
13 Real-Time and Hybrid Systems Testing

Kirsten Berkenkötter1 and Raimund Kirner2

1 Department of Computer Science
University of Bremen
kirsten@informatik.uni-bremen.de

2 Real-Time Systems Group
Vienna University of Technology
raimund@vmars.tuwien.ac.at

13.1 Introduction

Real-Time and Hybrid Systems A system whose functionality is not only
dependent on the logical results of computation but also on the time in which
this computation takes place is called real-time system. We speak of hard
real-time if timing constraints always have to be met exactly. In contrast, soft
real-time allows lateness under specified conditions.

Similarly, hybrid systems also consider time to determine if computa-
tion works correctly. They are called hybrid as both time-discrete and time-
continuous observables exist as well as time-discrete and time-continuous be-
havior. Variables may have dense values that change with respect to time while
events occur discretely. Assignments to variables are also made at discrete points
in time. Therefore the behavior of a hybrid system consists of time-continuous
parts where variable evaluations change with respect to time and of time-discrete
parts where events occur and assignments to variables are performed.

Both kinds of systems are used, e.g. in avionics, in automotive control, and
in chemical processes control systems. They are often embedded systems with a
probably safety-critical background. This leads to high demands on both mod-
eling and testing for providing high quality.

Testing As stated above, both real-time and hybrid systems are potentially
hazardous systems. Obviously, temporal correctness is an important issue of
real-time systems. As a result, testing real-time systems is more complex than
testing untimed systems as time becomes an additional dimension of the input
data space. In case of hybrid systems, complexity increases again as the value
domain is continuous instead of discrete.

For model-based testing, the main goal is handling this complexity. On the
one hand, this means building models that allow to abstract from details to
reduce complexity in a way that test cases can be generated. On the other hand,
test cases must be selected in a meaningful way to achieve a manageable number
out of them.

Outline In Section 13.2, we discuss test automation in general and with re-
spect to the special needs of real-time and hybrid systems. We then focus on

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 355-387, 2005.
 Springer-Verlag Berlin Heidelberg 2005

356 Kirsten Berkenkötter and Raimund Kirner

model-based test case generation in Section 13.3. Different modeling techniques
like timed process algebras and timed automata are discussed for real-time and
hybrid systems as well as their application in test case generation. After that,
evolutionary testing is introduced as a method for improving generated test
suites with respect to testing timing constraints in Section 13.4. We conclude
with a discussion of the presented techniques in Section 13.5.

13.2 Test Automation

Testing is one of the most time consuming parts of the software development
process. Hence, a high degree of automation is needed. The general structure
for a test automation system is the same for untimed, timed, and hybrid systems.
In contrast, the internals of the different parts of a test automation system differ,
as the specific characteristics of timed and hybrid systems must be considered.

13.2.1 Overview

First, we have to introduce some testing terminology. Testing itself means the
execution of the system to be tested which we call system under test (SUT).
The SUT is fed input data while the output data is monitored for checking its
correctness.

A test case is a set of test inputs, execution conditions, and expected results.
This does not mean that the test case necessarily gives explicit input data, it
may also specify rules for generating test data. The set of test cases for a SUT
is called test suite. The test procedure gives detailed information about the
set-up and execution of test cases and the evaluation of the test results. If only
the interfaces of the SUT are accessible, a test is called black-box test. In
contrast, if also internal states can be observed and influenced, a test is called
white-box test.

As stated in Peleska et al. [PAD+98], a test automation system consists of
several logical building blocks as depicted in Figure 13.1:

• Model The test model represents the required functionality of the SUT.
More precisely, it abstracts the functionality to a sensible size to allow the
generation of a test suite with manageable size. Different representations can
be chosen, e.g. automata or process algebra.
• Test Generation The test generator uses the model for deriving test

cases. In addition, more specific test case specifications that describe
a test case or a set of test cases can be used for this purpose. The test
generator is responsible for achieving a manageable number of test cases out
of the infinitely many possible ones. Therefore it plays an important role in
the test automation system.
• Test Monitoring The execution of test cases must be monitored to keep

track of inputs and outputs. This is done by the test monitor. On the one
hand, this is needed for documentation purposes. On the other hand, results

13 Real-Time and Hybrid Systems Testing 357

Test OracleTest Driver

Test Generator

Model of SUT
Specification
Test Case

Test Monitor

SUT

Fig. 13.1. Test automation system

may be needed during execution. To give an example, nondeterminism can
occur. Then the output of the SUT is needed to decide which input can be
sent next. It is also desirable to know if a test case fails during execution as
the test can be aborted then. This holds especially for long time tests.
• Test Evaluation Either after or during test execution, the test result

has to be assessed. This is the task of the test oracle. According to the
monitored test data, SUT model, and test specifications, it calculates the
test verdict. Passed, failed, and inconclusive are frequently used as
verdicts.
• Test Driver The parts of the test automation system converge in the test

driver. It executes the generated test cases, i. e. it posts inputs to the SUT
and receives corresponding outputs. This includes providing interfaces from
and to the SUT. Therefore, the test driver works hand in hand with the test
monitor.

13.2.2 From Untimed to Timed to Hybrid Models

Due to the time-dependent behavior of a real-time system, new problems arise
when testing it as time is a relevant factor. For hybrid systems, also dense-valued
variables must be considered. These problems must be analyzed to find suitable
abstractions for the SUT model as done in Peleska et al. [PAD+98].

With respect to testing, the sequential components of an untimed system are
obviously best understood. Correct behavior is surveyed by looking at the initial
and final states of such a component. Concurrent components are more difficult
to test as not only the data processed must be correct but also the order in which
it is processed. Furthermore, the interactions between the processes lead to many

358 Kirsten Berkenkötter and Raimund Kirner

internal states. The amount of test cases and test data to be evaluated can be
reduced by describing not only the system under test but also the environment. In
this way, input and output are specified for a certain environment, so the number
of possible values is reduced to a more manageable size. Also redundancy checks
are performed that delete redundant test sequences.

Adding time to the requirements of a system means adding complexity to
testing. In addition to the correct sequencing of inputs and outputs, the time
at that they occur is crucial. If only discrete time is considered, time can be
abstracted as a counter that is regularly incremented. The fuzziness of measuring
time must be considered in the test automation system. This is the case for real-
time systems with both discrete time and data domain.

If it becomes hard to define time as multiples of discrete time intervals, dense
time has to be taken into account. This is closer to reality as time is naturally
dense. Timing constraints are then given with respect to the real numbers. Data
is still considered discrete. Nevertheless, a model that uses dense time increases
complexity even more, so this must be taken into account, e.g. for test case
generation. This is the case for real-time systems with discrete data domain and
dense time domain.

The last step to be taken is regarding also dense-valued, i. e. analog data
as done for hybrid systems. This is an abstraction for both analog sensors and
actuators and also sensors and actuators that are discrete but have very high
sampling rates. In the model the evaluation of dense-valued variables is specified
by piecewise continuous functions over time that may be differential. Therefore
the time domain and the value domain of hybrid systems are both dense.

13.2.3 Real-Time and Hybrid Systems

The different components of the test automation system that has been described
in Section 13.2.1 have to be modified as the time and value domain of real-time
and hybrid systems must be considered. As described in Section 13.2.2, there
are real-time systems with discrete time domain, real-time systems with dense
time domain, and hybrid systems with both dense value and dense time domain.
These different abstractions of the SUT have to be mirrored in the corresponding
test automation system.

• Model Obviously, adequate modeling techniques have to be chosen for test-
ing real-time and hybrid systems. For real-time systems, there are several
types of timed automata and timed process algebras that consider either
discrete time or dense time in modeling. In case of hybrid systems, dense
values for variables must also be taken into account. Here, hybrid automata
and hybrid process algebra can be used for describing the SUT. It is impor-
tant to notice that appropriate abstractions from the SUT must be found to
obtain a manageable model.
• Test Generation In comparison with untimed systems, test generation

is much more difficult for timed and hybrid systems as the search space of
the model increases with discrete time, dense time, and (in case of hybrid

13 Real-Time and Hybrid Systems Testing 359

systems) dense values. Therefore, the algorithms needed for generating test
cases have to be chosen carefully to gain a meaningful and manageable test
suite.
• Test Monitoring Again, the important factor is time. For monitoring the

execution of test cases, not only inputs and outputs to and from the SUT
are relevant, also the time at that these inputs and outputs occur must be
logged adequately.
• Test Evaluation Test evaluation also depends on time. Not only the cor-

rect order of inputs and outputs is needed for deciding if a test has failed
or passed, the correct timing is also a crucial factor. An unavoidable fuzzi-
ness for measuring time must be considered. The same holds for measuring
dense-valued data with respect to hybrid systems.
• Test Driver For real-time systems, the test driver must be capable of

giving inputs at the correct time, i. e. it must be fast enough for the SUT.
For hybrid systems, the same holds for dense data values, e. g. differential
equations have to be processed fast enough to model the valuation of data
values over time. If analog, i. e. dense-valued, data is expected as input from
the SUT, this must be generated. The most important function of the test
driver for real-time and hybrid systems is therefore bridging the gap between
the abstract model and the corresponding implementation, i. e. the SUT. On
the one hand, it has to concretize the input from the model to the SUT. On
the other hand, it has to abstract the output from the SUT for the test
monitor and test oracle.

All in all, we can identify two main issues for testing real-time and hybrid sys-
tems:

• Building manageable and meaningful models from the SUT.
• Finding manageable and meaningful test suites.

Test oracle, test monitor, and test driver are more a challenge in implemen-
tation. They have in common that they depend on the model and the test case
generation to work efficiently. Therefore, the focus in the following chapters is
on modeling and test case generation.

13.3 Model-Based Test Case Generation

The aim of model-based testing is to derive test cases from an application model
that is an abstraction of the real behavior of the SUT. As described in Sec-
tion 13.2.2, time can be abstracted either as discrete or dense time for real-time
systems. Values are considered discrete. For hybrid systems, the time domain is
dense just as the value domain. There are approaches for modeling each of these
systems as well as test case generation algorithms based on these models. These
are described in the following.

360 Kirsten Berkenkötter and Raimund Kirner

13.3.1 Real-Time Systems – Discrete Time and Discrete Values

First, we focus on real-time systems that consider both time and value domain
as discrete. Different modeling techniques can be used here, e. g. process algebras
as the Algebra of Communicating Shared Resources (ACSR) [LBGG94,
Che02] or Timed Communicating Sequential Processes (TCSP) [DS95,
Hoa85] or different variants of Timed Automata [AD94].

In this section, we discuss ACSR as a process algebra and Timed Transition
Systems (TTS) as an example for automata as test case generation algorithms
for these exist. Timed CSP has also been used for testing purposes, but here
research has been done with regard to test execution and test evaluation and
not test case generation [PAD+98, Pel02, Mey01]. Test case specifications are
written in Timed CSP and then executed instead of deriving a test suite from a
Timed CSP model of the SUT.

Describing Real-Time Constraints Before describing the formalisms used in
testing frameworks to model real-time applications, we introduce a more intuitive
graphical language to describe real-time constraints called constraint graph
language. We use it to present a simple example of a real-time application that
is used throughout this chapter.

A constraint graph (CG) is a directed graph G(V ,E) with a distinguished
starting node ε ∈ V . The nodes of a CG represent I/O events where input events
are given by there name while output events are marked with a horizontal line
above their name, e.g. event. The edges E of CG are illustrated as f T−−−→F g,

where f denotes the source I/O event and g denotes the target I/O event. T is
the time constraint that guards the edge. It can be an interval [t1, t2) or a fixed
delay t . F denotes the possibly empty set of forbidden I/O events that may not
occur before receiving the target event g to allow the edge to be taken. Multiple
edges starting from a single node have the semantics of alternative executions,
except multiple edges that are marked with a common diamond at their origin.
These represent concurrent execution. The constraints of concurrent edges must
be valid simultaneously.

Edges with a given timing constraint where the target event is an input
event are called behavioral constraints. These limit the rate at which inputs
are applied to a system. In contrast, edges with a given timing constraint where
the target event is an output event are called performance constraints that
dictate the rate at which outputs are produced by a system.

Real-Time Monitor Example For a better understanding of the described
modeling techniques, we will use in this section a simple real-time monitor ex-
ample called RTMonitor. The task of RTMonitor is to observe whether events
occur within a certain time interval after triggering the monitor application.
Such a tool could be, for example, used to monitor whether a robot arm moves
correctly by sampling its temporal position at two control points. The initial
state of RTMonitor is denoted as ε while the start of RTMonitor is triggered

13 Real-Time and Hybrid Systems Testing 361

by event Start. The incidents of two control points are reported by signals Pos
respectively Pos.

[0, 20)

Pos2Pos1 Passed[10, 30) [20, 30) [0, 20)[0,∞)

TimeOut
30 30

[0, 20)

[0,∞)

Start

Reset
[0,∞)

[0,∞)

Pos2
[0, 20)

[0,∞)

{Pos2}{Pos1}
ε

Pos1

Reset TooFast[0,∞)

[0, 10)

Fig. 13.2. Constraint graph of the real-time monitor example

The constraint graph of RTMonitor that shows the relative timing con-
straints is given in Figure 13.2. The start of monitoring can be triggered at an
arbitrary time instant. Once it is triggered:

• The first event Pos has to be reported within time interval [10, 30).
• The second event Pos has to be reported within time interval [20, 30) after

the first event.
• If one of these two events occurs too early, event TooFast has to be triggered.
• In case that one of these two events has not been observed after passing the

time interval, event T imeOut has to be stimulated.
• After output event TooFast, respectively T imeOut, has been used to indi-

cate an incorrect timing, the input event Reset can be used to restart the
monitoring.
• If both events have occurred with a correct timing, event Passed will be

triggered within time interval [0, 20) after event Pos.
• The monitoring application is restarted by waiting again for trigger event
Start.

There is no timeout mechanism for the time constraint [0, 20) of the event
Passed. Passed is an output event and therefore its time constraint [0, 20) is the
allowed delay introduced between processing the previous event and generating
the output event Passed. However, for testing the real-time behavior of the SUT,
the validity of such a performance constraint also has to be tested on the SUT.

To exemplify the semantics of a constraint graph’s edge with forbidden I/O

events we describe the meaning of the edge “Start 30−−−→{Pos} T imeOut”. It implies
that the last received input event was Start. Then, this edge is taken if for the

362 Kirsten Berkenkötter and Raimund Kirner

time interval of [0, 30) the application receives no input event Pos. In this case,
the output event T imeOut will be emitted.

ACSR-based Test Case Generation ACSR is based on the Calculus of
Communicating Systems (CCS) [Mil89], a process algebra to specify untimed,
concurrent, and communicating systems. ACSR adds several operators to de-
scribe timed behavior and handle the communication and resource consumption
of concurrent real-time processes. These operators support mechanisms for mod-
eling bounded execution time, timeouts, delays, and exceptions.

Modeling: The ACSR computation model considers a real-time system as
a collection of communicating processes competing for shared resources. Every
computation step is either an event or a resource consuming action:

• Event (ei , pi): An event ei having a priority level pi is denoted as (ei , pi).
It serves as a synchronization or communication mechanism between pro-
cesses. The execution of events does not consume any time in contrast to the
execution of actions. The example event (ei , pi) describes an input event in
contrast to an output event that is drawn with a top bar above its name:
(ēi , pi).
• Action {(ri , pi)}t : An action is a set of consumptions of resources ri at

corresponding priority level pi (1 ≤ i ≤ n) that needs t time units to execute.
A resource consumption is denoted by a pair (ri , pi)t .

A process P can be one of the following expressions:

NIL – process that executes no action (deadlock).
At : P1 – executes action A for t time units and proceeds with

process P1. The action ∅t represents idling for t time
units.

e.P1 – executes event e and proceeds with process P1.
P1 + P2 – nondeterministic selection among the processes P1 and

P2.
P1 || P2 – concurrent execution of processes P1 and P2.
P1�a

t (P2,P3,P4) – temporal scope construct that binds the execution of
event a by process P1 with a time bound t . If P1 termi-
nates successfully within time t by executing the event
a, the “success-handler” P2 is executed. If P1 fails to
terminate within t , process P3 is executed as a “time-
out exception handler”. Lastly, the execution of P1 may
be interrupted by the execution of a timed action or an
instantaneous event of process P4.

[P1]I – process P1 that only uses resources in set I .
P1\F – process P1 where externally observable events with la-

bels in F are disallowed while P1 is executing.
P1[Re ,Ra] – relabels the externally observable events of P1 according

to the relabeling function Re and the resources of P1

according to the relabeling function Ra .

13 Real-Time and Hybrid Systems Testing 363

recX .P1 – process P1 that is recursive, i.e. it may have an infinite
execution. Every free occurrence of X within P1 repre-
sents a recursive call of the expression recX .P1.

X – recursive call of the surrounding recursive process recX .P1.

RTMonitor Example: We will now model the RTMonitor example according
to the constraint graph given in Figure 13.2. An ACSR model of RTMonitor is
shown in Figure 13.3. It does not use any actions as resources are not considered
in this example. The model excessively uses the concept of temporal scopes to
model the allowed time intervals.

RTMonitor = recX .((Start, 1).PMA1)

PMA1 = ∅∞�(Pos,1)
10 (Pearly ,PMA2 ,NIL)

PMA2 = ∅∞�(Pos,1)
20 (PMB1 ,Pmiss ,NIL)

PMB1 = ∅∞�(Pos,1)
20 (Pearly ,PMB2 ,NIL)

PMB2 = ∅∞�(Pos,1)
10 (Pok ,Pmiss ,NIL)

Pok = (Passed, 1).X

Pmiss = (T imeOut, 1).(Reset, 1).X

Pearly = (TooFast, 1).(Reset, 1).X

Fig. 13.3. ACSR model of the real-time monitor example

First, process RTMonitor is defined as a recursive process where the re-
cursion is performed in subprocess Pok . RTMonitor is waiting an unlimited
time period for the occurrence of event (Start, 1) and continues then with pro-
cess PMA1 . Process PMA1 together with process PMA2 checks whether event
(Pos1, 1) occurs within time interval [10, 30) and continues then with process
PMB1 . If the event comes too early respectively too late, the corresponding out-
put events (TooFast, 1) or (T imeOut, 1) are generated by process Pearly re-
spectively Pmiss . After receiving an input event (Reset, 1) process RTMonitor
is recursively called. Analogous to PMA1 andPMA2 , processes PMB1 and PMB2

check whether event (Pos2, 1) occurs within time interval [20, 30). After that,
control is taken over by process Pok that emits the output event (Passed, 1) and
then recursively calls RTMonitor.

The use of a process algebra like ACSR allows to abstract from the real
application behavior by modeling only the dynamic aspects of interaction. In
case of ACSR these aspects of interaction include events as well as resource
consuming actions. Mechanisms like temporal scope and time consuming actions
can express the temporal behavior of the application. ACSR does not support
the modeling of numerical calculations or direct communication of parameters.
Therefore, the use of ACSR is adequate in cases where the behavior of event
communication and resource consuming actions of concurrent processes are the
only interesting aspects.

364 Kirsten Berkenkötter and Raimund Kirner

Test Case Generation: As stated above, ACSR describes the interaction of
concurrent processes. Testing such a system of concurrent processes is done by
expressing a test as a separate process that we call T . The application of a test
T to a process P is denoted as T �P as done by Clarke and Lee [CL95, CL97a,
CL97b]. The test operator � is introduced for testing purposes and is not part of
the ACSR specification itself. It implies an auxiliary sink process that absorbs
unsynchronized output events between the tester process and the process under
test. For testing the ACSR model of the SUT a test T written in ACSR can
be directly applied to the model. But for model-based testing the test T has to
be translated into another language so that it can be applied to the SUT, i.e. it
must be executable.

A test T indicates by signaling whether a test was a success or failure. The
notion of success or failure of a test is modeled by the special event labels success
and failure. Since the generality of ACSR’s syntax obscures some common testing
operations, the following notational conventions have been introduced by Clarke
and Lee [CL97a]:
� – process that signals successful termination of a test: � ≡

(success, 1).recX .(∅ : X).
⊥ – process that signals the failing of a test: ⊥ ≡ (failure, 1).recX .(∅ :

X).
δ.T – unbounded wait for the occurrence of an action or event of test

process T : δ.T ≡ (recX .(∅ : X))�∞(NIL,NIL,T).
T1�tT2 – simplified timeout notation: T1�tT2 ≡ T1�t (NIL,T2,NIL).
T1; T2 – sequential composition of tests T1 and T2: T1; T2 ≡

(T1[{esccs/success}, ∅] || δ.(esccs , 1).T2)\{esccs} where event esccs
is not used in T1 or T2.

(e, p)!T – applies event (e, p) as input to the SUT and proceeds with T :
(e, p)!T ≡ (e, p).T .

(e, p)?T – the specific output event (e, p) from the SUT must be received; if
it is not received, the required response is a failed test: (e, p)?T ≡
(e, p).T + (τ, 1).⊥ where p>1.

The constraint graph given in Figure 13.2 can now be used to derive a test
suite to verify whether the temporal behavior of the application conforms to
the ACSR model given in Figure 13.3. The test suite is then transformed by
a trivial rewriting step into a test language suitable for testing the SUT. We
have to notice that this test case generation method does not deal with infinite
application behavior.

Two kinds of constraints in the SUT are tested by this approach: behavioral
constraints and performance constraints:

• Performance constraint This kind of constraint describes a delay in-
terval that ends when a required output is produced.
• Behavioral constraint This kind of constraint describes a delay interval

that ends when a required input is applied.

A performance constraint is tested by a simple test that verifies that the cor-
rect response is received during the required interval. Figure 13.4 shows the three

13 Real-Time and Hybrid Systems Testing 365

situations of an erroneous implementation of a sample constraint S . Implemen-
tation I1 shows the case that the required output E1 is not produced within the
interval [t1, t2). In contrast, output E1 occurs to early in implementation I2. I3
demonstrates the situation in which an output is produced within the required
interval [t1, t2) but the event associated with the output is incorrect. Since the
quantity being tested is the delay introduced by the SUT, there are no input
parameters for the tester to vary. Therefore, it also does not make a difference
whether the time domain boundaries are open or closed ones.

I3

t1 t2
tI1

¬E1

t1 t2
t

E1

I2

t1 t2

E1

tS

t1 t2

E2

t

Fig. 13.4. Erroneous implementations of performance constraints

For behavioral constraints each of the two time domain boundaries is verified
by up to two test points. As shown in Figure 13.5, the number and position of the
test points for each domain boundary depends on its type and value. In contrast
to the performance constraints, for behavioral constraints it makes a difference
whether the time domain boundaries are open or closed ones, because test points
have to be used close to these boundaries. One test point is always placed directly
on the domain boundary. For closed domain boundaries the second test point is
placed at a distance of ε outside the boundary. For open domain boundaries the
second test point is placed at a distance ε inside the boundary. For the special
case where the upper boundary is ∞, it is not possible to place a test point at
the domain boundary. It is approximated by placing a test point at time Tmax

after the start of the interval, where Tmax is the longest constraint interval in
the system specification. For both open and closed interval boundaries, the up
to two tests per boundary are sufficient to verify that the required change in
system behavior has occurred within ε time units with respect to the required
point in time.

A test suite can be derived by generating test cases so that both coverage
criteria are fulfilled. The following three steps are used for test case generation:

(1) Deriving test process templates from the constraint graph. These templates
will supply inputs at some time within the required interval, observe the
outputs of the SUT to verify that they are generated within the correct time
interval, and terminate with � if the test is successful or ⊥ if the test fails.

366 Kirsten Berkenkötter and Raimund Kirner

∞

0

t

0

t

0

t

0

t

0

t

0

t

0

t

0

t

0

t

∞

∞

Fig. 13.5. Test points to test interval boundaries of behavioral constraints

(2) Derive input delay values that must be covered by the test in order to satisfy
the intended coverage requirements.

(3) The output of the two previous steps is used to determine all test case
candidates. As describing each delay requirement separately would lead to a
high degree of redundancy within the test processes, a further optimization
pass is necessary to reduce the number of test cases. Since this optimization
problem is NP-hard, the usage of heuristics is necessary.

Since a process may also contain recursive elements (i.e. loops in the con-
straint graph), a full depth-first traversal of the constraint graph in step 1) and
step 2) is not feasible. Therefore, the traversal must be bounded to a maximum
depth.

Summary: The test framework described by Clarke and Lee has already been
applied to real applications such as a relatively simple communication proto-
col [CL97b]. However, there is still room for further research in improving this
method. A useful extension would be the development of coverage criteria that
address interactions between different timing constraints (such as race condi-
tions). Furthermore, coverage metrics that exploit the ACSR’s focus on resource
requirements and priorities in interactions would improve the generality of the
test case generation framework.

An extension of the framework of Clarke and Lee to handle also infinite ex-
ecutions of processes is necessary for testing typical reactive systems that are
nonterminating. The critical aspect of this extension is the design of the re-
quired test coverage criteria. For applications that can be expressed by a finite
constraint graph without loops, it is sufficient to use coverage criteria that guar-
antee local coverage across the constraint graph. In case of infinite executions,
it is required to define the coverage criteria such that the overall amount of test
cases that are required for testing is limited. One possible method is giving a
fixed upper bound for the length of test sequences. This strategy can be directly
combined with the coverage criteria described by Clarke and Lee.

TTS-based Test Case Generation Test case generation with discrete time
and value domain has also been done based on timed automata. Originally, timed

13 Real-Time and Hybrid Systems Testing 367

automata work with a dense time domain [AD94]. In contrast, we present here
results from Cardell-Oliver that use discrete time [CO00]. In this approach, it
is argued that events cannot be observed at arbitrarily close times even if this
can be specified in the dense time domain. Therefore digital clocks that model
discrete time are used.

In the original algorithm, the basic assumption is that the implementation
does not possess more states than its model. In this case, it can be proven that
the generated test suite detects non-conformance between model and SUT and
is furthermore complete. We do not believe that this is always guaranteed as
the model is generally derived from the requirements of the SUT and not from
the SUT itself. We refer to Chapter 8 for theoretical background. However, we
believe that the presented ideas for generating a manageable test suite are useful
as their focus is decreasing the amount of test cases.

Modeling: The basis for this approach are Timed Transition Systems
(TTS) that mainly consist of three components:

• States Each TTS owns a finite set of states.
• Initial state One of these states is the initial state, where execution starts.
• Labeled transition relations Source and target states are connected

by labeled transition relations. The label is discussed with respect to the
used timed automata definition.

The timed transition system itself is described by a network of communicating
timed automata as used in the tool UPPAAL [LPY97]. These automata further
consist of:

• Variables Each automaton owns a finite set of data and clock variables.
All variables are bounded. Clocks have to be reset if the specified bound is
reached.
• Guards Guards are predicates that are conjunctions of constraints on clock

and data variables. They are used for labeling transitions. If the guard eval-
uates to true, the transition is enabled and can be taken.
• Events Each automaton owns a finite set of events. Different automata

communicate via these events over synchronization channels. For this pur-
pose, each event is classified either as input or as output. If a is the name of
a synchronization channel, a! is the corresponding output event and a? the
corresponding input event. Like guards, events are used to label transitions.
Two transitions are involved and must therefore be enabled: one that emits
event a! and one that receives event a?.
• Assignments With assignments both data and clock variables can be reset.

They are also used to label transitions.
• Clock Invariants Each state of the automaton can own an invariant that

specifies when the state has to be left due to a given timing constraint.

With respect to transitions, labels are composed of guards, events, and as-
signments in this order. The initial state is marked with an inner circle in the
state symbol as shown in Figure 13.6. The network of communicating automata

368 Kirsten Berkenkötter and Raimund Kirner

Waiting Pos2 x<20

x<10
Pos1?

x<20
Pos2?

x�10
x<30
Pos1?
x:=0

x�20
x<30
Pos2?
x:=0

x�30

Start?
x:=0

Started

TooFast

Pos1

x�0
x<20
Passed!

x<30 x<30

TimeOut!

x�30

TimeOut

Reset?

Reset?

TooFast!

TOReset

TFReset

Fig. 13.6. UPPAAL timed automaton model of the real-time monitor example

is merged to a product automaton that is given as a TTS enriched with the clock
invariants that are not included in the general TTS notation.

RTMonitor Example: Again, we will look on the RTMonitor example. It is
realized by an UPPAAL timed automaton in Figure 13.6. In the initial state, we
wait until event Start is received. After that, event Pos1 should occur in time
interval [10, 30). If this has been received correctly, we wait again if event Pos2
occurs in time interval [20, 30). In this case, event Passed is generated in time
interval [0, 20).

If events Pos1 or Pos2 occur too early, event TooFast is generated and control
is switched to state TFReset . Vice versa, event TimeOut is generated and control
is switched to state TOReset , if these events do not occur in their specified time
intervals. After TooFast , respectively TimeOut , has been generated, we wait for
event Reset to restart the RTMonitor.

The states Started and Pos1 own both an invariant x < 30, so after 30 time
units these states must be left. The same holds for state Pos2 where the invariant
is x < 20. States TooFast and TimeOut are marked committed which is shown
with the symbol C inside the state. A committed state must be left immediately
after entering it, i.e. events TimeOut and TooFast are sent immediately.

In this example, we have seen that real-time systems can be modeled ade-
quately with timed automata. By using states and transitions, the control flow
of the modeled application can be easily captured. The timed automata variant
of UPPAAL also allows modeling inputs and outputs explicitly. This further
simplifies understanding of the automaton. However, large systems become in-
tractable by using this modeling technique. Hierarchical structuring of models
can help here.

Test Case Generation: The central idea of the approach of Cardell-Oliver is
using test views for transforming a given TTS to a Testable TTS (TTTS). As

13 Real-Time and Hybrid Systems Testing 369

described above, the model used for test case generation is given by a TTS that is
derived from a network of UPPAAL automata. In combination with this model,
different test views can be used that each describe a specific test purpose. The
TTS is transformed to a smaller TTS by a view. This is the TTTS that is used
for test case generation.

Each test view is designed to fulfill a given test purpose. This is described
by different parameters:

• Interface With respect to the TTS, we have to identify events that are
produced from the test driver and are therefore input events for the SUT and
events that are produced by the SUT for the test driver and are therefore
output events. That is, we identify the interface between the test driver and
the SUT.
• Discrete Clock The digital clock used in the test automation system

must be specified. The clock grain must be chosen according to the needed
precision to distinguish between observed and stimulated events and the
possibilities of the used hardware.
• Hiding The set of events can be divided into observable and hidden events.

Therefore, only the events of interest with respect to the test purpose are
observable in the TTTS. This can reduce the search space of the system as
also less states are visible if traces to and from them are not observable any
more.

With the help of the test view, the test designer can control the size of the
test suite. The TTTS can be detailed if important test cases are generated and
less detailed if the test purpose is not crucial. The size of the search space is
determined by the discrete clock as its granularity influences the search space
and by the hidden and observable events that lead to less observable transitions.
In general, the search space is decreased as states cannot be distinguished any-
more after eliding invisible transitions. Only under specific circumstances it is
increased.

This happens if a state has n incoming transitions that are all hidden and m
outcoming transitions that are all visible. Before hiding, the number of visible
edges in the TTS is n + m, after hiding, the number of visible edges in the
transformed TTTS is n ∗ m. The test designer can react to this by using a
different test view where these events are not hidden. A similar problem is a
cycle of transitions where all events are hidden. This is not allowed for creating
a test view as the SUT may cycle forever in this loop without a possibility of
observation when test cases are executed, i.e. unbounded nondeterminism occurs.
Here, at least one event must be made visible in the test view.

Another problem in this context is that the resulting TTTS may have redun-
dant states. These could be distinguished in the TTS before the transformation
by different distinguishing traces of inputs, outputs, and delays. After the trans-
formation, these distinguishing traces can be equivalent due to hidden events.
In this case the TTTS can be minimized before test case generation. This is not
necessary but helpful as test case generation can be performed more efficiently
if the size of the TTTS is further reduced.

370 Kirsten Berkenkötter and Raimund Kirner

The test case generation algorithm itself is based on the W method [Cho78]
discussed in detail in Chapter 4. It works in the following way:

(1) For each state all acyclic traces that lead to that state are generated. It
is possible that one or more of these traces are tester controlled, i.e. the
inputs of the test driver to the SUT produce deterministic outputs of the
SUT. If such a trace exists, this can be used as a test case in the following.
If nondeterminism is possible, the correct test case is selected out of all
generated ones during testing with respect to the output of the SUT.

(2) After that, we have to check that the reached state is really the state we ex-
pected. As the underlying TTS has persistent variables, it may be possible to
identify states based on variable values. If this is not possible, distinguishing
sequences as introduced by Chow [Cho78] can be used. Again, tester con-
trolled test cases are preferred as this reduces the test suite. Else all possible
test cases must be present to be chosen during test execution.

(3) Furthermore, not just every state but also every transition should be visited.
Therefore one test case for every transition is generated.

(4) At least, the test suite is created based on the test cases produced in step 1
to 3. We check for redundant test cases as a short test trace may be included
in a longer one. In this case, the short traces can be elided from the test suite.
It is expected that the nondeterministic test cases are all executed at least
once if testing the implementation is performed long enough. In practice,
this may not happen but cannot be prevented. The test suite can be further
reduced if it is possible to limit the possible set of input values to the SUT
by making assumptions about the possible ones. Often, a system is expected
to run in a specific environment so some input values can never occur.

Summary: The main idea of this test case generation algorithm is obviously
the usage of test views. These specify the interface between the SUT and the
test driver, the clock granularity, and the amount of observable events based
on the test purpose. By using UPPAAL automata that differentiate between
sending and receiving events, interfaces can be easily specified. The clock grain
can be chosen with respect to the used timing constraints in the model and the
used hardware. The art of creating test views is the subdivision of the event set
into hidden and observable events. The amount of test cases generated by the
algorithm depends mainly on these. Therefore the test designer has to consider
carefully which events should be observed in a test view and which not.

As we cannot guarantee that the set of states is equivalent in the implemen-
tation and the model, the completeness results for the generated test suite is
not relevant. However, test views are a means to reduce the set of test cases and
are therefore useful. Moreover, the usage of persistent variables helps reducing
the amount of test cases as states can be often distinguished based on variable
values. If we do not consider time in test views, these can also be used to reduce
test suites of untimed systems.

The obvious drawback is that test views must be chosen carefully. The created
test suites for each view may overlap and hence increase the overall testing time

13 Real-Time and Hybrid Systems Testing 371

unnecessarily. Even worse, parts of the system may never be tested as no test
view covers them. Therefore, the generated test suites must be compared before
using them for testing.

13.3.2 Real-Time Systems – Dense Time and Discrete Values

For modeling real-time systems, also dense time can be used as this is the natural
way time is passing. This approach is used in the original Timed Automata ap-
proach by Alur and Dill [AD94] and also in the more restricted Event Record-
ing Automata (ERA) [AFH94]. As the different timed automata variants do
not differ significantly we reuse the RTMonitor example from Section 13.3.1 and
focus on test case generation with respect to the differences in using discrete and
dense time.

ERA-based Test Case Generation In Section 13.3.1 we already presented
one technique for generating test cases based on timed automata models. How-
ever, this approach is working with a discrete time domain. It is also possible to
use a dense time domain for test case generation. This approach is driven by the
natural flow of time that is not discrete but dense [Nie00]. Furthermore, proces-
sor clocks are discrete but their granularity is so fine that it can be regarded as
dense.

The test case generation algorithm is based on Hennessy’s testing theory for
untimed systems, i.e. it is based on preorder relations. This is described in more
detail in Chapter 5, Chapter 6, and Chapter 8. We are interested here in the
ways the test cases in a test suite are chosen out of the possible ones.

Modeling: The timed automaton model ERA [AFH94] chosen by Nielsen is
very similar to the one presented in Section 13.3.1 but more restricted [Nie00].
Due to these restrictions, ERA can be determinized. Briefly, there are states
and transitions labeled with guards, actions, and assignments to clock variables.
Actions are partitioned into hidden and observable ones that are either input
or output actions used for synchronization while transitions are either urgent or
non-urgent.

The characteristic feature of ERA is that clocks and actions are coupled as
each action has an associated clock. This clock is reset every time the action is
performed, other resets are not allowed. Therefore, a clock measures the time
between two occurrences of its associated event. Similar to UPPAAL automata,
input and output actions are always synchronized. The environment has control
over clock resets as it performs the complementary actions to the ones of the
model of the SUT, so clock valuations are determined. The environment is the
test driver as it stimulates and records inputs and outputs to and from the SUT.

For test case generation, ERA are further restricted by permitting only ob-
servable and urgent actions and forbidding clock invariants in states. Urgent
and non-urgent actions were not distinguished by Alur et. al. for ERA but are
introduced by Nielsen for testing purposes. With only urgent actions, transitions
must be taken immediately if they are enabled and their action synchronization

372 Kirsten Berkenkötter and Raimund Kirner

can be performed. Therefore, it is determined when a transition must be taken.
ERA are enhanced by allowing integer variables that can be shared between
automata in a network just as clock variables.

RTMonitor Example: On the first sight, the RTMonitor model created with
ERA shown in Figure 13.7 does not differ very much from the one created with
UPPAAL automata in Section 13.3.1. We have to keep in mind that all clocks
are associated to an event and are automatically reset. Therefore, there are no
clock assignments shown. Clock names are given with respect to their associated
action. To give an example, for event Start the corresponding clock is named
StartC . The initial state has a further inner circle.

Start?
Waiting Started Pos1

TimeOut

Pos2
StartC�30 Pos1C�30

StartC<10
Pos1?

Pos1C<20
Pos2?

StartC�10
StartC<30
Pos1?

Pos1C�20
Pos1C<30
Pos2?

TooFast

Pos2C�20
Passed!

TimeOut!

Reset?

TOReset

Reset?

TFReset

TooFast!

Fig. 13.7. ERA model of the real-time monitor example

The time intervals in which signals Pos1 and Pos2 should occur, respectively
in which signals TooFast , TimeOut , and Passed must be sent, are obviously the
same as in the example using discrete time in Section 13.3.1. Nevertheless, they
are expressed differently as all clocks are related to events. The most important
difference between the two examples using discrete respectively dense time is
that in ERA events can be sent and received at any time and not only at fixed
time points. To give an example, event Start can be received at time unit 1, 2,
3, . . . in an UPPAAL automaton using discrete time. In contrast, Start can be
received at time point 1.5, 1.578, or 2.3 in an ERA with dense time domain.
Therefore this model is closer to reality.

Test Case Generation: In the test case generation algorithm presented by
Nielsen [Nie00], two main principles are used: partitioning of the state space
for decreasing it and using coverage criteria for selecting test cases out of the
possible many ones. Determinized ERA automata serve as a basis.

The first step to be taken is partitioning the overall state space by grouping
states into sets of equivalent states. These serve as a basis for testing. The

13 Real-Time and Hybrid Systems Testing 373

motivation for this is that it is more interesting to test inequivalent states then
testing equivalent states multiple times. It is also necessary as the underlying
TTS of the ERA has infinitely many states due to the dense time domain.

The partitioning is done with respect to the stable transition criterion.
Nielsen calls it stable edge criterion, but for homogeneity throughout this chapter
we prefer the term transition instead of edge. Two sets of states are considered
equivalent if they consist of the same states and enable the same set of tran-
sitions. A transition is enabled if its guard evaluates to true. A change in the
enabled set of transitions may also induce a change in the enabled actions for
synchronization. Therefore, different deadlock situations can be detected with
respect to the different enabled transitions. Furthermore, guards may be depen-
dent on clock valuations, so the set of enabled transitions changes with respect
to time. This behavior requires corresponding test cases. Hence, using the set of
enabled transitions is more convenient for testing than just considering transi-
tions.

After partitioning the original ERA, respectively its underlying TTS, into
sets of equivalent states, we can visualize the result as a partition graph. The
sets of equivalent states are called symbolic states. Each partition should be
tested by at least one test case in a test suite. Before generating it, the reachable
parts of each partition are computed. A symbolic reachability graph for the
partition graph is the result. This is created by starting at the initial state of
the partition graph and traverse the graph with respect to symbolic states. Each
trace is followed as long as new symbolic states are found.

Test cases are generated from the symbolic reachability graph in the following
way:

(1) For each symbolic state, create a concrete trace leading to it with the initial
state as a starting point. To do this, a strengthened symbolic state is
created that consists of all states that will lead to the target state. This is
necessary as not all states inside a partition will lead to the target partition.
We do this by starting at the target transition and follow the trace back
to the initial state so that all constraints in the transitions of the trace will
evaluate to true. This proceeding is called back propagation.

(2) The strengthened traces created in step 1 are transformed to specific traces
with concrete values for delays.

Delays can be chosen according to different strategies:

• Promptness The smallest possible delay is chosen. This is useful to stress
the SUT with the shortest possible interval between inputs and outputs.
• Persistence A delay somewhere in the middle of the possible values is

chosen. This is useful to check the persistence of the SUT.
• Patience The largest possible delay is chosen. Here, the patience of the

SUT is tested.

Nielsen claims that many bugs are found near extreme values of inputs and
therefore choosing delays with respect to promptness and patience is preferable.

374 Kirsten Berkenkötter and Raimund Kirner

In principle, the test case generation algorithm depends on the reachability
graph as the traces represented by this are concretized during test case gener-
ation. If the reachability graph or even the partition graph is too large further
strategies have to be applied based on pragmatic reasons. These can be:

• Trace length limitation One possibility is limiting the trace length of
a test case to a certain length. After that, processing of reachable states is
aborted.
• Randomized state space exploration Another way of limiting the size

of the partition or reachability graph is choosing the successor states of one
state randomly out of all possible ones. This is done until a fixed number of
states is reached or a specific time limit exceeds.
• Bit-State Hashing It is also possible to use a hash table with fixed length.

Each state is stored there with respect to a key value that must be computed
based on a given algorithm. Therefore, different states may be related to the
same key. As only one bit is used for hashing, there can exist exactly one
entry for each key value. If a state with an already used key is reached, it
overwrites the hash entry. Exploration from the former state is stopped then.

A generated test suite can be reduced further by eliminating redundant test
cases as one test case can be included in another, longer one. To perform this
reduction, the test suite is transformed to a tree structure called test tree. This
is also helpful for nondeterministic tests where new inputs must be chosen with
respect to the nondeterministic output of the SUT. Obviously, this technique is
also applicable to testing untimed systems.

Summary: The presented test case generation algorithm for models based on
a dense time domain relies mainly on the partitioning of state sets into equivalent
sets called partitions. Partitions are chosen with respect to state sets that enable
the same transitions and consist of the same states. Therefore, the infinitely many
states in the TTS underlying an ERA are grouped so that a symbolical finite
partition graph is the result. This can be used for test case generation.

The generated test suite can still be very large as it depends on the size of
the partition graph. If this is very large, heuristics must be used. Three pos-
sibilities are suggested, namely trace length limitation, randomized state space
exploration, and bit-state hashing.

The delays used in timed traces also depend on heuristics. Stressing the SUT
with the shortest possible delay values as well as testing its patience by choosing
the largest delays are claimed to be most important for testing as extreme values
are considered best for finding errors.

The chosen modeling language ERA restricts the original timed automata by
using only event clocks and urgent transitions. However, this seems not to be a
drawback as the resulting model is still expressive. The main problem with this
approach is that the partition graph may be still too large to generate a test
suite with practicable size without using further heuristics.

13 Real-Time and Hybrid Systems Testing 375

13.3.3 Hybrid Systems – Dense Time and Dense Values

The last step is taking also dense values into account as done in hybrid systems.
These have been studied in many ways during the last ten years. There are
different attempts for modeling them and applying concepts known from the
formal methods community to them, like model checking or theorem proving, e.g.
by Henzinger [Hen96], Alur et al. [ACH+95], Zhou et al. [CJR96], Kapur et al.
[KHMP94], Ábrahám-Mumm et al. [ÁMHS01], Lynch et al. [LSV01], or Larsen
et al. [LSW97]. Hence, models of hybrid systems are well understood today. In
contrast, there are only few attempts for using hybrid models in model-based
testing.

We focus on Hybrid Automata [Hen96] and their extension to CHARON
[ADE+01, AGLS01, ADE+03] and HybridUML [BBHP03] here. There exists also
approaches for hybrid process algebras, e.g. Hybrid CSP as a further extension
of Timed CSP [CJR96, Amt00]. Here, research with respect to testing deals with
test case specifications and their execution as e.g. in Peleska et al. [PAD+98].
Test case generation based on a model of the SUT is not covered in detail.

Thermostat Example To give an idea of hybrid systems, we will use the
thermostat example taken from Alur et al. [ACH+95] throughout this section.
The thermostat continuously measures the room temperature x . It turns a heater
on and off due to the current temperature. The initial temperature is named θ,
K and h are constants describing the power of the heater and the room. The
following requirements hold for the SUT and must be considered in the SUT
model:

• If the heater is off, x is decreasing according to x (t) = θ ∗ e−Kt .
• If the heater is on, x is increasing in the following way:

x (t) = θ ∗ e−Kt + h(1 − e−Kt).
• The heater is turned on if the temperature falls below m.
• The heater is turned off if the temperature rises above M .

Hybrid Automata-Based Test Case Generation With considering dense
values in addition to dense time, the state space further explodes. Nevertheless,
also hybrid automata can be used for test case generation if appropriate abstrac-
tions are found. We can build up on the techniques for discrete- and dense-timed
automata presented in Section 13.3.1 and Section 13.3.2.

Modeling: For modeling hybrid systems, Hybrid Automata as developed by
Henzinger [Hen96] can be used. In general, the time-discrete part of the system is
described by transitions while the time-continuous part is modeled inside states.
Automata are enriched with flow conditions for describing the evolution of dense-
valued variables over time. Clocks are modeled in the same way with a constant
rate of change of 1.

376 Kirsten Berkenkötter and Raimund Kirner

In general, a hybrid automaton H consists of five components:

• Variables A finite set of real-valued variables.
• Control graph The system is described by a finite directed graph with

vertices called control nodes and edges called control switches. As long as
control resides inside one node, time is passing and the values of the dense
variables evolve according to time. This is a continuous change called flow.
When an edge is taken, control switches to another mode, i. e. a discrete
change is performed called jump condition. Discrete changes do not con-
sume time.
• Initial, invariant, and flow conditions Three different predicates can

be attached to control nodes. First, the initial condition specifies the initial
values of variables inside a node. Second, an invariant can be assigned that
describes under which conditions the node has control. If the invariant is
violated, control must be switched to another node. At last, a node may
have a flow condition that describes the evaluation of analog variables
over time.
• Jump conditions A control switch can be labeled by a predicate called

jump condition. The edge is enabled if the condition evaluates to true.
Only then, the control switch can be taken.
• Events Furthermore, an edge can also have an assigned event. If the jump

condition of an edge holds and the associated event occurs, the edge is taken
and control is switched to the target node. Different hybrid automata H 1
and H 2 can interact via events, i. e. they synchronize over event a if a is
both an event of H 1 and of H 2.

CHARON is a further development of hybrid automata as described by
Alur et al. in [ADE+01], [AGLS01], and [ADE+03] with two main improve-
ments. First, not only behavior but also structure of a system can be modeled.
This is done in an agent whose behavior is described in a mode. Second, both
structure and behavior may be built hierarchically. This allows better struc-
turing of models as large systems become unmanageable with flat structures.
A further enhancement is HybridUML, a profile of the Unified Modeling
Language 2.0 (UML) with formal semantics [BBHP03]. In addition to the
possibilities of CHARON, HybridUML gives better support for datatypes and
allows communication not only via shared variables but also via signals. The
specification of datatypes, structure, and behavior is handled in different UML
diagrams, so no confusion between the different aspects of modeling occurs.

Thermostat Example: We assume that the thermostat consists of a controller
and a heater. In Figure 13.8 we can see a hybrid automaton describing the be-
havior of the controller. This is switching the heater on and off via events named
on and off . The evaluation of the temperature is described by flow conditions.
If the temperature falls below m or rises above M , jump conditions will trig-
ger the switch from state On to state Off . θ is set to 20 here, while K = 0.1,
h = 5, m = 20 and M = 22. The heater can be modeled as a separate hybrid
automaton which has two states On and Off that have control if the heater is

13 Real-Time and Hybrid Systems Testing 377

on, respectively off. The switch from one state to another one is triggered by
events on and off that are sent by the controller’s hybrid automaton, i. e. the
two automata synchronize over these events.

On

x � 22
x > 22 / off

x � 20
ẋ = -0.1x ẋ = 5 - 0.1xx = 20

Off x < 20 / on

Fig. 13.8. Hybrid automaton for the thermostat controller

For comparison, we look at the same controller as a HybridUML model.
The structure of the thermostat is modeled as an agent in Figure 13.9. The
thermostat consists of a heater and a controller that communicate via signals
on and off . Temperature x is measured by the controller and is also visible in
the thermostat itself, e.g. to monitor the temperature from the environment.
Therefore x is a shared variable. Sending of a signal, respectively write access
to a shared variable, is shown as a black-filled box, while receiving a signal,
respectively read access to a shared variable, is shown as a white-filled box.
These boxes are connected to visualize communication structures.

: Controller: Heater

class Thermostat(20,22)

x

{t = 0}
{data.h = 5}

{data.θ = 20}

on()
off()

xon()
off()

{data.K = 0.1}
{x = data.θ}

{x = data.θ}

Fig. 13.9. Composite structure diagram for the thermostat agent

In the upper left corner, parameters m and M are set to 20, respectively
22. Both values are given as parameters for better reusability of the thermostat
model. Furthermore, variables and constants of the thermostat must be initial-
ized. Constants K , h, and θ are all included in structure data and are set to 5,
0.1, and 20. Shared variable x that measures the temperature is set to the initial
value θ in both the thermostat and the controller. At last, t is a global clock
that must be set to 0 in the beginning.

The behavior of the controller is visualized in Figure 13.10, similar to the
hybrid automaton modeled above, i.e. states and transitions coincide in both
variants of the thermostat example. Here, flows and invariants are marked ex-
plicitly with keywords flow , respectively inv . Jump conditions of transitions are
given in brackets while events are given after a slash.

As we have seen, hybrid automata offer the possibility to model time-discrete
and time-continuous behavior. As they are based on well-known automata, they

378 Kirsten Berkenkötter and Raimund Kirner

Off On

statemachine Controller

[inv: x � M]

init

[inv: x � m]
[flow: ẋ = -data.K • x] [flow: ẋ = data.h-data.K • x]

[x=m] on()

[x=M] off()

Fig. 13.10. Statechart diagram for the thermostat controller mode

are easy to understand. Hybrid Automata themselves have been introduced for
theoretical purposes. In contrast, CHARON and HybridUML have been designed
for practical purposes and are able to model both structure and behavior of a
system.

Test Case Generation: New problems appear for test case generation based
on hybrid systems. In addition to the problems that arise when dense time is
considered as described in Section 13.3.2, new problems occur due to the dense
value domain. On the one hand, the SUT expects dense values in form of curves
as input, e.g. the velocity of a car. The SUT must receive these during test
execution from the test driver. Such curves must be selected from the infinitely
many possible ones. This is a problem that has not been tackled until now. On
the other hand, dense values are outputs from the SUT that must be evaluated.
We have to consider a certain fuzziness with respect to time and values as the
test itself is performed with a discrete-working computer. We can image this as
a tolerance tube like in Hahn et al.[HPPS03b, HPPS03a] where some tolerance
is added for both expected time and values. The output from the SUT must lie
inside this tube as depicted in Figure 13.11.

Time

Value

Fig. 13.11. Tolerance tubes for time and values [HPPS03a]

Until now, there is one attempt for test case generation based on hybrid
systems. In this approach, two models instead of one are used as done by Hahn
et al. [HPPS03b, HPPS03a]. The first model describes the hybrid system, i.e.

13 Real-Time and Hybrid Systems Testing 379

the discrete and the continuous part of the SUT. The second model is a purely
discrete model that describes abstract control flow in the SUT. This reduces
the problem of test case generation for hybrid systems to the one for real-time
systems with dense time. This is possible as the hybrid part of the model is
always hidden inside states while the discrete part is modeled by transitions.
These transitions, respectively their triggers, are needed for generating test cases.

At this point, we have to ask ourselves, why we have not built a discrete model
beforehand if this is used for the generation process. We must reconsider that
the hybrid model is the most exact model for mirroring the required behavior of
the SUT. The pure discrete model is too imprecise for testing the hybrid system.
We therefore use the test suite created by the discrete model and feed both the
SUT and the hybrid model the generated inputs.

We first consider an open loop system, i.e. we do not model the environment
of the SUT and feedback from the environment to the SUT as in the closed loop
system described in the next paragraph. Here, we have to compare the calculated
output given by the hybrid model with the output from the SUT. The hybrid
model is used to evaluate if a test has passed or failed as shown in Figure 13.12.

The situation is slightly different for closed loop systems. Here, the envi-
ronment of the SUT is explicitly modeled due to the fact that most systems are
required to work correctly in one specific environment and not in all possible
ones. Therefore, values of inputs to the SUT can be restricted to possible inputs
in the specified environment. As inputs often depend on the output of the SUT,
a feedback construction is needed, so outputs of the SUT can be considered to
calculate the next input, again with respect to the environment. The advantage
of this approach is that complexity is reduced as the possible search space is
restricted.

Discrete Model

Concretizer

Interface
Adapter

Hybrid Model

SUT

Verdict Finder

Fig. 13.12. Open loop test [HPPS03a]

Problems occur here with respect to the required feedback construction to
the discrete model. The outputs we expect during testing are calculated in the
hybrid model. Hence, this is used to give feedback to the discrete model as

380 Kirsten Berkenkötter and Raimund Kirner

shown in Figure 13.13. New inputs to the SUT must be given with respect to
this feedback, the modeled environment, and the modeled control flow of the
SUT. We associate control flow with the hybrid model that defines it according
to states and transitions in this model. If the hybrid model has reached a new
state, i.e. control has switched from one state to another one, the discrete model
must also perform a control switch to a new state, so inputs to the SUT are
calculated with respect to the correct state of the system and the corresponding
behavior of the environment that may be different in different states. Therefore,
the discrete model, the hybrid model, and the environment model have to be
synchronized to guarantee correctly generated test cases. This is done by using
the output of the hybrid model to differentiate between its states. The output
value space is split up into partitions that are related to states.

AbstracterDiscrete Model

Concretizer

Interface
Adapter

Verdict Finder

Hybrid Model

SUT

Fig. 13.13. Closed loop test [HPPS03a]

Summary: To summarize, by using one hybrid and one abstracted discrete
model we can combine the advantages of the hybrid and discrete approaches.
On the one hand, we can calculate results precisely, on the other hand, we
are able to generate test traces efficiently. In case of open loop test systems,
we just compare the results from the SUT and the hybrid model by the test
oracle. In case of closed loop test systems, we have a feedback construction that
requires more effort from test automation and test execution. The advantage of
this proceeding is that the search space is further reduced. The problem is that
the feedback construction is difficult to built as discrete model, hybrid model,
and environment model must be synchronized. Partitioning the output space of
the hybrid model to fulfill this task may be infeasible or not possible without
ambiguities.

Obviously, the multiple model approach increases the modeling effort as we
have to built two models instead of one. The key to the usability of this approach
is designing a good discrete model. For one, it must mirror the hybrid model to
guarantee working test traces, but in the same time, it has to be very abstract
to take advantage of the discrete nature, i.e. generating a manageable set of test

13 Real-Time and Hybrid Systems Testing 381

traces. If the discrete model is too detailed we would again get too much test
cases. Another problem not tackled here is generating time-continuous input
data as we have infinitely many possibilities for this.

13.4 Optimizing Test Suites by Evolutionary Testing

As we have seen in Section 13.3, there exist different techniques for model-based
test case generation for real-time and hybrid systems. They have in common
that they adapt algorithms known from testing theory to achieve a manageable
test suite that consists of a finite set of test cases. Nevertheless, the number
of test cases can still be very large. In that case, further reduction is required.
Moreover, we do not know if the test cases derived are “good” test cases, i.e.
they are able to find errors in the SUT or increase our confidence in the correct
behavior of the SUT. We will present a possible way for improving this situation.

With respect to real-time systems, time is an important factor to guarantee
correct behavior. Hence, we are also interested in the best-case execution times
and especially in the worst-case execution times to see if deadlines are met.
To test the timing constraints imposed by the SUT, the algorithms presented
in Section 13.3 do not help since the values for delays generated by them are
chosen according to a certain test strategy, e.g. promptness. They do not depend
on the real behavior of the SUT.

Evolutionary algorithms can be adapted to optimize the size of the test suite
or to test timing constraints imposed by the SUT.

13.4.1 Iterative Refinement Using Evolutionary Testing

Evolutionary testing is a testing technique where test data can be generated
automatically by using search techniques. It is called iterative refinement
because the test data to be optimized is iteratively refined due to a specified
quality criterion.

Evolutionary testing has not been explicitly developed as a model-based
method for test case generation, but it can be used in combination with this. As
shown in Figure 13.14, the test model used in evolutionary testing is quite sim-
ple. It basically consists of a start state l0 and an end state l1 where the state l0
can have an initial property p0 assigned to it. Beside the initial property p0, the
only application specific part of the model is the property p1 of the end state l1.
p1 encodes certain aspects of the application that one is interested to be verified
by testing. These aspects are typically maximum allowed boundaries such that
the system is considered correct as long as it stays within these boundaries.

Reactive systems potentially run endlessly and therefore it is not possible to
designate an end state of the system. To apply evolutionary testing, one idea is
to identify an interesting intermediate state of the overall system model and use
it as end state for the testing model. This allows testing the value of property
p1 when reaching state l1.

382 Kirsten Berkenkötter and Raimund Kirner

l0 l1

〈l0, p0〉 〈l1, p1〉

Fig. 13.14. Formal model for evolutionary testing of real-time systems

Though the application model used by evolutionary testing is quite simple,
the challenge is to define an effective process of iterative test case generation
together with a useful encoding of relevant system aspects by property p1.

Evolutionary testing as described above assumes a model with a given bound-
ary for the property of the end state p1. The test goal is to increase the confi-
dence whether this property is an invariant of the system respectively to show
by counter-example whether it is invalid. If one is not interested to test a specific
boundary of the property p1, it is also possible to use evolutionary testing to get
an idea of the feasible boundary of p1.

Test Case Generation: As described above, the generation of test cases by
evolutionary testing is a process that performs an iterative improvement of the
test data. To achieve this, the test results of the previous test run are abstracted
by using a fitness calculation. The calculated fitness values are used on the one
side to decide whether the iterative test case generation can be stopped and
on the other side to guide the calculation of new test data for the next test
round. This is a typical optimization problem that can be solved, for example,
by evolutionary algorithms. A characteristic of evolutionary algorithms is
that there exists a whole population of solutions instead of only one current
solution.

The choice of a certain search technique is often a question of the compro-
mise between efficiency and robustness to generic problems. The difficulties of
searching test data with maximum fitness are demonstrated in Figure 13.15.
Figure 13.15(a) shows a relatively simple fitness distribution where even local
search methods like hill climbing will find the solution easily. A more complex
example is given in Figure 13.15(b) where the fitness distribution has more than
one local maximum. Evolutionary algorithms have mechanisms to avoid getting
stuck on a local maximum.

In the following, evolutionary algorithms are described as a technique for the
iterative test case generation.

The iterative process of test-data generation based on evolutionary algo-
rithms is shown in Figure 13.16. The algorithm starts with an initial set of test
cases which is called population. Each member of the population is called indi-
vidual. Each individual must be a valid parameter of the SUT. During fitness
evaluation each individual is weighted according to a specified optimization
criterion. The test can be stopped if the exit test has determined that the best
fitness value has been reached or that the number of iterations has exceeded a
certain value. In case of termination, the individual with the best fitness value
is reported as final result. Otherwise, individuals from the current population
are selected to create new individuals out of them. The new individuals will be

13 Real-Time and Hybrid Systems Testing 383

x

y

fitness

x x

y

fitness

x

(a) unimodal function (b) multimodal function

Fig. 13.15. Examples of fitness functions with different difficulty

the population for a new cycle of the evolutionary algorithm. This proceeding is
explained in more detail by Goldberg [Gol89].

Insert new
Population

Generation by Variation

Fitness
Evaluation

Exit
Test

Selection

Final Solution

Initial Population

Fig. 13.16. Operational cycle of evolutionary algorithms

With respect to testing, the test case generator must be able to derive test
cases. Furthermore, it has to be able to evaluate the fitness of each individual
and to perform exit tests. This may require to collect and merge values of several
observations into one fitness value.

Testing the Worst-Case Execution Time: To demonstrate the application of
evolutionary testing, we describe its application to measurement-based timing
analysis of real-time systems. Testing real-time systems means ensuring the cor-
rectness in the value and time domain. In contrast to other methods that test
both properties in combination, the aim of the test method described in this sec-
tion [PN98, Weg01, AHP99, GW98] is testing only the time domain. The value
domain can be tested separately by other test methods. The property p1 of the
end state of a real-time system we are interested in is the tuple 〈BCET,WCET〉
where the BCET means the best-case execution time and WCET the
worst-case execution time. In the following we will just describe test case
generation for WCET as BCET can be handled similar. The application of evo-

384 Kirsten Berkenkötter and Raimund Kirner

lutionary testing to measure the WCET conforms to the operational cycle of
evolutionary algorithms given in Figure 13.16.

Testing the timing behavior of tasks individually requires that each task is
free of synchronization points, i.e. it is a simple task [Kop97]. In the following
we call the SUT just real-time program without making assumptions about its
granularity compared to the whole real-time system.

Evolutionary testing for generating test cases to measure the WCET depends
on fitness evaluation and the encoding of the real-time program’s input vari-
ables. The fitness evaluation is realized as a black-box test that measures the
execution time for concrete input test data. The execution time measurement is
performed for each generated test case while the fitness value is calculated by
comparing the relative execution time of each test result. The technical realiza-
tion of the execution time measurement can be arbitrary.

As evolutionary testing is an iterative process, we also need a stoppage
criterion. The simple case is that the fitness evaluation provides an execution
time that is higher than the specified WCET bound. In this case the test has
found a counter-example to the model and the test immediately stops. But as
long as the execution times of all individuals of the population are smaller than
the WCET bound, it is hard to decide whether the test can be stopped. Using
an upper bound of the number of cycles in the iterative refinement does not
provide a trustworthy result.

There are several approaches that demonstrate the applicability of evolution-
ary testing to analyze the WCET of so-called transformative systems, e.g.,
[PN98, Weg01, WBS02]. Transformative systems are typically subsystems that
take input data and transform them into output data. In contrast to reactive sys-
tems that potentially run endlessly, transformative systems have to be triggered
separately for each transformation. As a consequence, test data of transforma-
tive systems consist of a single test vector while test data of reactive systems
consist of a sequence of test vectors.

The application of evolutionary testing based on evolutionary algorithms to
reactive systems is not obvious as concrete techniques like genetic algorithms
operate with individuals having a fixed length. A possible approach would be to
test only test sequences of a fixed length, a method that is also used to limit the
search space of test cases. However, in case of testing performance constraints
(described in Section 13.3.1), the presented technique of WCET testing can be
applied. This allows to reason at least whether a reactive system can perform its
transitions within a certain time period. The verification of behavioral constraints
(Section 13.3.1) of reactive systems would need another testing technique.

Summary: Evolutionary testing allows the iterative refinement of input data
for testing. There exist several works on how to apply evolutionary testing for so-
called transformative systems. The application of evolutionary testing to reactive
systems has not been done and is not obvious. However, we have sketched in this
section how evolutionary testing can be applied to test performance constraints
of reactive systems. This can be done by applying the methods of WCET testing.

13 Real-Time and Hybrid Systems Testing 385

13.5 Summary

In this chapter, we have discussed test case generation for real-time and hybrid
systems. As we have seen in the beginning, test automation for real-time and
hybrid systems differs from that for untimed systems. The time domain has to
be taken into account as well as the dense value domain for hybrid systems,
e.g. for test evaluation. The model of the SUT must abstract from the real
behavior of the SUT to allow sensible test case generation. In contrast, the test
driver concretizes the generated inputs to feed the SUT. Vice versa, the concrete
outputs of the SUT are abstracted again so that test evaluation can be done with
respect to the abstract model.

Process Algebra vs. Automata Different modeling techniques can be used for this
purpose. We have discussed ACSR as a process algebra and different variants of
automata that already have been used for test case generation. A process algebra
is capable of modeling a system consisting of processes that communicate with
each other via events. Concurrency can be modeled explicitly as there are oper-
ators for interleaving and parallel execution with synchronization. Time is con-
sidered discrete. One problem of process algebras is that this modeling technique
has no support in industry where graphical modeling is preferred. Nevertheless,
testing based on process algebra has been proven useful and practicable.

In contrast, automata based modeling has more support as this is very pop-
ular, e.g. with respect to UML where state machines are used as automata
variants. Timed automata introduce either discrete or dense time to be capable
of modeling timing constraints. Graphical models are in principle easy to under-
stand as control flow can be captured at one sight. However, large models become
intractable in graphical representation. Hierarchy or different abstraction levels
must be used to better this situation.

Discrete vs. Dense Time With respect to time, this is either modeled discrete or
dense. In the first case, a timer is a counter that is incremented continuously. As
the computer itself is working discrete, this seems appropriate. In contrast, time
is naturally dense so modeling based on dense time is closer to reality, e.g. when
analog sensors and actuators are used. For real-time systems, it must be chosen
if the model represents natural time or computer time beforehand. For hybrid
systems, time must be modeled dense as the continuous parts of the system rely
on this.

Discrete vs. Dense Values Another aspect is the value domain that has to be
tested. This is considered discrete for real-time systems. We have seen that test
case generation builds up on methods for untimed systems and enhances the
generated test cases with timing information. Discrete values for inputs and
outputs to respectively from the SUT can be easily generated and evaluated.
Time points and intervals for generating inputs and outputs are chosen with
respect to the selected test case generation method. For hybrid systems, this
situation differs as we have dense-valued variables. Until now, nobody has tackled

386 Kirsten Berkenkötter and Raimund Kirner

the problem of generating curves as input data if time-continuous input is needed.
With respect to output data, fuzziness is considered for test evaluation.

Test Case Generation Algorithms We presented two different test case genera-
tion algorithms for real-time systems that are based on discrete time and one
algorithm that is based on dense time. Also one algorithm for creating test suites
for hybrid systems was discussed. The most important function of these algo-
rithms is the way in which the size of the test suite is reduced to a manageable
size, i.e the way in which test cases are selected.

The first test case generation algorithm discussed is based on the process alge-
bra ACSR where test cases are derived from the constraint graph of the ACSR
model. Test data is selected to cover two type of timing constraints, namely
performance constraints and behavioral constraints. To handle also applications
with recursive elements, upper bounds on the length of tested execution scenarios
have to be introduced.

Furthermore, test case generation for systems with discrete time can be done
with timed automata models. Here, the central idea is using test views that re-
strict the model of the SUT to a specified test purpose. Test views are composed
by parameters like clock granularity and the division of actions into observable
and hidden actions. Therefore the task of the test engineer is creating test views
that lead to manageable test suites. This must be done carefully as parts of
the system may never be tested while other test views overlap. One important
advantage of this approach is that the size of test suites is scalable.

With respect to dense time, the main idea is finding equivalent parts in the
model called partitions. Due to the dense time domain, the model has infinitely
many states with respect to the infinitely many possible time values. Partitions
group these values so that a finite graph is the result that can be used for test
case generation. As this may be too large for full exploration, heuristics must be
used to limit the size of the state space.

For hybrid systems, the presented algorithm is based on the results of test
case generation for real-time systems. In addition to the hybrid model, a sec-
ond, discrete, model is created that abstracts from the hybrid system. This can
be used in combination with the test case generation algorithms for real-time
systems presented. The original hybrid model is needed to derive correct evalua-
tions for variables as the discrete model being only an abstraction is not capable
of doing this. The selection of dense input curves is not tackled.

Optimization of Test Suites Testing timing constraints is still a difficult topic as
delays for stimulating the SUT must be chosen and the correctness of outputs of
the SUT must be accessed. First attempts with using evolutionary theory based
test case generation methods have shown that these can improve the test suite
with respect to determining best- and worst-case-execution times. This can be
helpful to prove if a SUT meets its timing requirements.

All other algorithms presented built up on results of testing untimed sys-
tems. In contrast, evolutionary testing has a different background and therefore

13 Real-Time and Hybrid Systems Testing 387

provides a new point of view for future work in the field of real-time and hybrid
systems testing.

Future Work Model-based test case generation for real-time and hybrid systems
has been successfully applied in relatively small examples. More effort has to
be put into this to prove the practicability of test case generation algorithms.
There is also only few tool support for test case generation and execution for
real-time systems and no tool support for hybrid systems. New techniques like
evolutionary testing to test timing constraints must be further surveyed. Also
cross-fertilization between the different approaches seems useful to improve the
presented algorithms as each has its advantages and disadvantages.

	13.1 Introduction
	13.2 Test Automation
	13.3 Model-Based Test Case Generation
	13.4 Optimizing Test Suites by Evolutionary Testing
	13.5 Summary

