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Abstract. In the previous chapters, various formal testing theories have been dis-
cussed. The correctness of an implementation with respect to a model is denoted by
a so-called conformance relation. Conformance relations are relations between math-
ematical abstractions of implementations and models. Based on these conformance
relations, different testing strategies have been defined. In this chapter, we concentrate
on formal objects used to select test suites. These formal objects are so-called coverage
criteria. A coverage criterion is a property that a selected test suite has to satisfy. We
explore to which purposes these coverage criteria can be used for. Then we concentrate
on the fault detection ability of a test suite satisfying a given coverage criterion.

11.1 Introduction

All testing methodologies introduced in this book follow the same generic test
process. Test cases are generated according to a given model of the implemen-
tation. The model results from a requirements analysis and has to be (if testing
is done automatically) a formal description of the requirements. Test cases are
sequences of input/output pairs and a finite set of test cases is called test suite.
For each test case of a test suite, the input specified in the first pair of the se-
quence is refined with concrete data called test data. Test data are submitted to
the implementation through its environment. The implementation generates a
result which is captured through its environment. The result is compared (with
respect to a conformance relation) to the output specified in the pair. If the
conformance relation is not contradicted, the process goes on with the following
pair. If generated outputs all correspond to the intended outputs, the test case
is executed successfully. If all the test cases of the test suite are executed suc-
cessfully, a success verdict is assigned to the test process, since no test case of
the test suite allows to show that the implementation does not conform to the
specification. Figure 11.1 shows this testing framework.

The number of test cases required to obtain confidence in the system under
test is usually infinitely large for real life applications. Consequently, a so called
domain expert is involved in the test process, as he is able to extract interesting
test suites due to his knowledge. For automated test case generation, the problem
remains unsolved. So, for current testing practices, one of the open questions is:
Which test suite should be extracted from a possibly infinite set of test cases?
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Fig. 11.1. A Usual Test Framework

Information provided by the model to extract test cases can have two different
natures. On the one hand, functional aspects can be used. These aspects of the
model describe the intended functionality of the implementation. The goal of
test purpose based techniques is to generate test suites to validate such kind
of properties [FJJV96, BGM91]. On the other hand, structural aspects of the
model can be used. These structural aspects can be the state space description
or the dynamics description of the implementation. For example, in Z, VDM,
or B specifications, the state space is given by a set of typed variables and
predicates describing the invariant. The dynamics description is constituted of
operations which map input data and the state before applying the operation to
the output data and the state after applying the operation. In Extended Finite
State Machines, the state space is expressed by variables and by guards over these
variables, while the dynamics description is given by assignments on variables,
transition functions, and functions which define the output generated depending
on an input received and the current state. In coverage based testing techniques,
test suites are selected to cover some structural aspects of the model with respect
to given coverage criteria. Coverage criteria can be seen as predicates defined on
triples (P ,M ,T ), where P is a program whose associated model is M , and T is
a test suite. The meaning of such a criterion can be understood in two ways:

• As an adequacy criterion, which is a set of rules used to determine whether
or not testing is complete for a given program, specification and criterion.
• As a selection criterion, which is a set of rules used to select test cases for a

given program and specification.

A selection criterion helps to select a test suite in order to fulfill a goal,
whereas an adequacy criterion helps to check that a previously selected test
suite satisfies a goal. The notion of coverage criteria has been originally defined
for white-box testing techniques. In these techniques, structural aspects to cover
are related to programs: for example, a coverage criterion may be to cover all
statement sequences in a program. In this book, we focus on coverage criteria
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related to models: for example, a coverage criterion may be to cover all the states
of a model.

This chapter provides an overview of different research activities dealing with
the coverage based testing techniques and their evaluation. In Section 11.2, we
discuss how coverage criteria can help to select meaningful test suites. In Sec-
tion 11.3, we present common coverage criteria. In Section 11.4 we concentrate
on providing quantitative elements to evaluate the ability to detect faults of cov-
erage based testing techniques. Finally, in Section 11.5, we summarize the main
results and present open problems.

11.2 Coverage Criteria

To address the question Which test cases should be extracted from a possibly
infinite set of test cases ? it is possible to use advanced specifications describ-
ing which test cases to choose. Such specifications are usually called test case
specifications (cf. Figure 11.1), and are, strictly speaking, selection criteria.

The main reasons for an infinitely large test suite are that a specification
can represent an infinite number of traces (e.g., caused by variables ranging over
infinite domains) and that a specification can contain infinite traces (e.g., caused
by loops). For the first reason the problem is to select traces for the second reason
the problem is to chop traces. Basically, the specification (ideally) describes all
possible test cases while the test case specification describes which of these test
cases are likely to find errors and, consequently, increase the confidence in the
correctness of the implementation. Most of the criteria used for selecting test
cases can be coarsely classified according to the following three aspects:

(1) The test case specification is a description of a structural criterion which
should be covered.

(2) The test case specification is a description of functional aspects, also called
scenarios, which should be covered.

(3) The test case specification contains stochastic information about different
aspects of the implementation which is be used to concentrate on particular
details.

The third variant is also used to restrict a test case specification if this
represents an infinite model (for example, if path coverage is required which is
usually infeasible to achieve as explained in the following section).

11.2.1 Structural Criteria

Basically, coverage criteria are used to measure the quality or, more precisely,
the adequacy of test suites: A test suite is adequate according to a criterion if a
designated percentage of this coverage criterion is reached. Depending on this,
testing is continued or stopped. A structural criterion is an assertion about the
structure of the specification. For example, in model based specifications states
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or transitions can be used. In class diagrams, for example, it could be required
to use at least one instance of each class in the diagram.

For test case generation this means that test cases are generated according
to a structural criterion, and that a test case is selected if this test case increases
the coverage of this criterion. In the case of several test cases one can choose the
test case with the major contribution.

For example, transition coverage requires choosing test cases in such a way
that all transitions of the specification are covered. The boundary interior
test requires that every loop is repeated zero, one and at most k times. The
strongest coverage criterion is the path coverage criterion. This criterion is
satisfied by a test suite if and only if for any possible path in the model, the
test suite contains at least one test case which enforces an execution of this
path in the implementation. Path coverage is in general impossible to achieve
and impractical for real life testing. Reasons for that are loops in the model or
infinite data spaces.

11.2.2 Functional Criteria

Another method to select test cases is using a model of the environment. Usu-
ally, such a model is called scenario model, use case or user profile and allows
to describe scenarios which involve user enabled functionalities. The idea is that
the test case specification is used to determine the inputs used to test the im-
plementation and the model is used to estimate the expected outputs of the
implementation.

For example, if the system under test is a banking application, usual func-
tionality is the deposit of money into an account, the withdrawal of money from
an account, or checking the balance. All these functionalities can be described
as scenarios. Another example are the so called attack traces in security engi-
neering. Here, possible ways to attack the system under test by an unfriendly
user are modeled in scenarios and used to control the test selection process. So,
functional criteria restrict the test case generation to particular scenarios and
thus restrict the number of test cases.

As mentioned before, further reduction is required in case that the test case
specification represents a possibly infinite set of scenarios (for example, if the
test case specification is modeled as a state machine containing loops).

11.2.3 Stochastic Criteria

Usually, stochastic criteria1 result from analysis of the expected user behavior
or system usage, respectively. The simplest case is that all parts of the imple-
mentation, or all its functionalities have equal probability of execution. In this
case, test case selection is done randomly. In contrast, if some functions are fre-
quently used or represent important functionalities, test cases connected to these
functionalities are preferred.
1 Note that stochastic criteria can also be referred to as statistical criteria.
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In the following section we review some usual coverage criteria that are used
to select test cases. The aim of the section is to give the reader an intuition of
usual criteria. A more exhaustive presentation of coverage criteria can be found
elsewhere [FW88, RW85, ZHM97].

11.3 Coverage Based Testing

The problem of tractable coverage criteria that are easier to satisfy than the path
coverage criterion, has been studied for a long time in the context of white-box
testing. A lot of criteria have been defined [Mey79]. In the following, we present
different coverage criteria used in the context of model based testing approaches
which are adapted from white-box testing. Most of these coverage criteria can
be classified into two main classes: control flow oriented coverage criteria and
data flow oriented coverage criteria.

Control flow oriented coverage criteria are based on logical expressions in-
troduced in the specification which determine the branch and loop structure of
the implementation. Data flow oriented coverage criteria focus on the data flow
part of the implementation. More precisely, they focus on the way values are
associated to their variables and how these assignments affect the execution of
the implementation [VB01].

In the following coverage criteria are introduced and explained, keeping in
mind the analogy between models and abstract programs. Our discussions fits
also for coverage criteria associated to programs with respect to white-box testing
(i.e., coverage of code). In this context coverage criteria are usually described as
flow graphs. However, we do not need this notion to present control flow criteria.
Thus, a flow graph definition is only introduced in Section 11.3.2.

11.3.1 Control Flow Oriented Coverage Criteria

Basically, control flow oriented coverage criteria rely on the notions of decision
and condition [VB01]. A condition is an elementary boolean expression which
cannot be divided into further boolean expressions. A decision can be seen as
a control point in the specification at which the control flow can follow various
paths. In programming languages, this is a boolean expression consisting of sev-
eral conditions combined by logical connectives. An instantiation of the common
IF-THEN-ELSE construct in programming languages is an example for a decision.
The most basic control flow criterion is the decision coverage criterion.

The decision coverage criterion [Mey79], also known as branch coverage,
requires that each possible outcome (i.e., true or false) of every decision in the
specification is produced at least once. For example, the specification contains a
decision D : IF (A∧B) THEN S, where A and B are conditions. It is required that at
least one test case makes (A∧B) evaluate to true and one makes (A∧B) evaluate
to false. A test suite which contains two test cases, one such that A is true and
B is true and the other one such that A is false and B is true, is sufficient to
test decision D . The example clearly demonstrates that decision coverage does
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not ensure test suites which cover all different outcomes of a condition involved
in a given decision. For example, the fact that B is failure causing could remain
undetected with this criterion. To overcome this weakness, three refined criteria
have been introduced.

The condition coverage criterion requires that each possible outcome of
every condition in each decision is produced at least once. To give an example,
we consider again decision D . The condition coverage criterion requires that A
and B have taken all possible outcomes. Thus, a test suite which contains two
test cases, one such that A is true and B is false and the other one such that A
is false and B is true is sufficient to test decision D .

Even though the condition coverage criterion captures all conditions, it is not
powerful enough to capture coverage of decisions. The test suite described above
for condition D illustrates this fact: It consists of two test cases which both make
(A∧B) evaluate to false. To overcome this weakness one must combine condition
coverage and decision coverage. This is done in decision condition coverage.

The decision condition coverage criterion requires that each possible out-
come of every condition in each decision is produced at least once and that each
possible outcome of every decision in the specification is produced at least once.
For decision D , a test suite which only contains two test cases, one such that
A is true and B is true and the other one such that A is false and B is false, is
sufficient to test decision D with regard to decision condition coverage. Decision
condition coverage is strictly stronger than both decision coverage and condi-
tion coverage in the sense that each test suite which satisfies decision condition
coverage satisfies both decision coverage and condition coverage.

The multiple condition coverage criterion requires that each possible
combination of conditions outcomes in each decision is produced at least once.
Again, we consider decision D , a test suite containing four test cases (A is true
and B is true, A is true and B is false, A is false and B is true and A is false and
B is false) is necessary to test D with regard to multiple condition coverage.

Note that multiple condition coverage requires full search of various combi-
nations of condition values [VB01]. If the number of conditions in a decision is
equal to n, the number of test cases to satisfy multiple condition coverage grows
up to 2n . This becomes unmanageable even for relatively moderate values of n.
Decision coverage, condition coverage and decision condition coverage criteria re-
quire less test cases. For example, condition coverage requires two test cases per
condition. If a decision contains n conditions, the criterion requires at maximum
2n test cases. However, a test suite which satisfies one of these three weaker
criteria will not cover all combinations of conditions outcomes. The modified
condition decision coverage criterion provides an intermediate position.

The modified condition decision coverage criterion requires that each
possible outcome of every condition in a decision is produced at least once, each
possible outcome of every decision is produced at least once and that each condi-
tion in a decision has been shown to affect the decision’s outcome independently.
A condition is shown to affect a decision’s outcome independently by varying
that condition while all other possible conditions are fixed.



11 Evaluating Coverage Based Testing 299

Modified condition decision coverage includes in its definition both decision
coverage and condition coverage. Furthermore, decision coverage can be deduced
from condition coverage in combination with the independently affect property.
Again, we consider decision D . A test suite with three test cases such that A is
true and B is true, A is true and B is false, and A is false and B is true satisfies
the modified condition decision coverage. Obviously, such a test suite satisfies
the condition decision coverage and also the independently affect property. From
these two facts, it is easy to see that decision coverage is satisfied. The number
of required test cases ranges between n + 1 and 2n which is manageable even
for large values of n. However, there are situations in which it is impossible
to vary one condition value while keeping the others unchanged. This is the
case if A is true implies that B is true. To overcome this problem, Vilkomir
et. al. provide an improved formal definition of the modified condition decision
coverage criterion [VB02]. There it is sufficient to choose any combination that
varies both condition and decision even-though other conditions may also vary.

At last, the full predicate coverage criterion requires that each possible
outcome of every condition in a decision is produced at least once, where the
value of a decision is directly correlated with the value of a condition. Intuitively,
multiple condition decision coverage is relaxed in the sense that it is not required
that conditions in a decision independently affect the decision.

11.3.2 Data Flow Oriented Coverage Criteria

Data flow oriented criteria are based on data flow analysis with respect to com-
piler optimization activities. They require test cases that follow instruction se-
quences from points where values are assigned to variables to points where those
variables are used. To introduce different criteria, we define flow graphs associ-
ated to a model. Strictly speaking, we discuss code coverage as used in white-box
testing approaches. The relationship between models and code is that behavioral
models can be compiled into code and that described coverage criteria can be
applied to this code. However, there are many possibilities for this relationship;
the way criteria are applied depends on the concrete approach. For example,
using modified condition decision coverage at level of assembly code does not
make sense.

A flow graph associated to a model is a directed graph that consists of a
set of nodes and a set of edges connecting these nodes. Nodes contain linear
sequences of computations (i.e., access to external values, variable assignments,
data changes, etc). Edges represent transfer of control between nodes specified in
the specification. Additionally, each edge is associated with a boolean expression
that is the condition of the corresponding control transfer. A flow graph contains
an initial node, which denotes the beginning of an abstract2 computation, and a
set of terminal nodes which denote exit points. Depending on the type of model,
initial and terminal nodes have to be chosen or added (for example, extended
finite state machine formalisms do not use notions of beginning and ending of

2 Abstract in the sense that models are abstractions of programs.
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computations). In some cases, a data flow graph can be seen as an annotated
control flow graph.

In the following, a flow graph is a representation of all statement sequences
of the model, and a test case is a possible (instantiated) instance of a path in
the flow graph (i.e., inputs which execute the instruction sequence denoted by
the path) [ZHM97]. Moreover each occurrence of a variable in a node is classified
either as definition occurrence or as use occurrence. The latter can be further
divided into computational use or, if it is used within a predicate, into predicate
use. In the following necessary definitions are given:

• A definition clear path with respect to a variable x in a flow graph is a path
where for all nodes in the path there is no definition occurrence of x .
• A definition occurrence of variable x within a node u reaches a computational

use occurrence of x within a node v , if and only if there is a path p =
(u,w1, . . . ,wn , v), such that (w1, . . . ,wn) is definition clear with respect to x .
• A definition occurrence of variable x in u reaches a predicate use occurrence

of x on the edge (wn , v), if and only if there is a path p = (u,w1, . . . ,wn , v),
such that (w1, . . . ,wn) is definition clear with respect to x and there exist a
predicate occurrence of x associated to the edge from wn to v .
• For both predicate and computational use occurrence, a definition occurrence

of x in u feasibly reaches the use occurrence of x , if and only if there is a
path p, such that there exists inputs which enforce the execution of p.

The simplest data flow criteria rely on paths that start with the definition of
a variable and end with the use of the same variable. The following criteria are
adapted from the work of Frankl and Weyuker [FW88].

A test suite T satisfies the all definitions coverage criterion, if and only if
for all definition occurrences of a variable x , such that there is a use occurrence of
x which is feasibly reachable from the definition, there is at least one element in T
which is a numerical instance of a path p, that contains a sub path through which
the definition of x reaches some use occurrence of x . Thus, the all definitions
coverage criterion ensures that all defined variables will be tested at least once
by one of their uses in the model. However, this is insufficient as tester require
to test all uses of all variable definitions. It is ensured by the all uses criterion.

A test suite T satisfies the all uses coverage criterion, if and only if for all
definition occurrences of a variable x and for all use occurrences of x which are
feasibly reachable from the definition, there is at least one element in T which
is a numerical instance of a path p that contains a sub path through which the
definition of x reaches the use occurrence.

The previously described criteria have been specialized to take into account
that a use occurrence can be a computational use or a predicate use [RW85].
However, the all uses coverage criterion does not ensure that all possible ways
to reach a use occurrence have been tested. As there may be several sub paths
which allow a definition occurrence of a variable to reach a use occurrence of this
variable. Note that some of these paths may be infinite due to cycles and cannot
be covered. A possible solution is to restrain to cycle free sub paths. The only
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cycles allowed are those that begin and end at the same node. The all definitions
uses paths criterion requires each of such cycle free sub paths to be covered by
at least one test case.

A test suite T satisfies the all definitions uses paths coverage criterion,
if and only if for all definition occurrences of a variable x and for all paths q
through which a use occurrence of x is reached, there is at least one element
in T which is a numerical instance of a path p that contains q as a sub-path.
Moreover, q is required either to be cycle free or to be such that the first node
is also the last node. This criterion may never be satisfied since such cycle free
paths are infeasible to generate. But, more complex criteria (involving several
definition and use occurrences) are definable.

Ntafos introduces a family of coverage criteria (required k -tuples) and their
definition relies on the notion of k -dr interactions [Nta88]. For k > 1 a k-dr
interaction is a sequence K = [d1(x1), u1(x1), d2(x2), u2(x2), . . . , dk (xk ), uk (xk )]
and for all i < k :

• A definition occurrence of xi is di(xi).
• A definition use of xi id ui(xi).
• The use occurrence ui(xi) and the definition occurrence di+1(xi+1) are asso-

ciated with the same node ni+1 in a path p = (n1) · p1 · (n2) · . . . · (nk−1) ·
pk−1 · (nk ) such that the definition occurrence d1(x1) is associated to n1.
• The i th definition occurrence di(xi) reaches the i th use occurrence ui(xi)

through pi .

Where p is an interaction path for the k -dr interaction K . The aim of the
required k -tuples criteria is to achieve test suites which allow to test j -dr inter-
actions for j ≤ k .

A test suite T satisfies the required k-tuples criterion, if and only if for
all j -dr interactions L with 1 < j ≤ k , there is at least one test case in T which
is a numerical instance of a path p such that p includes a sub path that is an
interaction path for L.

The presented criteria are basic coverage criteria. Numerous criteria have
been defined elsewhere (for example, criteria that take the number of loogs into
account). For further study, the paper of Zhu et. al. provides a presentation of
a large number of coverage criteria [ZHM97].

11.4 Coverage Based Testing and Fault Detection Ability

In the following, we concentrate on systems which are non-reactive: that is,
they can be seen as functions (taking an input as argument and yielding a
result). For these systems, test cases are pairs of inputs and intended outputs. We
present contributions which aim at providing quantitative elements to evaluate
the ability to detect faults of structural coverage based testing techniques.

We assume that structural coverage based testing techniques can be seen as
partition based testing techniques. Partition based testing consists in splitting
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the whole input domain of the implementation into several subdomains. For
example, domain D = {0, 1, 2} is separated into two subdomains D1 = {0, 1}
and D2 = {2}. D1 and D2 define together a partition (in the mathematical
sense) of D . Usually, the terminology of partition based testing is associated to
any technique involving a division of the input domain into several subdomains
even if these subdomains overlap. For example, if the domain D = {0, 1, 2} is
divided into the following two subdomains: D ′

1 = {0, 1} and D ′
2 = {1, 2}.

Let us consider any structural selection criterion applied on a given model and
program. Selecting a test suite implies dividing the whole input domain of the
implementation. For example, a model described in a formalism containing the
”if-then-else” statement with x ranging over D : if (x ≤ 1) then inst1 else inst2.
By using decision coverage, the selected test suite contains at least two test cases:
one for which the selected test data is such that x ≤ 1 and one for which the
test data is such that x > 1. This example clearly demonstrates that testing
techniques in which test case selection processes are based on structural criteria
are in fact partition based testing techniques.

The first part of the following section is to compare abilities to detect faults of
structural coverage based testing techniques and of random based testing. Ran-
dom based testing consists in selecting a certain number of test data randomly
out of the input domain and evaluating outputs caused by test data with regard
to intended results expressed in the model. Following the discussion above, we
discuss contributions which compare random based testing and partition based
testing techniques. Section 11.4.1 provides a structured presentation of several
significant contributions to this aspect.

The second part of the following section is to compare techniques based on
different structural criteria on the basis of abilities to detect faults. One of the
most well known ways to compare criteria is by the subsume relation. It is a way
to compare the severity of testing methods (in terms of adequacy of test suites).
In Section 11.4.2 we present several relations derived from the subsume relation.
Then, it is studied whether or not these relations impact the fault detection
ability. That is, the following question is addressed: If two criteria are involved
in one of these relations, what can we say about their respective abilities to
detect faults?

11.4.1 Partition Testing Versus Random Testing

Here we focus on contributions which address the problem of comparing re-
spective abilities to detect faults of random based and partition based testing
[DN84, HT90, Nta98, Gut99]. All these contributions are based on a common
mathematical framework. This framework is called the failure rate model and is
now described.

We suppose that an implementation is used for a long period of time with
various samples of randomly selected test data. Furthermore we suppose that
we are able to observe the number of detected faults at any time. The number
of faults will converge towards a constant. We denote θ the ratio between this
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constant and the total number of possible inputs. The ratio θ is called the fail-
ure rate associated to the domain D of the implementation. The probability to
randomly select one test data which does not reveal a fault is 1−θ and the prob-
ability to randomly select n test data, none of which reveals a fault, is (1− θ)n .
The probability to reveal at least one fault for n randomly selected test data can
be expressed as follows: Pr = 1− (1− θ)n .

Now let us consider that a partition based testing technique partitions the
domain D into k subdomains D1 . . .Dk . For each Di , i ∈ {1, . . . , k}, θi denotes
the failure rate associated to Di . Now suppose that the testing technique states
that ni test data must be selected in Di . A total of n test data is selected,
therefore n = Σ

k

i=1
ni . The probability to select ni test data in Di , none of which

reveals a fault, is (1− θi)ni and the probability to detect at least one fault when

selecting ni test data in each Di is Pp = 1−
∏k

i=1
(1− θi)ni .

For each Di , i ∈ {1, . . . , k}, pi is the probability that a randomly chosen test

data is in Di , so that θ = Σ
k

i=1
piθi . Thus, Pr and Pp can be expressed as follows:

Pp = 1−
∏k

i=1
(1− θi)ni (for partition based testing), and

Pr = 1− (1−Σ
k

i=1
piθi)n (for random based testing).

In the following, contributions introduced can be classified into two differ-
ent types. In the first type of contributions the results are based on simulation
experiments. The idea is to perform comparisons between Pr and Pp with dif-
ferent valuations of their variable parts. In the second type of contributions (the
fundamental approaches) the results are based on mathematical proofs. Under
particular assumptions, fundamental results are proved.

Simulation Experiments

Duran and Ntafos [DN84] follow the framework described above to address the
problem whether or not one of the two testing methods is more efficient at
detecting faults than the other. That is, they compare Pr and Pp through various
simulation experiments. Moreover the authors compare the two testing methods
through another criterion: the expected number of errors that a set of test data
will discover. Using an ideal partition scheme in which each subdomain contains
at most one fault, the expected number of errors discovered with partition based
testing is given by the formula Ep(k) = Σ

k

i=1
θi . Here, one test data is randomly

chosen out of each subdomain Di . The expected number of errors found by n
random test data Er (k ,n) is given by the formula Er (k ,n) = k −Σ

k

i=1
(1−piθi)n .

The simulation experiments consist of different variations: the number k of
subdomains, the number ni of test data in each subdomain (and thus the overall
number n of test data), the failure rate θi in each subdomain and the probability
pi that a randomly chosen test data is in the subdomain Di (and thus the overall
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failure rate θ). For each variation Duran and Ntafos study the ratio Pr

Pp
and Er

Ep
.

The experiments reported are based on two different assumptions on failure rates.
On the one hand, a usual belief about partition based testing is that it allows to
obtain homogeneous subdomains. That is, if an input of a subdomain is failure
causing, then all inputs of the subdomain have a high probability to be failure
causing and conversely. Under this assumption, failure rates should be either
close to 0 or close to 1. On the other hand, there are examples of program paths
that compute correct values for some, but not all, of their input data. Under this
assumption, the failure rate distribution should be more uniform than suggested
above.

• In the first experiment, the authors suppose that the partition based testing
technique divides the domain into 25 subdomains. It is supposed that the
partition based technique requires the selection of one test data per sub-
domain. To provide a fair comparison the random based testing method
requires to select 25 test data randomly. Several values for θi are selected.
The θi ’s are chosen from a distribution such that 2 percent of the time
θi ≥ 0.98 and 98 percent of the time θi ≤ 0.049. These assignments reflect
a situation in which subdomains are homogeneous. The pi are chosen from
a uniform distribution. It appears that on a total of 50 trials 14 trials are
such that Pr ≥ Pp . However the mean value of Pr

Pp
is 0.932. Under the same

hypothesis on failure rates, the experiment is repeated for k = n = 50 and
the results are even more surprising. Indeed, one could think that increasing
the number of subdomains should favor partition based testing. However this
experiment does not corroborate this intuition: the mean value of Pr

Pp
was

0.949. The mean value of the ratio Er

Ep
is for 25 subdomains and 50 trials it

is equal to 0.89, and for 50 subdomains and 50 trials it is equal to 0.836.
• In the second experiment, the assumption on the θi distribution is that θi ’s

are allowed to vary uniformly from 0 to a given value θmax ≤ 1. Several
possible values are assigned to θmax . Experiments are performed for k =
n = 25 and k = n = 50. As θmax increases Pr and Pp tend to 1. Random
based testing performs better for the lower failure rates and also when the
size of the partition is 25 instead of 50. Similar studies are carried out for
Er and Ep . In these studies, the number of randomly selected test data is
allowed to be greater than the number of test data selected for partition
based testing (100 for random based testing versus 50 for partition based
testing): this is consistent with the fact that carrying out some partition
based testing scheme is much more expensive than performing an equivalent
number of random test data. Under these assumptions, random based testing
performed better than partition based testing most of the time (Er > Ep).

All these experiments deeply question the value of partition based testing
with regard to random based testing. However, these are simulation results.
Therefore, the authors concentrate on actual evaluations of random based test-
ing. Duran and Ntafos propose to evaluate random based testing on three pro-
grams containing known bugs. The first program contains three errors. The first
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error is detected 11 out of 50 times, the second error 24 times and the third error
45 out of 50 times. The simple error in the second program is detected by 21 out
of 24 times. For the third program 50 test cases were generated. The simple error
was detected 18 of 50 times. More programs were tested with similar results.

One of the features of coverage criteria is that they can be used to measure
coverage of test suites generated by other methods. The authors evaluate some
test suites generated by random based testing, with program based coverage
criteria. Test suites are generated for the programs previously used to evaluate
random based testing. The idea is to simply generate a test suite and then to use
a given criterion to see if the test suite satisfies the requirements stated by the
criterion. Several criteria are then considered to measure random based testing
adequacy. The number of test data generated ranges between 20 and 120 and
five programs from the previous experiments were used. The over-all result is,
that for a moderate number of random test data random based testing allows to
cover these criteria for coverage percentages ranging from 57 percent up to 94
percent depending on the criterion.

The experiments presented in the paper indicates that it is reasonable to as-
sume that random based testing can find more errors per unit cost than partition
based testing, since carrying out some partition based testing scheme is much
more expensive than performing an equivalent number of random test data. This
holds for homogeneous subdomains and for values of θi uniformly distributed.
Assumptions on failure rates may be unrealistic but actual evaluations show
that random based testing seems to discover some relatively subtle errors with-
out great efforts. Moreover, random based testing seems to ensure a high level
of coverage for some usual coverage criteria.

Hamlet and Taylor [HT90] explore the results of Duran and Ntafos more deeply.
They perform experiments based on statistical assumptions very similar to those
made by Duran and Ntafos.

They compare partition based testing and random based testing with respect
to the conventional failure rate model used by Duran and Ntafos. They are
compared by different numerical valuations of their respective probabilities to
detect faults for the same number of selected test data (Σ

k

i=1
ni = n). Different

relationships between θ and θi are proposed:

• The first relationship is based on the assumption that if a test data is ran-
domly selected, the probability that this test data is an element of any sub-
domain is 1/k . Thus θ is the average of the sum of all θi : θ = 1

kΣ
k

i=1
θi . The

difference between random based and partition based testing in terms of the
probability of finding at least one failure will be maximal when the variance
of the θi has a maximum. If only one test data per subdomain is selected,
this occurs if only one subdomain, the j th one, is failure causing (θj = kθ
and θi = 0 for i �= j ). This situation is studied for different failure rates
and different sizes of partitions. To give a significant advantage to partition
based testing, the number k of subdomains has to be of the same order of
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magnitude as the inverse of θ: in the frame of this investigation, the most
favorable case is that random based testing is about 0.63 as effective as par-
tition based testing. This result is clearly better than the results obtained
by Duran and Ntafos [DN84]. But Hamlet and Taylor also observe that the
assumption pi = 1/k is not realistic.

• The second relationship is introduced by Duran and Ntafos [DN84]. This
relationship is based on the assumption that when a test data is randomly
selected the probability that this test data is an element of subdomain Di

is an arbitrary number pi . The influence of the number of subdomains, the
distribution of θi and of lower and upper bounds for θi is investigated by
different experiments. This deeper investigation does not contradict previ-
ous results given by Duran and Ntafos [DN84] which indicate that there are
little differences between partition based and random based testing with re-
gard to their probabilities of revealing failures. Even-though partition based
testing is sometimes better, slight advantage for partition based testing can
be reduced by using a higher number of random test data.

• The third relationship explores modifications of the relationship described
above. The aim is to gain information on the importance of the way the sub-
domains are chosen and, the impact of homogeneity on the effectiveness of
partition based testing. To obtain information on the importance of subdo-
main selection, one needs a correlation between the probability of a random
test data in a given subdomain (pi ) and its failure rate (θi). The correlation
is denoted by a weight associated to each θi . This weight is used to calcu-
late pi . The higher the weight is, the more subdomains with high failure
rates have a low probability that a random test data would fall into them.
The model intuitively favors partition based testing if the weight associated
to a failure causing subdomain is high. Experiments are consistent with this
intuition but the effectiveness of random based testing is not dramatically af-
fected: in the worst case, random based testing is 0.77 as effective as partition
based testing. Some other experiments in which failure rates are controlled
were conducted. Some subdomains (hidden subdomains) have small proba-
bility of being used by random test data while other subdomains (exposed
subdomains) have a high probability of being used. Failure rates of subdo-
mains are then varied. When failure rates of hidden subdomains are higher
than the overall failure rate, partition based testing is favored. When failure
rates of hidden subdomains are lower than the overall failure rate, random
based testing is favored. The only result is that the advantage of partition
based testing arises from increased sampling in regions where failures occur.
Other experiments are performed to obtain information on the importance
of the impact of homogeneity on the effectiveness of partition based testing.
In these experiments failure rates of hidden subdomains are permitted to
vary uniformly from 1 to 0.2 (low homogeneity) and results are compared
to the case where they varied from 1 to 0.9 (high homogeneity). The largest
impact of low homogeneity is found to be only a 22 percent decrease in the
effectiveness of partition based testing. Most of the time experiments do not
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show that homogeneity is an important factor which impact partition based
testing effectiveness.

Besides conventional failure rate model used by Duran and Ntafos [DN84],
Hamlet and Taylor also investigate a comparison between partition based and
random based testing by the so-called Valiant’s Model [Val84]. The motivation
of this study is that faults are uniformly distributed over the state space of the
program code, not over its input space. Valid partitions are therefore those that
result from reflecting uniform coverage of program states into the input domain
where testing is done. Valiant’s Model does not allow to calculate such partition
but it allows to relate the number of test data to the probability of missing a
failure. Thus, for a given probability of missing a failure, it is possible to compare
the number of test test data for both random based and partition based testing.
Experimental results indicate that random based testing outperforms partition
based testing many times.

Experiments performed in the contribution of Hamlet and Taylor confirm
conclusion of Duran and Ntafos: partition based and random based testing are
of almost equal value with respect to their ability to detect faults. Hamlet and
Taylor explore the impact of homogeneity of subdomains on the ability to detect
faults of partition based testing. They are not able to show that homogeneity is
an important factor.

Ntafos [Nta98] presents further comparisons between random based and parti-
tion based testing. Additionally, the expected cost of failures is taken into ac-
count as a way to evaluate the effectiveness of testing strategies. A comparison
is made between random based testing and proportional partition based testing.
The latter is a partition based testing method where the number of allocated
test data for each subdomain depends on the probability that a chosen test data
falls into this subdomain. Shortly, the ratio between the number of selected test
data for two arbitrary subdomains is equal to the ratio between probabilities
that a test data falls into these subdomains.

First of all the power of proportional partition based testing is investigated. A
problem here is that occurrences of rare special conditions (subdomains with low
probability that randomly chosen test data fall into them) require a large number
of test data. Suppose that an input domain is divided into two subdomains and
one of them corresponds to a rare special condition which occurs once in a
million runs. Then proportional partition based testing would require a total of
1, 000, 001 test data to test a program that consist of a single IF statement. It is
also argued that if the number of required test data grows, proportional partition
based testing allocates test data which are the same as randomly selected test
data. Thus, even though some experiments show that proportional partition
based testing performs at least as well as random based testing, the difference
between the respective performances tends to zero while the number of test data
grows. Simulation experiments in which Pr and Pp are compared are presented.
The allocation of test data in each subdomain is parameterized by the probability
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that a randomly chosen test data fall into this subdomain. Different failure rates,
number of subdomains and test data are used. None of the experiments allows
to conclude that one method is better than the other.

Comparisons between proportional partition based, partition based, and ran-
dom based approaches with regard to the cost of missing a failure are also pro-
vided. The measure used is given by the expression Σci(1−θi)ni , where for each
subdomain Di ci is the cost of a failure for test data in Di , θi is the failure rate
for Di , and ni is the number of test data out of Di . For various values of k and n,
sample simulation results are given that compare proportional partition based,
partition based, and random based testing. Random probabilities are assigned
to each subdomain. The only interesting result is that uniform partition based
testing performs better than the other two strategies.

Fundamental Approaches

Gutjahr [Gut99] proposes a probabilistic approach: in contrast to the previously
introduced papers, the contribution is based on mathematical proofs. The math-
ematical framework is obtained by slightly modifying the one used by Duran and
Ntafos [DN84]. These modifications are motivated as follows: from a pragmatic
point of view, neither the domain of failure nor the failure rate are known. There-
fore the deterministic variables θ and θi are considered to be random variables
associated to the probability distributions. These probability distributions are
supposed to be deduced from knowledge of experts of the domain of interest.
This knowledge includes the type of program, its size, the programming language
used, etc. Thus θi and θ are replaced by θi = E (θi) and Θ = E (θ), where E
is the mathematical expectation for the distribution. In this context, the prob-
ability of selecting at least one test data which reveals a fault is expressed as
follows:

Pp = E (1−
∏k

i=1
(1− θi)) (for partition based testing), and

Pr = E (1− (1− θ)k ) (for random based testing).

The probabilities depend on a class of programs and models of a given domain
and no longer on the program itself. Different results led the authors to draw
the following conclusions:

• If no particularly error prone subdomain is identified before testing and if
finding out the failure rate of one subdomain does not change estimations
of failure rates in other subdomains, then partition based testing techniques
for such a partition have a higher probability to detect errors than random
based testing techniques. If the failure rate in each subdomain is close to the
overall failure rate, fault detection probabilities for both testing techniques
are nearly equivalent.
• Under the same assumptions than described above, if the input domain is

partitioned in k subdomains and the same number of test data is selected
out of each domain, then the fault detection probability of partition based
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testing can be up to k times higher than that of random based testing. This
is the case whenever:
(a) There are many small subdomains and only one (or a few) large sub-

domain(s).
(b) Homogeneous subdomains contain either mostly inputs that are cor-

rectly processed or essentially inputs that are failure causing.

All results presented in this paper are based on strong assumptions on fail-
ure rates and distribution of probabilities: One can not deduce a fundamental
superiority of partition based testing over random based testing. However, the
author claims that there are arguments for the conjecture that, in some practi-
cal applications, both conditions (a) and (b) are at least approximately satisfied.
The first argument is that most of structural partition based testing techniques
define partitions on the basis of predicates used in the program. These intro-
duce extremely unbalanced subdomain sizes. As a result, condition (a) is lucky
enough to be almost true. Concerning condition (b), it is argued that reasonable
subdivision techniques bundle up inputs to subdomains that are processed by
the program in a similar way. In such context, if one input of a subdomain is
recognized as failure causing, this increases the probability that the other inputs
are also failure causing. Conversely, this probability is decreased if an input is
recognized as correctly processed.

Notes All contributions show that we know very little about the comparison be-
tween random based and partition based testing with regard to their respective
ability to detect faults. Independently from the technical background (simula-
tion, theoretical approaches), the presented results and conclusion are based on
strong assumptions on failure rates. It is difficult to judge the relevance of these
assumptions with regard to real failure rates. Random based testing seems to
be the most valuable technique to test reliability of software. This is due to the
fact that random selection of test data makes no assumption on the inputs. In
contrast, partition based selection constrains relations between inputs. Thus, se-
lected test suites have great chances to be non-representatives for usual uses of
the software. If one wants to constrain test suites while addressing reliability, the
constraints should be based on operational profiles rather than on structure of
the model. This increases chances to run test data which are representatives of
real use cases. Nevertheless, partition based testing techniques have great value.
In particular, it is known that in practice they are the only ones that tackle
efficiently the problem of specific fault detection. For example logical faults or
boundary faults can be efficiently analyzed by these kinds of approaches. Unfor-
tunately, the failure rate model does not allow to capture the notion of specific
fault (common mistakes made by programmers). Thus, this model can not be
used to ground theoretically this fact. Contributions allowing to define mod-
els that could take into account this notion of specific faults would be of great
value. This would allow to compare partition based testing and random based
testing with regard to their abilities to detect these specific faults. Concern-
ing the nature of systems under test, all contributions presented here deal with
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non-reactive systems. Contributions allowing to relate partition based testing
and random based testing for reactive systems would be an interesting prospect.
However the failure rate model should be adapted to take into account infinite
runs.

11.4.2 Structural Criteria and Ability to Detect Faults

In this section, we compare the ability to detect faults for different testing meth-
ods involving structural coverage criteria to select test suites. We present a con-
tribution by Frankl and Weyuker [FW93]. They propose to define relations be-
tween criteria and to study, for each of these relations, what knowing that a
criterion C1 is in relation with a criterion C2 tells us about their respective abil-
ity to detect faults. One of the most well known way to compare two coverage
criteria is the subsume relation. A criterion C1 subsumes a criterion C2 if and
only if for any program and associated model, C1 is satisfied by a test suite T im-
plies C2 is satisfied by T . The subsume relation compares constraints imposed
by criteria to select test suites. In contrast, relations proposed by Frankl and
Weyuker only compares partition induced by criteria. This allows to compare
fault detection abilities of criteria by different assumptions on the test data se-
lection process. These assumptions are made explicit in the way fault detection
ability is measured. Frankl and Weyuker propose three different measures. We
note SDC (P ,M ) = {D1,D2, . . . ,Dk} the partition induced by a given criterion
C for a given program P and associated model M . For i ∈ {1, . . . , k}, we de-
note di =| Di | and mi the number of failure causing inputs in Di . The measures
proposed by Frankl and Weyuker are:

• M1(C ,P ,M ) = max
1≤i≤k

(mi

di
) measures to what extent failure causing inputs

are concentrated at subdomains. The only assumption made on the test data
selection process is that at least one test data is selected in each subdomain.
With this assumption, M 1(C ,P ,M ) is a lower bound of the probability that
a test suite will expose at least one fault.

• M2(C ,P ,M ) = 1 −
∏k

i=1
(1 − mi

di
) measures the exact probability that an

adequate test suite exposes at least one fault, assuming that the test data
selection process requires exactly one selection per subdomain.

• M3(C ,P ,M ,n) = 1−
∏k

i=1
(1 − mi

di
)n measures the exact probability that an

adequate test suite exposes at least one fault, provided that the test data
selection process requires n selections per subdomain.

For each relation R defined between criteria, for every program P and every
model M , the authors investigate the following questions:

(A) Does R(C1,C2) imply M1(C1,P ,M ) ≥ M1(C2,P ,M )?
(B) Does R(C1,C2) imply M2(C1,P ,M ) ≥ M2(C2,P ,M )?
(C) Does R(C1,C2) imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where n =

|SDC1 (P ,M )|
|SDC2 (P ,M )|?
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Let us comment the last question. One problem with using M2 as a measure
is that one criterion C1 may divide the domain into k1 subdomains while another
criterion C2 divides the domain into k2 subdomains where k1 > k2. Then, M2

gives C1 an unfair advantage since C1 will require k1 test data while C2 will
only require k2 test data. M3 allows to overcome this problem by comparing
M3(C1,P ,M , 1) and M3(C2,P ,M , k1

k2
).

We now introduce five relations defined by Frankl and Weyuker.

The Narrows Relation (1)

C1 narrows C2 for (P ,M ) if for every subdomain D ∈ SDC2(P ,M ) there
is a subdomain D ′ ∈ SDC1(P ,S ) such that D ′ ⊆ D . If for every (P ,S ) C1

narrows C2, one says that C1 universally narrows C2.

Example: We consider a program P whose input domain is the set of integers
between −N and +N , with N > 1. C1 is a criterion that requires the selection of
at least one test data that is 0 and at least one test data that is different of 0. C2

is a criterion that requires the selection of at least one test data that is greater
than or equal to 0 and at least one test data that is less or equal to 0. Therefore
C1 uses two subdomains: D1 = {0} and D2 = {x | −N ≤ x ≤ N ∧ x �= 0}. C2

uses two subdomains: D3 = {x | 0 ≤ x ≤ N } and D4 = {x | −N ≤ x ≤ 0}. Since
D3 and D4 both contain D1, C1 narrows C2.

Relation to the subsume relation: Consider that for any (P ,M ), C1 and C2 give
rise to the same set of subdomains, but C2 requires selection of two test data
out of each subdomain whereas C1 only requires selection of one test data out
of each subdomain. Trivially, C1 universally narrows C2. However, C1 does not
subsume C2, since a test suite consisting of one element out of each subdomain
is C1-adequate but not C2-adequate. However, we have the following theorem:

Theorem 11.1. Let C1 and C2 be two criteria which explicitly require the se-
lection of at least one test data out of each subdomain, then C1 subsumes C2 if
and only if C1 universally narrows C2.

Proof. Assume C1 universally narrows C2. Let T be a test suite that is C1-
adequate for some program P and model M . T requires the selection of at least
one test data out of each subdomain of SDC1(P ,M ). Thus, since each subdomain
in SDC2(P ,M ) is a superset of some subdomains belonging to SDC1(P ,M ), T
is a test suite which requires the selection of at least one test data out of each
subdomain of SDC2(P ,M ). We conclude that C1 subsumes C2.

Conversely, assume C1 does not universally narrow C2. There exists a pro-
gram P and a model M such that some subdomain D ∈ SDC2(P ,M ) is not a
superset of any subdomain of SDC1(P ,M ). Thus for each D ′ ∈ SDC1(P ,M ),
D ′ − D �= ∅. Let T be a test suite which requires the selection of exactly one
test data out of D ′ − D for each D ′ ∈ SDC1(P ,M ). T is C1-adequate but not
C2-adequate. So C1 does not subsume C2.
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Relation to the three measures: We consider questions (A), (B) and (C) intro-
duced in the introduction of this section. In order to answer these questions we
consider the following example. Domain D of a program P is {0, 1, 2}. M is
the model associated to P . We suppose that SDC1(P ,M ) = {{0, 1}, {0, 2}} and
SDC2(P ,M ) = {{0, 1}, {0, 1, 2}}. Since {0, 1} ⊆ {0, 1} and {0, 2} ⊆ {0, 1, 2}, C1

narrows C2.

(A)Does C1 narrow C2 imply M1(C1,P ,M ) ≥ M1(C2,P ,M )?

We answer in the negative. Suppose that only 1 and 2 are failure causing:
M1(C1,P ,M ) = 1

2 while M1(C2,P ,M ) = 2
3 and thus M1(C1,P ,M ) <

M1(C2,P ,M ).

(B) Does C1 narrow C2 imply M2(C1,P ,M ) ≥ M2(C2,P ,M )?

We answer in the negative. Suppose that only 1 and 2 are failure causing:
M2(C1,P ,M ) = 1−(1− 1

2 )(1− 1
2 ) = 3

4 , M2(C2,P ,M ) = 1−(1− 1
2 )(1− 2

3 ) = 5
6

and thus M2(C1,P ,M ) < M2(C2,P ,M ).

(C) Does C1 narrow C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where

n = |SDC1 (P ,M )|
|SDC2 (P ,M )|?

We answer in the negative. Since in our example n = 1, question (C) is
equivalent to Question (B).

As stated above, the narrows relation does not necessarily induce a better
fault detection ability for each of the three measures considered. Thus from The-
orem 11.1, it is naturally deduced that the subsume relation does not necessarily
induce a better fault detection ability for each of the three measures considered.

The Covers Relation (2) The narrows relation can be strengthened to impose
that each subdomain of the partition induced by C2 can be expressed as a union
of some subdomains of the partition induced by C1. This gives rises to the
following definition:

C1 covers C2 for (P ,M ) if for every subdomain D ∈ SDC2(P ,M ) if there is a
non-empty collection of subdomains {D1, . . . ,Dn} belonging to SDC1(P ,M )
such that D1∪· · · ∪Dn = D . If for every (P ,M ) C1 covers C2, one says that
C1 universally covers C2.

Example: We consider criteria C1 and C2 and Program P used to illustrate the
narrow relation. Since D3 and D4 both contain D1, C1 narrows C2. However,
since D3 �= D1, D3 �= D2 and D3 �= D1 ∪D2, C1 does not cover C2.

In contrast, we consider a program P ′ whose input domain are the integers
between −N and N (N > 0). Suppose that criterion C ′

1 induces a partition into
two subdomains: D ′

1 = {x | −N + 1 ≤ x ≤ N } and D ′
2 = {x | −N ≤ x ≤ N − 1}

and that criterion C ′
2 induces a partition into one subdomain: D ′

3 = {x | −N ≤
x ≤ N }. Since D ′

3 = D ′
1 ∪D ′

2, C ′
1 covers C ′

2.
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Relation to the subsume relation: The following theorem is obvious:

Theorem 11.2. Let C1 and C2 be two criteria. C1 universally covers C2 implies
C1 universally narrows C2.

From Theorem 11.1, we immediately have the following theorem:

Theorem 11.3. Let C1 and C2 be two criteria which explicitly require the selec-
tion of at least one test data out of each subdomain, then C1 universally covers
C2 implies C1 subsumes C2.

Relation to the three measures: In order to answer questions (A), (B) and (C),
we consider the following example. Domain D of a program P is {0, 1, 2, 3}. M is
the model associated to P . We suppose that SDC1(P ,M ) = {{0, 1}, {1, 2}, {3}}
and SDC2(P ,M ) = {{0, 1, 2}, {1, 2, 3}}. Since {0, 1, 2} = {0, 1} ∪ {1, 2} and
{1, 2, 3} = {1, 2} ∪ {3}, C1 covers C2.

(A) Does C1 cover C2 imply M1(C1,P ,M ) ≥ M1(C2,P ,M )?

We answer in the negative. Suppose that only 0 and 2 are failure causing:
M1(C1,P ,M ) = 1

2 while M1(C2,P ,M ) = 2
3 and thus M1(C1,P ,M ) <

M1(C2,P ,M ).

(B) Does C1 cover C2 imply M2(C1,P ,M ) ≥ M2(C2,P ,M )?

We answer in the negative. Suppose that only 2 is failure causing. M2(C1,P ,
M ) = 1 − (1 − 1

2 ) = 1
2 while M2(C2,P ,M ) = 1 − (1 − 1

3 )(1 − 1
3 ) = 5

9 and
thus M2(C1,P ,M ) < M2(C2,P ,M ).

(C) Does C1 cover C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where n =
|SDC1 (P ,M )|
|SDC2 (P ,M )|?

We answer in the negative. It is obvious that for n ≥ 1, M3(C2,P ,M ,n) ≥
M2(C2,P ,M ). Now M3(C1,P ,M , 1) = M2(C1,P ,M ). Since we have proven
that there exists P and M such that M2(C1,P ,M ) < M2(C2,P ,M ), we de-
duce that there exists P and M such that M3(C1,P ,M , 1) <M3(C2,P ,M ,n).

As for the narrows relation, the covers relation does not necessarily induce
a better fault detection ability for each of the three measures considered. Thus,
ensuring that each subdomain of the partition induced by C2 can be expressed
as a union of some subdomains of the partition induced by C1 is not sufficient
to gain a superiority of C1 over C2 (at least with respect to the three measures
considered).

The Partitions Relation (3) The cover relation is then strengthened to ensure
that for each subdomain of the partition induced by C2, a partition consisting
of pairwise disjoint subdomains induced by C1 may be defined.
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C1 partitions C2 for (P ,M ) if for every subdomain D ∈ SDC2(P ,M ) there
is a non-empty collection of pairwise disjoint subdomains {D1, . . . ,Dn} be-
longing to SDC1(P ,M ) such that D1 ∪ · · · ∪Dn = D . If for every (P ,M ) C1

partitions C2, one says that C1 universally partitions C2.

Example: Let us consider criteria C ′
1 and C ′

2 and the program P ′ used to illus-
trate the covers relation. Since D ′

3 = D ′
1∪D ′

2 C ′
1 covers C ′

2 and, since D ′
1∩D ′

2 �= ∅,
C ′

1 does not partition C ′
2.

In contrast we consider a program P ′′ whose input domain are the integers
between−N and N (N > 0). Suppose that a criterion C ′′

1 induces a partition into
two subdomains: D ′′

1 = {x | 0 ≤ x ≤ N } and D ′′
2 = {x | −N ≤ x < 0} and that

criterion C ′′
2 induces a partition into one subdomain: D ′′

3 = {x | −N ≤ x ≤ N }.
Since D ′′

3 = D ′′
1 ∪D ′′

2 and D ′′
1 ∩D ′′

2 = ∅, C ′′
1 partitions C ′′

2 .

Relation to the subsume relation: The following theorem is obvious:

Theorem 11.4. Let C1 and C2 be two criteria. C1 universally partitions C2

implies C1 universally covers C2.

From Theorem 11.2, we have the following theorem:

Theorem 11.5. Let C1 and C2 be two criteria. C1 universally partitions C2

implies C1 universally narrows C2.

From Theorem 11.1 we have the following theorem:

Theorem 11.6. Let C1 and C2 be two criteria which explicitly require the selec-
tion of at least one test data out of each subdomain, then C1 universally partitions
C2 implies C1 subsumes C2.

Relation to the three measures:

(A) Does C1 partition C2 imply M1(C1,P ,M ) ≥ M1(C2,P ,M )?

The answer is positive, as stated in the following theorem:

Theorem 11.7. If C1 partitions C2 for a program P and a model M then
M1(C1,P ,M ) ≥ M1(C2,P ,M ).

Proof. Let D0 ∈ SDC2(P ,M ). Let D1, . . . ,Dn be disjoint subdomains belonging
to SDC1(P ,M ) such that D0 = D1 ∪ · · · ∪ Dn . Then m0 = m1 + · · · + mn and
d0 = d1 + · · · + dn . Thus maxn

i=1(
mi

di
) is minimized when each mi

di
= m0

d0
. So

maxn
i=1(

mi

di
) ≥ m0

d0
and therefore M1(C1,P ,M ) ≥ M1(C2,P ,M ).

(B) Does C1 partitions C2 imply M2(C1,P ,M ) ≥ M2(C2,P ,M )?

We answer in the negative. Domain D of a program P is {0, 1, 2, 3}. M is the
model associated to P . We suppose that SDC1(P ,M ) = {{0}, {1, 2}, {3}}
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and SDC2(P ,M ) = {{0, 1, 2}, {1, 2, 3}}. Since {0, 1, 2} = {0} ∪ {1, 2}, {0} ∩
{1, 2} = ∅, {1, 2, 3} = {1, 2} ∪ {3}, and {1, 2} ∩ {3} = ∅, C1 partitions C2.
Suppose that only 2 is failure causing. M2(C1,P ,M ) = 1 − (1 − 1

2 ) = 1
2

while M2(C2,P ,M ) = 1 − (1 − 1
3 )(1 − 1

3 ) = 5
9 and thus M2(C1,P ,M ) <

M2(C2,P ,M ).

(C) Does C1 partitions C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where
n = |SDC1(P ,M )|

|SDC2(P ,M )|?

We answer in the negative. For n ≥ 1, M3(C2,P ,M ,n) ≥ M2(C2,P ,M ).
Now M3(C1,P ,M , 1) = M2(C1,P ,M ). Since we have proven that there ex-
ists P and M such that M2(C1,P ,M ) < M2(C2,P ,M ), we deduce that there
exists P and M such that M3(C1,P ,M , 1) < M3(C2,P ,M ,n).

The partitions relation ensures a better fault detection ability for measure
M1 (if C1 partitions C2 then C1 is better at detecting faults than C2 with regard
to M1) but not necessarily for the two others. Recall that measure M1 is a lower
bound of the probability that a test suite will expose at least one fault. Thus
Theorem 11.7 only ensures that if C1 partitions C2, this lower bound of the
probability that a test suite will expose at least one fault is greater for C1 than
for C2. Another intuitive way to understand this result is that a partition induced
by C1 concentrates more failure causing inputs in one specific subdomain than
a partition induced by C2 does.

The Properly Covers Relation (4) In order to obtain a better fault detec-
tion ability regarding measure M2, the cover relation is specialized so that each
subdomain D of the partition SDC1(P ,S ) is used only once to define a partition
of a subdomain of SDC2(P ,S ).

Let us note SDC1(P ,S ) = {D1
1 , . . . ,D

1
m} and SDC2(P ,S ) = {D2

1 , . . . ,D
2
n}.

C1 properly covers C2 for (P ,M ) if there is a multi-set

M = {D1
1,1, . . .D

1
1,k1

, . . . ,D1
n,1, . . .D

1
n,kn
}

such that M ⊆ SDC1(P ,M ) and D2
i = D1

i,1 ∪ · · · ∪D1
i,ki

for i ∈ {1, . . . ,n}.
If for every (P ,M ) C1 properly covers C2, one says that C1 universally
properly covers C2.

Example: Consider a program P with integer input domain {x | 0 ≤ x ≤ 3},
and criteria C1 and C2 such that SDC1 = {Da ,Db ,Dc} and SDC2 = {Dd ,De},
where Da = {0}, Db = {1, 2}, Dc = {3}, Dd = {0, 1, 2}, and De = {1, 2, 3}.
Then Dd = Da ∪Db and De = Dc ∪ Db , so C1 covers (and also partitions) C2.
However, C1 does not properly cover C2 because subdomain Db is needed in to
cover both Dd and De , but only occurs once in the multi-set SDC1 .

On the other hand consider criterion C3 where SDC3 = {Da ,Db ,Db,Dc}. C3

does properly cover C2. It is legitimate to use Db twice to cover both Dd and
De , since it occurs twice in SDC3 .
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Relation to the subsume relation: The following theorem is obvious:

Theorem 11.8. Let C1 and C2 be two criteria. C1 universally properly covers
C2 implies C1 universally covers C2.

From Theorem 11.2 we have the following theorem:

Theorem 11.9. Let C1 and C2 be two criteria. C1 universally properly covers
C2 implies C1 universally narrows C2.

From Theorem 11.1 we have the following theorem:

Theorem 11.10. Let C1 and C2 be two criteria which explicitly require the
selection of at least one test data out of each subdomain, then C1 universally
properly covers C2 implies C1 subsumes C2.

Relation to the three measures:

(A) Does C1 properly cover C2 imply M1(C1,P ,M ) ≥ M1(C2,P ,M )?

We answer in the negative. Domain D of a program P is {0, 1, 2, 3}. M is
the model associated to P . We suppose that SDC1(P ,M ) = {{0, 1}, {1, 2}, {3}}
and SDC2(P ,M ) = {{0, 1, 2}, {3}}. Since {0, 1, 2} = {0, 1} ∪ {1, 2} and {3} is
an element of SDC1(P ,M ), C1 properly covers C2. We suppose that only 0 and
2 are failure causing. Therefore, M1(C1,P ,M ) = 1

2 and M1(C2,P ,M ) = 2
3 . We

conclude M1(C1,P ,M ) < M1(C2,P ,M ).

(B) Does C1 properly cover C2 imply M2(C1,P ,M ) ≥ M2(C2,P ,M )?

The answer is positive as stated in the following theorem:

Theorem 11.11. If C1 properly covers C2 for program P and model M , then
M2(C1,P ,M ) ≥ M2(C2,P ,M ).

Proof. The proof requires some intermediate lemma.

Lemma 11.12. Assume d1, d2 > 0, 0 ≤ x ≤ d1, 0 ≤ x ≤ d2, 0 ≤ m1 ≤ d1 − x
and 0 ≤ m2 ≤ d2 − x . Then we have:

m1+m2
d1+d2−x ≤ (1− (1− m1

d1
)(1 − m2

d2
)).

Proof. Since

(1− (1− m1
d1

)(1 − m2
d2

)) = m1d2+m2d1−m1m2
d1d2

it suffices to show that

0 ≤ (m1d2 + m2d1 −m1m2)(d1 + d2 − x )− (m1 + m2)(d1d2)
= m2d1(d1 −m1 − x ) + m1d2(d2 −m2 − x ) + m1m2x
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This follows immediately from the assumption that (d1−m1−x ), (d2−m2−x ),
di , mi , and x are all non negative.

Lemma 11.13. Let D3 = D1 ∪D2. Then m3
d3

< (1− (1− m1
d1

)(1− m2
d2

)).

Proof. For any set {D1, . . . ,Dn} of subdomains, let us note f (D1, . . . ,Dn) =
∏k

i=1
(1− mi

di
).

We want to show that: 1− f (D3) < 1− f (D1,D2) or that f (D3) > f (D1,D2).
We start by showing that for given values d3 and m3, the value of f (D1,D2)

is maximized when D1 ∩ D2 contains as few failure causing inputs as possible.
This is clear intuitively, since points in the intersection are more likely to be
selected. Thus when as many of them as possible are not failure causing, the
probability to select an input which does not cause a fault is maximal (that is if
f (D1,D2) is maximal).

Formally, let Da = D3 − D2, Db = D3 − D1 and Dc = D1 ∩ D2. Let da , db ,
dc and xa , xb , xc be the size and the number of inputs which does not cause a
fault of Da , Db and Dc respectively. The following equation holds:

f (D1,D2) = ( xa+xc

da+dc
)( xb+xc

db+dc
)

Suppose it is possible to swap one non failure causing input out of Da with
one failure causing input of Dc. Let us call D ′

1 and D ′
2 the subdomains obtained

from D1 and D2 by applying this operation. Doing so leaves the values da , db ,
dc , and xb unchanged but decrements xa and increments xc, yielding

f (D ′
1,D

′
2) = ( xa−1+xc+1

da+dc
)( xb+xc+1

db+dc
) > f (D1,D2).

Similarly, swapping a non failure causing input of Db with a failure causing in-
put of Dc leads to two subdomains D ′′

1 and D ′′
2 such that f (D ′′

1 ,D
′′
2 ) > f (D1,D2).

Thus, to prove the lemma, it suffices to consider the following two cases.

Case 1: Dc consists entirely of non failure causing inputs. In this case, letting
x = dc =| D1 ∩D2 |, the hypotheses of Lemma 11.12 are satisfied, so:

m1+m2
d1+d2−dc

≤ (1− (1− m1
d1

)(1 − m2
d2

)) holds.

Since m3 = m1 + m2 and d3 = d1 + d2 − dc , it gives the desired result.

Case 2: Da and Db consist entirely of failure causing inputs. We want to
show that f (D3)− f (D1,D2) ≥ 0, where

f (D3) = xc

da+db+dc
and f (D1,D2) = ( xc

da+dc
)( xc

db+dc
).

It suffices to show

0 ≤ xc((da + dc)(db + dc)− xc(da + db + dc))
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that is

0 ≤ xc(da (db + dc − xc) + db(dc − xc) + dc(dc − xc))

But this follows immediately from the fact that 0 ≤ xc ≤ dc .

Lemma 11.14. Let D = D1 ∪ · · · ∪Dn . Then f (D) ≥ f (D1, . . . ,Dn).

Proof. Proof by induction on n. The base case, n = 1 is trivial. Now assuming
that

D = D1 ∪ · · · ∪Dk ⇒ f (D) ≥ f (D1, . . . ,Dk ),

we want to show that

D ′ = D1 ∪ · · · ∪Dk+1 ⇒ f (D) ≥ f (D1, . . . ,Dk+1).

Since D ′ = D ∪ Dk+1, from Lemma 11.13 we deduce f (D ′) ≥ f (D ,Dk+1).
Now from the definition of f , f (D ,Dk+1) = f (D)f (Dk+1). We deduce f (D ′) ≥
f (D)f (Dk+1). From the inductive hypothesis, we can write f (D) ≥ f (D1, . . . ,Dk ).

Thus we deduce f (D ′) ≥ f (D1, . . . ,Dk )f (Dk+1). From the definition of f we
conclude f (D ′) ≥ f (D1, . . . ,Dk+1).

We now prove Theorem 11.11. Assume C1 properly covers C2 for a program P
and model M . Let us denote SDC1(P ,M ) = {D1

1 , . . . ,D1
m} and SDC2(P ,M ) =

{D2
1 , . . . ,D

2
n}. Let M = {D1

1,1, . . .D
1
1,k1

, . . . ,D1
n,1, . . .D

1
n,kn
} be a set such that

such thatM⊆ SDC1(P ,M ) and D2
i = D1

i,1 ∪ · · · ∪D1
i,ki

for i ∈ {1, . . . ,n}.
From the definition of f we can write

f (D2
1 , . . . ,D

2
n) =

∏

i≤n

f (D2
i ).

From Lemma 11.14, we have
∏

i≤n

f (D2
i ) ≥

∏

i≤n,

∏

j≤ki ,

f (D1
i,j ).

Since for all i ≤ m we have f (D1
i ) ≤ 1, we deduce:

∏

j≤ki ,

f (D1
i,j ) ≥ f (D1

1 , . . . ,D
1
m).

Thus we deduce:

f (D2
1 , . . . ,D

2
n) ≥ f (D1

1 , . . . ,D
1
m).

We conclude the proof:
M2(C1,P ,M ) ≥ M2(C2,P ,M ).

(C) Does C1 properly cover C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where
n = |SDC1(P ,M )|

|SDC2(P ,M )|?
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We answer in the negative. Assume that the domain of a program P is
{0, 1, 2}. Let us note M the model associated to P . We suppose that
SDC1(P ,M ) = {{0, 1}, {0, 2}} and SDC2(P ,M ) = {0, 1, 2}. Since {0, 1, 2} =
{0, 1}∪{0, 2}, C1 properly covers C2. Suppose that only 1 is failure causing then
M3(C1,P ,M , 1) = 1 − (1 − 1

2 ) = 1
2 . Now, M3(C2,P ,M , 2) = 1 − (1 − 1

3 )2 =
1− (2

3 )2 = 5
9 > M3(C1,P ,M , 1).

The properly covers relation ensures a better fault detection ability for mea-
sure M2 (if C1 properly covers C2 then C1 is better at detecting faults than C2

with regard to M2) but not necessarily for the two others. Recall that measure
M2 measures the exact probability that an adequate test suite exposes at least
one fault, assuming that the test data selection process requires exactly one se-
lection per subdomain. However we answered to question (C) in the negative.
This means that if the same number of test data is used for C1 and for C2, then
nothing ensures that C1 will be better at detecting faults than C2 (for mea-
sure M3). Note also that if C1 properly covers C2, then nothing ensures that a
partition induced by C1 concentrates more failure causing inputs in one specific
subdomain than a partition induced by C2 does. This is due to the fact that we
answered in the negative to question (A).

The Properly Partitions Relation (5) The properly partitions relation con-
strains the partitions relation exactly as the properly covers relation constrains
the covers relation. Let us note SDC1(P ,S ) = {D1

1 , . . . ,D
1
m} and SDC2(P ,S ) =

{D2
1 , . . . ,D2

n}.

C1 properly partitions C2 for (P ,S ) if there is a multi-set

M = {D1
1,1, . . .D1

1,k1
, . . . ,D1

n,1, . . .D1
n,kn
}

such that M ⊆ SDC1(P ,S ) and D2
i = D1

i,1 ∪ · · · ∪ D1
i,ki

for i ∈ {1, . . . ,n}.
Moreover, it is required that for each i , collection {D1

i,1, . . . ,D
1
i,ki
} is pairwise

disjoint. If for every (P ,S ) C1 properly covers C2 for (P ,S ), one says that
C1 universally properly partitions C2.

Example: Again, consider criteria C2 and C3 used to illustrate the properly cover
relation. C3 also properly partitions C2 since Dd = Da ∪ Db , De = Dc ∪ Db ,
Da ∩Db = ∅, Dc ∪Db = ∅

Relation to the subsume relation: The two following theorems are obvious:

Theorem 11.15. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally properly covers C2.

Theorem 11.16. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally partitions C2.
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Either from Theorem 11.8 or from Theorem 11.4, we have the following The-
orem:

Theorem 11.17. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally covers C2.

From Theorem 11.2 we have the following theorem:

Theorem 11.18. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally narrows C2.

From Theorem 11.1 we have the following theorem:

Theorem 11.19. Let C1 and C2 be two criteria which explicitly require the
selection of at least one test data out of each subdomain, then C1 universally
properly partitions C2 implies C1 subsumes C2.

Relation to the three measures:

(A) Does C1 properly partition C2 imply M1(C1,P ,M ) ≥ M1(C2,P ,M )?

The answer is positive, as stated in the following theorem:

Theorem 11.20. If C1 properly partitions C2 for a program P and a model M
then M1(C1,P ,M ) ≥ M1(C2,P ,M ).

Proof. From Theorem 11.16 C1 partitions C2. Theorem 11.7 allows us to con-
clude that M1(C1,P ,M ) ≥ M1(C2,P ,M ).

(B) Does C1 properly partitions C2 imply M2(C1,P ,M ) ≥ M2(C2,P ,M )?

The answer is positive, as stated in the following theorem:

Theorem 11.21. If C1 properly partitions C2 for a program P and a model M
then M2(C1,P ,M ) ≥ M2(C2,P ,M ).

Proof. From Theorem 11.15 C1 properly covers C2. Theorem 11.11 allows us to
conclude that M2(C1,P ,M ) ≥ M2(C2,P ,M ).

(C) Does C1 properly partition C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n)
where n = |SDC1(P ,M )|

|SDC2(P ,M )|?

We answer in the negative. Domain D of a program P is {0, 1, 2, 3}. M is the
model associated to P . We suppose that SDC1(P ,M ) = {{0}, {1}, {2, 3}}
and SDC2(P ,M ) = {0, 1, 2, 3}. Since {0, 1, 2, 3} = {0} ∪ {1} ∪ {2, 3} and
{0} ∩ {1} = {0} ∩ {2, 3} = {1} ∩ {2, 3} = ∅, C1 properly partition C2.
Suppose that only 2 is failure causing. M3(C1,P ,M , 1) = 1 − (1 − 1

2 ) = 1
2

while M3(C2,P ,M ,n) = 1 − (1 − 1
4 )3 = 1 − (3

4 )3 = 1 − 27
64 = 37

64 . Thus
M3(C2,P ,M , 3) > M3(C1,P ,M , 1)
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The properly partitions relation ensures a better fault detection ability for
measure M1 and M2 (if C1 properly partitions C2 then C1 is better at detecting
faults than C2 with regard to M1 and M2) but not necessarily for M3.

Notes Since for most criteria of interest, the universally narrows relation is
equivalent to the subsumes relation, one can interpret the presented results by
concluding that the subsume relation is a poor basis for comparing criteria.
However, it is important to note that the results here are worst case results in
the sense that it is only considered whether or not the fact that one criterion
subsumes another guarantees improved fault-detecting ability. The question of
what C1 subsuming, or narrowing, or covering, or partitioning C2 tells us about
their relative ability to detect faults in ”typical” programs remains open. More-
over, note that the most convincing measure studied is measure M3, since this
measure takes into account the number of test data used. Thus it is possible
to compare two criteria for the same number of test data. However none of the
relations presented here induces a better fault detection ability for measure M3.

11.4.3 Remarks

Questions addressed in Section 11.4.1 and Section 11.4.2 can be compared. The
way random based testing is modeled in the contributions presented in Section
11.4.1 results in a “partition oriented” view of random based testing. Indeed ran-
dom based testing can be seen as a partition based technique which partitions
the input domain in a single subdomain (the input domain itself). Even-more,
random based testing can be seen as a coverage criterion which divides the in-
put domain of a program in one subdomain: the input domain itself. Let us
call random criterion this criterion. Consider now any structural criterion. It is
easy to see that such a criterion either properly partitions or properly covers
the random criterion (depending on the fact that the criterion of interest in-
duces overlapping or non overlapping subdomains). Contributions presented in
Section 11.4.1 essentially make the assumption that the same number of test
data is used both for random based an partition based testing. Thus comparing
random based testing and partition based testing with regard to their ability to
detect faults (as expressed in Section presented in Section 11.4.1) is equivalent
to associate a criterion C to the partition based testing technique considered,
and to compare C with the random criterion with regard to Measure M3 (as
defined in Section 11.4.2). Results introduced in Section 11.4.1 indicates that
partition based testing is not better at detecting faults than random based test-
ing. This result is thus totally consistent with the fact that both properly covers
and properly partitions relations do not induce a better fault detection ability,
with regard to measure M3.

11.5 Summary

The application of coverage techniques at the model level seems a promising ap-
proach. These techniques allow rather easy test selection from executable models,
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while ensuring (at a certain degree) the coverage of targeted behaviors of the
model (e.g. a set of test cases for which all variable definitions of the model are
stimulated). Of course, criteria have to be adapted to specification formalisms:
for example it makes no sense to talk about data flow criteria for models de-
scribed in a specification formalism which does not handle variables. However
most of the usual criteria can be easily adapted to models, since models’ exe-
cutable aspect makes them “look like programs”. Moreover, approaches based on
model coverage may be adapted to perform functional testing. This can be done
through property coverage by model checking approaches or user profile usages
for example. The main point is that this kind of functional testing is still based
on coverage considerations, which is very valuable since generated test suites are
supposed to cover in a measurable manner behaviors of the model which reflect
an abstract scenario (or property).

All these properties make model-coverage-based-testing methods good can-
didates to detect specific faults at the earliest design level. The strength of cov-
erage approaches relies mainly on their ability to explore in a systematic manner
“missing logic” faults: bad treatment of bounds for example. These approaches
are the only one to tackle the problem of detecting catastrophic failure causing
inputs. However, one must keep in mind that these properties are not sufficient
to ensure reliability. In particular, there is no scientific evidence that coverage
based testing is better than random testing to reach this purpose. To gain more
insight, a further analysis of what is a “typical program under test” is needed,
since the usual failure rate model seems unsuitable to provide such evidence.
The same problem occurs when one tries to classify criteria with respect to their
respective ability to detect faults.

Common belief however seems to be that random testing should systemati-
cally complement coverage based approaches. Coverage based approaches should
be used to detect specific faults while random approaches aim at providing con-
fidence about programs reliability.
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