeled with input symbols and nodes with current state uncer-
tainties (i.e., sets of sets of states), satisfying the following conditions.

(1) Each non-leaf has exactly |I | outgoing edges, labeled with different input
symbols.

(2) Each node is labeled with σ(x), where x is the sequence of input symbols
occurring as edge labels on the path from the root to the node.

(3) A node is a leaf iff:
(a) either each block of its label is a singleton set,
(b) or it has the same label as a node of smaller depth. ��

Condition (3b) can be strengthened in a similar way for the homing tree as
for the synchronizing tree. Here we turn a node into a leaf also if each block of
its label is a superset of some block in the label of another node at a smaller
depth.

The homing tree method was introduced by Gill [Gil61] and the synchronizing
tree method has been described by Hennie [Hen64]. Synchronizing sequences are
sometimes used in test generation for circuits without a reset (a reset, here,
would be an input symbol that takes every state to one and the same state,

1 Homing and Synchronizing Sequences 25

i.e., a trivial synchronizing sequence). In this application, the state space is
{0, 1}k and typically very big. Rho, Somenzi and Pixley [RSP93] suggested a
more practical algorithm for this special case based on binary decision diagrams
(BDDs).

1.4 Complexity

This section shows two hardness results for related problems. First, Section 1.4.1
shows that it is NP-hard to find a shortest homing or synchronizing sequence.
Second, Section 1.4.2 shows that it is PSPACE-complete to determine if there
is a homing or synchronizing sequence when the initial state is known to be in
a specified subset Q ⊆ S of the states.

1.4.1 Computing Shortest Homing and Synchronizing Sequences Is
NP-hard

If a homing or synchronizing sequence is going to be used in practice, it is natural
to ask for it to be as short as possible. We saw in Section 1.3.1 that we can always
find a homing sequence of length at most n(n−1)/2 if one exists and the machine
is minimized, and Sections 1.3.2 and 1.3.3 explain how to find synchronizing
or homing sequences of length O(n3), for general machines. The algorithms
for computing these sequences run in polynomial time. But the algorithms of
Section 1.3.5 that compute minimal-length homing and synchronizing sequences
are exponential. In this section, we explain this exponential running time by
proving that the problems of finding homing and synchronizing sequences of
minimal length are significantly harder than those of finding just any sequence:
the problems are NP-hard, meaning they are unlikely to have polynomial-time
algorithms.

The Reduction Since only decision problems can be NP-complete, formally
it does not make sense to talk about NP-completeness of computing homing or
sequences. Instead, we look at the decision version of the problems: is there a
sequence of length at most k?

Theorem 1.21 ([Epp90]). The following problems, taking as input a Mealy ma-
chine M and a positive integer k, are NP-complete:

(1) Does M have a homing sequence of length ≤ k?
(2) Does M have a synchronizing sequence of length ≤ k?

Proof. To show that the problems belong to NP, note that a nondeterministic
algorithm easily guesses a sequence of length ≤ k (where k is polynomial in the
size of the machine) and verifies that it is homing or synchronizing in polynomial
time.

To show that the problems are NP-hard, we reduce from the NP-complete
problem 3SAT [GJ79]. Recall that in a boolean formula, a literal is either a

26 Sven Sandberg

variable or a negated variable, a clause is the “or” of several literals, and a
formula is in conjunctive normal form (CNF) if it is the “and” of several
clauses. In 3SAT we are given a boolean formula ϕ over n variables v1, . . . , vn
in CNF with exactly three literals per clause, so it is on the form ϕ =

∧m
i=1(l

i
1 ∨

l i2 ∨ l i3), where each l ij is a literal. The question is whether ϕ is satisfiable, i.e.,
whether there is an assignment that sets each variable to either T or F and
makes the formula true.

Given any such formula ϕ with n variables and m clauses, we create a machine
with m(n + 1) + 1 states. The machine gives no output (or one and the same
output on all transitions, to formally fit the definition of Mealy machines), so
synchronizing and homing sequences are the same thing and we can restrict
the discussion to synchronizing sequences. There will always be a synchronizing
sequence of length n + 1, but there will be one of length n if and only if the
formula is satisfiable. The input alphabet is {T,F}, and the i ’th symbol in the
sequence roughly corresponds to assigning T or F to variable i .

The machine has one special state s , and for each clause (l i1∨l i2∨l i3) a sequence
of n + 1 states s i

1, . . . , s
i
n+1. Intuitively, s i

j leads to s i
j+1, except if variable vj is

in the clause and satisfied by the input letter, in which case a shortcut to s is
taken. The last state s i

n+1 leads to s and s has a self-loop. See Figure 1.7 for an
example.

s i
1 s i

2 s i
3 s i

4 s i
5 s i

6 s
T,F F T T,F F T,F

T

T

F

T,F

Fig. 1.7. Example of the construction for the clause (v2∨¬v3∨v5), where the formula
has five variables v1, . . . , v5. States s i

1 and s i
4 only have transitions to the next state,

because they do not occur in the clause. States s i
2, and s i

5 have shortcuts to s on input
T because v2 and v5 occur without negation, and s i

3 has a shortcut to s on input F

because it occurs negated. Note that such a chain is constructed for each clause, and
they are all different except for the last state s.

Formally, we have the following transitions, for all 1 ≤ i ≤ m:

• The last state goes to s , s i
n+1

T, F−−−→s , and s has a self-loop, s T, F−−−→s .
• If vj does not occur in the clause, then s i

j
T, F−−−→s i

j+1.
• If vj occurs positively in the clause, i.e., one of l i1 , l

i
2, or l i3 is vj , then s i

j
T−−→s

and s i
j

F−−→s i
j+1.

• If vj occurs negatively in the clause, i.e., one of l i1, l
i
2 , or l i3 is ¬vj , then s i

j
F−−→s

and s i
j

T−−→s i
j+1.

To finish the proof, we have to show that the machine thus constructed has a
synchronizing sequence of length n if and only if ϕ is satisfiable. First, assume

1 Homing and Synchronizing Sequences 27

ϕ is satisfiable and let ν be the satisfying assignment, so ν(vi) ∈ {T,F}. Then
the corresponding sequence ν(v1)ν(v2) . . . ν(vn) ∈ I ∗ is synchronizing: starting
from any state s i

j with j ≥ 2 or from s , we reach s in ≤ n steps. Consider state
s i
1 and recall that at least one of the literals in the i ’th clause is satisfied. Thus,

if this literal contains variable vj , the shortcut from s i
j to s will be taken, so also

from s i
1 will s be reached in ≤ n steps.

Conversely, assume there is a synchronizing sequence b = b1b2 . . . bk of length
k ≤ n. Hence δ(t , b) = s for every state t . In particular, starting from s i

1 one of
the shortcuts must be taken, say from s i

j to s . Thus vj occurs in the i :th clause
and setting it to bj makes the clause true. It follows that the assignment that
sets vj to bj , for 1 ≤ j ≤ n, makes all clauses true. This completes the proof. ��

Rivest and Schapire [RS93] mention without proof that it is also possible to
reduce from the problem exact 3-set cover.

Exercise 1.7. Show that the problem of computing the shortest homing sequence
is NP-complete, even if the machine is minimized and the output alphabet has
size at most two.

1.4.2 PSPACE-Completeness of a More General Problem

So far we assumed the biggest possible amount of ignorance – the machine can
initially be in any state. However, it is sometimes known that the initial state
belongs to a particular subset Q of S . If a sequence takes every state in Q to the
same final state, call it an Q-synchronizing sequence. Similarly, say that an Q-
homing sequence is one for which the output reveals the final state if the initial
state is in Q . In particular, homing and synchronizing are the same as S -homing
and S -synchronizing. Even if no homing or synchronizing sequence exists, a ma-
chine can have Q -homing or Q -synchronizing sequences (try to construct such
a machine, using Theorem 1.14). However, it turns out that even determining
if such sequences exist is far more difficult: as we will show soon, this problem
is PSPACE-complete. PSPACE-completeness is an ever stronger hardness result
than NP-completeness, meaning that the problem is “hardest” among all prob-
lems that can be solved using polynomial space. It is widely believed that such
problems do not have polynomial time algorithms, not even if nondeterminism is
allowed. It is interesting to note that Q -homing and Q -synchronizing sequences
are not polynomially bounded: as we will see later in this section, there are ma-
chines that have synchronizing sequences but only of exponential length. The
following theorem was proved by Rystsov [Rys83]. It is similar to Theorem 3.2
in Section 3.

Theorem 1.22 ([Rys83]). The following problems, taking as input a Mealy ma-
chine M and a subset Q ⊆ S of its states, are PSPACE-complete:

(1) Does M have an Q-homing sequence?
(2) Does M have an Q-synchronizing sequence?

28 Sven Sandberg

Proof. We first prove that the problems belong to NPSPACE, by giving polyno-
mial space nondeterministic algorithms for both problems. It then follows from
the general result PSPACE = NPSPACE (in turn a consequence of Savitch’s
theorem [Sav70, Pap94]) that they belong to PSPACE. The algorithm for syn-
chronizing sequences works as follows. Let Q0 = Q , nondeterministically select
one input symbol a0, apply it to the machine and compute Q1 = δ(Q0, a0).
Iterate this process, in turn guessing a1 to compute Q2 = δ(Q1, a1), a2 to com-
pute Q3 = δ(Q2, a2), and so on until |Qi | = 1, at which point we verified that
a0a1 . . . ai−1 is synchronizing (because Qi = δ(Q , a0a1 . . . ai)). This needs at
most polynomial space, because the previously guessed symbols are forgotten,
so only the current Qi needs to be stored. The algorithm for homing sequences
is similar, but instead of keeping track of the current δ(Q , a1a2 . . . ai), the algo-
rithm keeps track of the current state uncertainty σ(a0a1 . . . ai) and terminates
when it contains only singletons.

To show PSPACE-hardness, we reduce from the PSPACE-complete problem
Finite Automata Intersection [Koz77, GJ79]. In this problem, we are given
k finite, total, deterministic automata A1,A2, . . . ,Ak (all with the same input
alphabet) and asked whether there is a string accepted by all Ai , i.e., whether
the intersection of their languages is nonempty. Recall that finite automata are
like Mealy machines, except they do not produce outputs, they have one distin-
guished initial state and a set of distinguished final states. We construct a Mealy
machineM with the same input alphabet as the automata, and specify a subset
Q of its states, such that a sequence is Q -synchronizing forM if and only if it is
accepted by all Ai . As in Theorem 1.21,M does not give output, so a sequence
is homing if and only if it is synchronizing, and the rest of the discussion will be
restricted to synchronizing sequences. To construct M, first take a copy of all
Ai . Add one new input symbol z , and two new states, Good and Bad. Make
z -transitions from each accepting state of the automata to Good and from each
non-accepting state to Bad, and finally make self-loops on Good and Bad:
Good

I ∪ {z}−−−−−→Good and Bad
I ∪ {z}−−−−−→Bad. See Figure 1.8 for an example.

Let Q be the set of all initial states of the automata, together with Good.
We will show that all the automata accept a common word x if and only if M
has an Q -synchronizing sequence (and that sequence will be xz). First assume all
automata accept x . Then xz is an Q -synchronizing sequence ofM: starting from
the initial state of any automaton, the sequence x will take us to a final state. If
in addition we apply the letter z , we arrive at Good. Also, any sequence applied
to Good arrives at Good. Thus δ(Q , xz) = Good so xz is an Q -synchronizing
sequence.

Conversely, assume M has an Q -synchronizing sequence. Since we can only
reach Good from Good, the final state must be Good. In order to reach Good

from any state in Q \{Good}, the sequence must contain z . In the situation just
before the first z was applied, there was one possible current state in each of the
automata. If any of these states was non-accepting, applying z would take us to
Bad, and afterward we would be trapped in Bad and never reach Good. Thus

1 Homing and Synchronizing Sequences 29

GoodBad

A2

A1

Fig. 1.8. Example of the reduction in Theorem 1.22. We are given two (in general
many) automata, A1 and A2, and asked if there is a string accepted by all of them.
Add a new input symbol z and make z -transitions from accepting and nonaccepting
states to the new states Good and Bad, respectively, as in the picture. The new states
only have self-loops. Let Q be the set of all initial states, together with Good; thus a
sequence is Q-synchronizing iff it takes every initial state to a final state of the same
automaton and then applies z . Thus it corresponds to a word accepted by all automata.

all the automata were in a final state, so the word applied so far is accepted by
all automata. This finishes the proof. ��

This result also implies that Q -homing and Q -synchronizing sequences may
be exponentially long, another indication that they are fundamentally different
from the cubically bounded homing and synchronizing sequences. First, a poly-
nomial upper bound would imply that the sequence can be guessed and checked
by an NP-algorithm. So the length is superpolynomial unless PSPACE equals
NP. Second, Lee and Yannakakis [LY94] gave a stronger result, providing an
explicit family of sets of automata, such that the shortest sequence accepted
by all automata in one set is exponentially long. Since, in the reduction above,
every Q -synchronizing or Q -homing sequence corresponds to a sequence in the
intersection language, it follows that these are also of exponential length.

Theorem 1.23 ([LY94]). The shortest sequence accepted simultaneously by n
automata is exponentially long in the total size of all automata, in the worst case
(even with a unary input alphabet).

Proof. Denote by pi the i ’th prime. We will construct n automata, the i ’th of
which accepts sequences of positive length divisible by pi . Thus, the shortest
word accepted by all automata must be positive, and divisible by p1p2 · · · pn >
2n . The input alphabet has only one symbol. The i ’th automaton consists of a
loop of length pi , one state of which is accepting. To assure that the empty word
is not accepted, the initial state is an extra state outside the loop, that points
to the successor of the accepting state: see Figure 1.9. By Gauss’ prime number

30 Sven Sandberg

theorem, each automaton has size O(n log n), so the total size is polynomial in
n but the shortest sequence accepted by all automata is exponential. ��

Fig. 1.9. An automaton that accepts exactly the words of positive length divisible by
7. A similar automaton is created for all primes p1, . . . , pn .

Consider another generalization of synchronizing sequences, where we are
again given a subset Q ⊆ S but now the sequence has to end in Q , that is,
we want to find a sequence x such that δ(S , x) ⊆ Q . It is not more difficult
to show that this problem also is PSPACE-complete; however, it can be solved
in time nO(|Q|), so it is polynomial if the size of Q is bounded by a constant
[Rys83]. Rystsov shows in the same article that several related problems are
PSPACE-complete, and concludes the following result in another paper [Rys92].

Exercise 1.8. A nondeterministic Mealy machine is like a Mealy machine ex-
cept δ(s , a) is a set of states. The transition function δ is extended similarly,
so δ(Q , a) =

⋃
{δ(s , a) : s ∈ Q} and δ(Q , a1 . . . an) = δ(δ(Q , a1, . . . , an−1), an).

Show that the synchronizing sequence problem for nondeterministic Mealy ma-
chines is PSPACE-complete. Here, a sequence x is synchronizing for a nondeter-
ministic machine if |δ(S , x)| = 1.

Hint: Use Theorem 1.22.

1.5 Related Topics and Bibliography

The experimental approach to automata theory was initiated by the classical
article by Moore [Moo56], who introduces several testing problems, including
homing sequences and the adaptive version of Algorithm 1. He also shows the
upper bound of n(n − 1)/2 for the length of adaptive homing sequences. The
worst-case length of homing sequences for minimized automata was studied by
Ginsburg [Gin58] and finally resolved by Hibbard [Hib61]. The book by Kohavi
[Koh78] and the article by Gill [Gil61] contain good overviews of the problem.

1 Homing and Synchronizing Sequences 31

Length of Synchronizing Sequences and Černý’s Conjecture. Synchro-
nizing sequences were introduced a bit later by Černý [Čer64] and studied mostly
independently from homing sequences, with some exceptions [Koh78, Rys83,
LY96]. The focus has largely been on the worst-case length of sequences, except
an article by Rystsov that classifies the complexity of several related problems
[Rys83], the article by Eppstein, which introduces the algorithm in Section 1.3.2
[Epp90], and the survey by Lee and Yannakakis [LY96]. Černý [Čer64] showed
an upper bound of 2n − n − 1 for the length of synchronizing sequences and
conjectured that it can be improved to (n−1)2, a conjecture that inspired much
of the research in the area. The first polynomial bound was 1

2n3 − 3
2n2 + n + 1

due to Starke [Sta66], and as mentioned in Section 1.3.2 the best known bound is
1
6 (n3−n) due to Klyachko, Rystsov and Spivak [KRS87]. Already Černý [Čer64]
proved that there are automata that require synchronizing sequences of length
at least (n − 1)2, so if the conjecture is true then it is optimal.

Proving or disproving Černý’s conjecture is still an open problem, but it has
been settled for several special cases: Eppstein [Epp90] proved it for monotonic
automata, which arise in the orientation of parts that we saw in Example 1.3;
Kari [Kar03] showed it for Eulerian machines (i.e., where each state has the
same in- and out-degrees); Pin [Pin78b] showed it when n is prime and the
machine is cyclic (meaning that there is an input letter a ∈ I such that the
a-transitions form a cycle through all states); Černý, Pirická and Rosenauerová
[ČPR71] showed it when there are at most 5 states. Other classes of machines
were studied by Pin [Pin78a], Imreh and Steinby [IS95], Rystsov [Rys97], Bog-
danović et al. [BIĆP99], Trakhtman [Tra02], Göhring [Göh98] and others. See
also Trakhtman’s [Tra02] and Göhring’s [Göh98] articles for more references.

Parallel Algorithms. In a series of articles, Ravikumar and Xiong study the
problem of computing homing sequences on parallel computers. Ravikumar gives
a deterministic O(

√
n log2 n) time algorithm [Rav96], but it is reported not to

be practical due to large communication costs. There is also a randomized algo-
rithm requiring only O(log2 n) time but O(n7) processors [RX96]. Although not
practical, this is important as it implies that the problem belongs to the complex-
ity class RNC. The same authors also introduced and implemented a practical
randomized parallel algorithm requiring time essentially O(n3/k), where the
number k of processors can be specified [RX97]. It is an open problem whether
there are parallel algorithms for the synchronizing sequence problem, but in the
special case of monotonic automata, Eppstein [Epp90] gives a randomized par-
allel algorithm. See also Ravikumar’s survey of parallel algorithms for automata
problems [Rav98].

Nondeterministic and Probabilistic Automata. The homing and synchro-
nizing sequence problems become much harder for some generalizations of Mealy
machines. As shown in Exercise 1.8, they are PSPACE-complete for nondeter-
ministic automata, where δ(s , a) is a subset of S . This was noted by Rystsov
[Rys92] as a consequence of the PSPACE-completeness theorem in another of

32 Sven Sandberg

his papers [Rys83] (our Theorem 1.22). The generalization to nondeterminis-
tic automata can be made in several ways; Imreh and Steinby [IS99] study al-
gebraic properties of three different formulations. For probabilistic automata,
where δ(s , a) is a random distribution over S , Kfoury [Kfo70] showed that the
problems are algorithmically unsolvable, by a reduction from the problem in a
related article by Paterson [Pat70].

Related Problems. As a generalization of synchronizing sequences, many au-
thors study the rank of a sequence [Rys92, Kar03, Pin78b]. The rank of a syn-
chronizing sequence is 1, and for a general sequence x it is |δ(S , x)|. Thus, Al-
gorithm 2 decreases the rank by one every time it appends a merging sequence.

A problem related to synchronizing sequences is the road coloring problem.
Here we are given a machine where the edges have not yet been labeled with
input symbols, and asked whether there is a way of labeling so that the machine
has a synchronizing sequence. This problem was introduced by Adler [AGW77]
and studied in relation to synchronizing sequences, e.g., by Culik, Karhumäki
and Kari [CKK02], and by Mateescu and Salomaa [MS99].

The parts orienting problem of Example 1.3 was studied in relation to au-
tomata by Natarajan [Nat86] and Eppstein [Epp90]. They have a slightly differ-
ent setup, but the setup of our example was considered by Rao and Goldberg
[RG95]. The field has been extensively studied for a long time, and many other
approaches have been investigated.

Synchronizing sequences have been used to generate test cases for sequential
circuits [RSP93, PJH92, CJSP93]. Here, the states of the machine is the set
of all length k bitstrings. This set is too big to be explicitly enumerated, so
both the state space and the transition function are specified implicitly. The
algorithm of Section 1.3.2 becomes impractical in this setting as it uses too much
memory. Instead, several authors considered algorithms that work directly with
this symbolic representation of the state space and transition functions [RSP93,
PJH92]. Pomeranz and Reddy [PR94] compute both preset and adaptive homing
sequences for the same purpose, the advantage being that homing sequences
exist more often than synchronizing do, and can be shorter since there is more
information available to determine the final state.

1.6 Summary

We considered two fundamental and closely related testing problems for Mealy
machines. In both cases, we look for a sequence of input symbols to apply to the
machine so that the final state becomes known. A synchronizing sequence takes
the machine to one and the same state no matter what the initial state was.
A homing sequence produces output, so that one can learn the final state by
looking at this output. These problems can be completely solved in polynomial
time.

Homing sequences always exist if the machine is minimized. They have at
most quadratic length and can be computed in cubic time, using the algorithm

1 Homing and Synchronizing Sequences 33

in Section 1.3.1, which works by concatenating many separating sequences. Syn-
chronizing sequences do not always exist, but the cubic time algorithm of Sec-
tion 1.3.2 computes one if it exists, or reports that none exists, by concatenating
many merging sequences. Synchronizing sequences have at most cubic length, but
it is an open problem to determine if this can be improved to quadratic. Combin-
ing the methods of these two algorithms, we get the algorithm of Section 1.3.3
for computing homing sequences for general (non-minimized) machines.

It is practically important to compute as short sequences as possible. Unfor-
tunately, the problems of finding the shortest possible homing or synchronizing
sequences are NP-complete, so it is unlikely that no polynomial algorithm exists.
This was proved in Section 1.4.1, and Section 1.3.5 gave exponential algorithms
for both problems. Section 1.4.2 shows that only a small relaxation of the prob-
lem statement gives a PSPACE-complete problem.

	1.1 Introduction
	1.2 Initial and Current State Uncertainty
	1.3 Algorithms for Computing Homing and Synchronizing Sequences
	1.4 Complexity
	1.5 Related Topics and Bibliography
	1.6 Summary

