

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 517 – 529, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agile Hour: Teaching XP Skills to Students
and IT Professionals

Daniel Lübke and Kurt Schneider

University Hannover
{daniel.luebke, kurt.schneider}@inf.uni-hannover.de

Abstract. Agile Methods, like Extreme Programming, have increasingly
become a viable alternative for conducting software projects, especially for
projects with a very short time-to-market or uncertain customer-requirements.
Using a technique called Agile Hours it is possible to convey many feelings
associated with an Extreme Programming project. Within 70 minutes, a project
is performed in which a product is built with Lego bricks. We applied this
approach to (1) students and (2) IT professionals. By comparing the two groups,
we found that both behaved comparable: we observed a number of interesting
differences, although of minor importance. Both groups seemed to benefit from
the Agile (Lego) Hours.

1 Introduction

In opposition to the established process-oriented software-methodologies, agile
methods have increasingly become common for conducting software projects during
the last years. These methods are built around very light-weight techniques [1] aimed
at producing high-quality software in projects with very short time-to-market, with
uncertain or even unknown customer requirements [2].

All agile methods share common values which are described in the Agile
Manifesto [3]. The Agile Manifesto’s authors “have come to value…

• …Individuals and interactions over processes and tools,
• …Working software over comprehensive documentation,
• …Customer collaboration over contract negotiation,
• …Responding to change over following a plan.”

These values have proven to be useful in scenarios where requirements are rapidly
changing and huge efforts to plan upfront waste resources [4-7].

The best-known agile method is Extreme Programming (XP) [1, 8] originally
introduced by Kent Beck. XP consists of 12 practices, which support each other.
These practices are project guidelines prescribing how to deal with requirements, how
to manage code etc.

We started using the Extreme Hour when we were teaching agile methods in a
software engineering lecture. The Extreme Hour was originally developed by Merel
[9]. It is a very short simulation of an XP project. In this simulation, no software is

518 D. Lübke and K. Schneider

being developed but instead products are constructed by being drawn on paper. Later
on, we modified the Extreme Hour and called the generalization “Agile Hours”. For
example, we developed it further by using Lego bricks instead of drawing. We called
this particular variant the “Agile Lego Hour”. In our terminology, Agile Hour is a
more general term than Extreme Hour (drawing) and Agile Lego Hour (building).

We not only used the Agile Hours to introduce XP to (1) computer science students
but had also the opportunity to teach XP to (2) IT professionals in an industrial Java
User Group. In this paper we compare the behaviour of the two groups during the
Agile Hours. On this empirical basis, we infer a number of lessons learned about the
Agile Hour, and Agile Lego Hours in particular. We explored the options and
potentials of Agile Hour variants. We present our observations from this exploration.
Obviously, those observations need further confirmation through (controlled)
experiments; we hope our findings will help to guide this continuing empirical work.

In the next section of this paper, typical problems of teaching XP in general are
discussed. Afterwards, the Agile Hour is presented as our approach to deal with those
problems. In the forth section, we discuss the differences between the Agile Hour and
actual XP projects. Afterwards, we share common experiences of six Agile Hours we
conducted. In the last two sections the differences between the students’ and IT
professionals’ reaction to the Agile Hour and XP are analyzed.

2 Problem of Conveyance

2.1 Conveying XP Experience

XP favours and utilizes many social capabilities of the project’s participants.
Therefore, it is difficult to teach XP without practicing it. Because many things need
to be experienced in order to fully understand them and realize their consequences, it
simply is not sufficient to know what practices XP comprises, what they are called
and what to do. XP, like other agile methods, needs to be experienced! In this case,
we mean by experience (1) an observation combined with (2) associated feelings and
(3) derived reasoning and conclusions. Experiences are stronger than (theoretical)
knowledge, as they are more memorable and the reasoning can be used in future
situations. Agile methods (like XP) evolved from programmers’ experiences in the
first place and can only be fully understood when combined with own experiences
concerning their practices. Furthermore, many of the practices’ dependencies can
hardly be inferred in theory. However, they become obvious when the method is
applied to a problem.

Moreover, XP practices are completely different from other established process
models, like the waterfall-model [10] or the V-model used by the German government
[11, 12]. Therefore, it is even more challenging to introduce XP to IT professionals
who have used and got used to the above-mentioned traditional processes and their
underlying assumptions. They often do not believe that some software projects could
be run this way. Some have even learned to resent this option.

Besides the “softness” of this topic, time-constraints are further complicating the
teaching of agile methods. In university, a lecturer often faces about 100 students in a
software engineering lecture, all of whom are supposed to understand agile methods

 Agile Hour: Teaching XP Skills to Students and IT Professionals 519

within two or three weeks. In the best case, this requires an opportunity for about 100
students to somehow gain the necessary experience. In industry agile method courses,
one does not have such a high number of participants, but their time is more
expensive and, thus, even more limited. Employees are rarely assigned for a longer
time just to see whether a new methodology is good or not. Neither a large number of
students nor highly expensive IT professionals can conduct real XP projects for
learning only.

2.2 From the Extreme Hour to the Agile Lego Hour

The first time we had to teach XP was in an introductory level Software Engineering
lecture, which includes a chapter about Agile Methods. Because of the above-
mentioned problems, we decided to organize the corresponding exercises as Extreme
Hours. An Extreme Hour lasts 70 minutes. Because of this, Extreme Hours are an
easy and time-effective way to convey the most important aspects. Extreme Hours
have been successfully used in different variations (e.g. [13]). With our own minor
variations, we called them “Agile Hours” to indicate the more general approach.

During the above-mentioned lecture we organized five Agile Hours. However, we
encountered some disadvantages: Students could easily cheat with drawing because
drawing a computer or some kind of controller is very easy and can solve arbitrary
tasks. Furthermore, we found drawing is dissimilar from programming in important
aspects:

• Programming is a more constructive task than drawing,
• With computers, operations like moving, deleting and reorganizing source

code is much easier than to alter a drawn picture,
• Parts of drawings cannot be easily organized in hierarchical structures like

packages, modules etc.
• Programming nowadays often uses components and frameworks for solving

reoccurring tasks; programmers have to search for such solutions to their
problems in libraries.

Finally, the quality assurance (QA) role was a very ungrateful role to play: The
students doing the QA job did not participate at the planning game and development,
and therefore could not participate in the most important activities.

To eliminate this effect, we decided to modify the Agile Hour more drastically. We
replaced drawing by the use of Lego bricks and removed the QA role completely. The
usage of Lego bricks addresses the outlined problems with drawings:

• Lego bricks are assembled in a constructive manner,
• Lego bricks can be easily removed or shifted around in a model,
• Lego bricks can be assembled to modules,
• Lego bricks are predefined components of which limited types are available.

We call this new variant “Agile Lego Hour”, as it uses Lego bricks. We conducted
two Agile Lego Hours in different environments: One with 6 students, the other with
11 IT professionals during a Java User Group meeting. In the remainder of this paper
we focus on comparing Agile Lego Hours in the two different environments.

520 D. Lübke and K. Schneider

3 Description of an Agile Lego Hour

For helping participants to understand agile methods, we introduced agile methods
with a strong focus on XP before starting with the Agile Hour. The lecture provided
the students with necessary theory.

For the IT Professionals we did a 30-minute introduction explaining the basics of
XP and the origin of agile methods.

Afterwards, the participants chose their roles: For Agile Hours, two customers are
needed; the rest of the participants work as developers. We acted as trackers and
coaches who supervised the project and answered questions concerning the method.
After the roles had been assigned, the project goal was given to the whole team. These
project goals should be mechanical items buildable with elementary Lego bricks and
should offer enough freedom for the customers to shape the project according to their
ideas. We found “Mosquito Hunter” and “Family Spaceship” appropriate project
goals because they represent general ideas, everyone has a general understanding of
their functionality, and they call for mechanical (e.g. Lego) implementation.

The following main part of the Agile Lego Hour is divided into 7 phases of exactly
ten minutes (and zero seconds!) each. In each phase the remaining time is projected
onto a wall and as such is visible to all participants. The phases are:

1. Story Cards & Spike: In the first ten minutes, the customers write down
their story cards for the given project idea. This is done on a flipchart, while
reserving some space to the left, which is needed later on in the planning
game (see figure 1). Story cards correspond to 1-2 lines on the flipchart each.
In the meantime the developers are pairing, i.e. grouping to a team of 2
developers. Each team builds a prototype independently to get ideas for the
project and to get accustomed to the Lego bricks available. During this phase
the trackers supervise the story card creation process.

2. Estimation of Priorities and Effort: In the second phase the developers
present their prototypes which are destroyed afterwards. Then, the customers
have to explain the story cards to the developers and to prioritize them. Three
levels are available: “A” for very important/cannot ship without, “B” for
important and “C” for nice to have but not necessary. The priority is written
next to the story cards. After this presentation, the developers have to
estimate the needed effort in points. The Agile Hour (like XP) uses an
abstract effort unit, e.g. “points”. Those points are calibrated using the
prototypes (coaches simply “assign” them a number of points). All further
estimations are carried out in relation to that number. If, for example, a
prototype was assigned eight points, then a story card of four points should
cause half the effort.

3. Iteration I planning: In the next phase the customers decide which story
cards they want to have implemented next. They can “buy” story cards as
long as their total points do not exceed the points achieved in the prototype
phase. This rule implies that developers will be able to build the same
number of points again during the next iteration (constant efficiency).
Customers have to select next tasks based on this assumption. Developers
may be faster or slower, but the initial guess is they will work at the same

 Agile Hour: Teaching XP Skills to Students and IT Professionals 521

speed. Afterwards, the developers organize themselves in new pairs and plan
how to develop the chosen story cards in the next iteration.

4. Iteration I: While the customers add new story cards to the flipchart, the
developers are implementing the chosen story cards. Pair programming with
Lego bricks means that one developer of a pair may search for specific Lego
bricks while the other one assembles the bricks to the pair’s model.
Typically, at the end the whole iteration product is assembled from the pairs’
models.

5. Product Presentation & Estimation of Priorities and Effort: In the
beginning of this phase, the developers present the so far developed product
and the customers are judging if it fulfils their requirements. The judgement
has to be based on the selected story cards. Features are only completed if
they are visibly built – no hand waving and talking about how it might work
is allowed. Any missing features or other shortcomings are added as story
cards to the flipchart. The points of all successfully completed story cards are
summed up and can be used to “buy” story cards for the second iteration.
Afterwards, the customers present the new story cards and prioritize them as
in phase 2. Likewise, the developers estimate the effort of the new story
cards and eventually update the points of story cards already existing.
This phase is normally the one, in which time easily runs out and the trackers
need to speed up the process causing stress in the development process.

6. Iteration II planning: Customers choose story cards to complete in the
second iteration. Again, the estimated effort (points) of these story cards
must not exceed the points completed in the first iteration. Developers
arrange in new pairs and plan how to implement the chosen story cards.

7. Iteration II: The second iteration is carried out like the first one, except the
customers do not need to create new story cards. Instead, they are able to
look at how the development is done and are able to get an impression of
pairing.

After the second iteration the developers again present their product and the
customers must decide whether to accept or to reject it. In all cases, the customers
could accept the developed product although some small issues remained which
would need to be fixed in a future iteration.

Finally, participants discussed their experiences and reflected on what had
happened during the agile hour. We helped them to emphasize the parallels to XP
projects. Reflection is very important, as it reaps the benefits of experiences: during
reflection, the above-mentioned “reasoning and conclusions” are derived that help
participants in future (real) projects. Emerging discussions answer questions and
clarify misunderstandings and unclear aspects. For example, having only one stick per
pair was mentioned as awkward. Students found it hard during integration of their
results to be unable to “contribute” by drawing themselves. This phenomenon can be
traced back to a real development situation in which there is only one computer per
pair. In another example, customers complained about the short story card format they
were forced to use. During reflection, they realized that real story cards are almost as
short as our lines on the flipcharts, so the short format – and the restrictions associated
with it – stays the same. Third, quality requirements caused problems: they were
treated like normal story cards, but were highly orthogonal in nature. Reflection made

522 D. Lübke and K. Schneider

obvious that this effect was again not a fault of the agile hour but a phenomenon
waiting in real projects, too.Figure 1 shows a part of a prioritized story card flipchart,
and the final result of an “automated mosquito hunter”.

Fig. 1. (a) Story cards with priorities and estimated effort (b) Mosquito Hunter built with Lego

4 Agile Hour as a Model of XP Projects

Agile Hours (in particular Agile Lego Hours) are models of XP projects. Because of
this, it is necessary to question (a) for whom this model is informative, (b) what the
relevant attributes are, and (c) what model attributes do not match reality. Relevant
attributes of the model (the Agile Hour) correspond to relevant attributes of reality
(XP projects), and observations in the model will be mapped back to reality. Both
model and reality have several attributes that are not relevant. Those attributes must
not be mapped back, as there is no reasonable mapping. For example, building with
Lego can be mapped back to writing Java code (relevant), but the weight of a Lego
brick may have no (relevant) correspondence in an XP project.

• Agile Hours are designed to convey relevant properties of XP projects to
people, who do not have any experiences in agile, especially XP, projects.

• The model focuses on the process, and not on the programming tasks.
Because of this, relevant activities are e.g. pair programming, onsite
customer, story cards, planning game, and time pressure. All of them except
the last one are XP practices [1].

• Other practices are not included in the Agile Hour, like test first, coding
standards, and 40 hour week, because it is not possible to simulate them in
the given time-frame or they are specific to programming.

• A summary of the Agile Lego Hour’s attributes is given in table 1. Before
conducting the Agile Lego Hours, we expected the planning game, pair
programming, and the onsite customer to be the dominant attributes which
the participants would recognize.

 Agile Hour: Teaching XP Skills to Students and IT Professionals 523

Table 1. Relevant and non-relevant attributes of the Agile (Lego) Hour

Attribute Type Relevant Explanation
Acceptance
Tests

XP Practice Yes Customers decide after each iteration if the
features are working as expected or
problems arise out of the implementation.

Onsite
Customer

XP Practice Yes Customers are available for questions all
the time

Pair
Programming

XP Practice Yes Developers are grouped in pairs and have
different tasks in that pair. Pairs are
changing between iterations and prototype.

Planning
Game

XP Practice Yes Efforts are estimated using a relative
metric which is refined during the process.
Customers pick the most business-critical
stories and prioritize requirements.

Short
Releases

XP Practice Yes Iterations only last exactly 10 minutes
allowing immediate customer feedback.

Spike/
Prototype

XP Practice Yes A prototype is built upfront in order to
explore the problem domain.

Story Cards XP Practice Yes Requirements are collected story card-like
at a flipchart.

Time
Pressure

Project
Constraint

Yes Time pressure is always applied by the
minimal time window of 10 minutes and
the projection of the remaining time.

Uncertain
Requirements

Project
Constraint

Yes Customers do not know the exact
requirements before project start.

Continuous
Builds

XP Practice Partly Lego Models are integrated in a short
period of time but due to the time-
constraint mostly at the end of the iteration
like in normal projects.

Embrace
Change

Agile Value Partly During iterations the customers are allowed
to introduce new story cards contrary to
existing requirements. However, only two
iterations are carried out.

Refactoring XP Practice No Refactoring in XP Projects is done during
the test-first cycle while “refactoring” in
Agile Hours is only done to integrate
further components.

Test-First XP Practice No Lego constructions cannot be automatically
tested; therefore, test-first development is
not possible.

Coding
Standards

XP Practice No No Coding Standards can be applied for
building Lego objects.

40 Hour
Week

XP Practice No The Agile Lego Hour is too short to
simulate a 40 Hour Week.

524 D. Lübke and K. Schneider

Because agile methods and XP in particular are very useful for time-limited projects
and unsure customers, two relevant attributes are the time pressure and uncertain
requirements.

5 Experiences with Agile Hours

While conducting Agile Hours (and by comparing Extreme Hours with Agile Lego
Hours, in particular), we recognized some pitfalls in both and some decisive
differences between them.

• The first problem is the QA role in the Extreme Hour. If there is an odd
number of participants, introducing a QA role for it, looks nice at first
glance. However, the role is unsatisfying from a learning perspective, since
QA people do not participate in important parts, like the Planning Game.
Therefore, the learning effect is worse than with participants being
developers or customers. Because of this, we came to avoid the QA role in
later Agile Hours and had fewer problems with this setup.

• Another set of problems comes with pair programming: Participants do not
like to switch pairs (relevant effect: occurs in XP projects, too) or are
sometimes even falling back to teamwork with 10 people building one big
team. This is an irrelevant effect of the model only: In real XP projects, it is
impossible to program with 10 persons at a computer, however building with
Lego bricks or drawing on a sheet of paper is. In this case, the trackers have
to try to encourage pairing. Furthermore, the room should be set up to hinder
full-team work. For example, Lego bricks should not be put on one table but
instead be left in distributed boxes for pairs.

• Concerning story cards, trackers should take care, that story cards really
define functional requirements. If there are too many quality story cards, like
“machine must not hurt children”, it is very difficult to realize these. This is
especially true for Agile Lego Hours, because it is nearly impossible to
model quality properties, which is a slight disadvantage compared to
Extreme Hours with mere drawings.

However, there are many advantages for Agile Lego Hours outweighing the
disadvantages:

• For using Lego bricks we assume team-sizes may be smaller: we conducted
the best Extreme Hours using drawing with 4 to 5 developer pairs, while the
same level could be accomplished in an Agile Lego Hour with 3 pairs using
Lego bricks.

• If one reduces special-purpose Lego bricks (e.g., looking like computers or
antennas), developers cannot cheat by claiming powerful components. In
Extreme Hours developers often drew computers, chips, sensors and
controllers which, as they said, could literally do everything during the
acceptance tests. This drives the approach to the absurd. With limited Lego
bricks pretending unlimited features is less tempting.

 Agile Hour: Teaching XP Skills to Students and IT Professionals 525

• It is as hard to destroy prototypes as in real life (relevant effect): Whereas
prototype drawings were put aside easily, destroying Lego prototypes in
front of the participants really hurts. Like in real projects there is a big
temptation to stick with prototypes despite their declared mission: being
thrown away.

Finally, we found Agile Lego Hours to be more fun than Extreme Hours. While this
observation may be very subjective, it was confirmed by comparing 24 questionnaires
from Extreme Hours with 17 questionnaires from Agile Lego Hours. Lego bricks
seem to stimulate a certain play instinct and are better received.

The essential reflection phase ties participants´ experiences from “playing with
Lego” back to the serious world of software development. We consider it an
advantage to provide a fun learning environment – given participants recognize its
implications for their (serious) studies and work.

6 Differences Between Students and IT Professionals

While doing experiments, workshops or alike with students, often the question is
raised to which extend these results are transferable to the professional area. This
question is justified because both groups are different. Very different is their
background: IT Professionals have more experience and have normally better
knowledge about tools, programming languages and project management – it has
been their business for several years if not decades. In contrast, students are more
used to learning, are more willing to adopt new practices, and are even better at some
new methods. Both groups have in common an interest for IT and related subjects.

Furthermore, IT professionals are normally older than students. Because of this, it
is not necessarily sure, that playful methods being successful with students really
work with IT professionals as well.

We had the opportunity to conduct an Agile Lego Hour with IT Professionals
participating in an industrial Java User Group. While the Agile Lego Hour took place
in the same way like the students’ ones, at some points the IT Professionals behaved
differently and had other problems, which are certainly related to their experiences:

• The main difference was that IT Professionals were stuck much more to an
opposition of the roles of developer against customer. This contradicts XP
practices in which developers are required to communicate and collaborate
with the customer. However, IT Professionals wanted crystal-clear contracts
in their story cards.

• Especially the story-cards and the relative effort estimation seemed to be a
major annoyance. The problem with story cards was that they are too sketchy
and not every detail is written down. For people who are only used to
binding, detailed contracts it is difficult to get used to such a way of defining
requirements (“that’s not written here, so we don’t have to do that”, although
the customer obviously meant it that way).

• Problems also arose with effort estimation in XP. It is based on relative
estimation of points assigned to story cards. This makes cost- and time-
estimations for comprehensive functionality upfront impossible. The ability

526 D. Lübke and K. Schneider

to estimate cost and time has been considered very important by the IT
professionals.

• Team organization between students and IT Professionals was different, too.
Students normally organize in groups for learning and know each other quite
well. Because of this, pairing was easy and the teams were focused on their
tasks. Contrary, the group of IT professionals spent most of the time
discussing solutions and organizational questions which probably is related
to the “Big Design Upfront”-approach normally taken. This was inherently
apparent during the prototype phase, in which an IT professional pair sorted
bricks according to their size to be better prepared for the project, instead of
exploring the problem domain. The reason given for this behaviour was that
unless “I really know what the customer wants I benefit the team most by
preparation”. In the second iteration, IT Professionals reverted from pair
programming to team work which ended in a group meeting inefficiently
discussing implementation problems.

All in all, students seemed to be more pragmatic which seems to be a beneficial
attitude during Agile Hours and XP projects. Consequently, students realized more
customer requirements during the two iterations, although the team compromised
fewer developer pairs.

However, the IT Professional group reflected better about their Agile Lego Hour
and about XP: During the reflection participants were aware that the second iteration
went wrong and was inefficient. Furthermore, better questions and better realization
what XP would change compared to their existing processes created a better
discussion with them than with the students.

7 Analysis of the Questionnaires

After each Extreme and each Agile (Lego) Hour we handed out questionnaires asking
the participants about what XP practices they think they recognized and what they
feel about the Agile Hour. For comparing students to IT professionals only
questionnaires of Agile Lego Hours are considered in order to have a comparable
setup (see figure 2 and 3).

Most of the XP practices were rated similarly by the students and by the IT
Professionals. However, there are some slight differences: The onsite customer and
the planning game have been recognized by more IT Professionals than by students.
We suppose this is influenced by the different backgrounds the two groups have. For
IT Professionals it is not ordinary that the customer is always reachable to ask
questions while the students are used to intensive support by their lecturers.

Because the second iteration of the IT Professionals was more team work than pair
programming, the answers to pair programming and collective ownership seem
reasonable.

Interestingly, some practices were recognized by participants, which we thought
they would not. For example, simple design and 40 hour week were recognized by
some IT professionals and continuous integration has been identified by both students
and IT professionals. The 40 hour week probably can be traced back to an additional

 Agile Hour: Teaching XP Skills to Students and IT Professionals 527

comment on the same questionnaire which states that the time pressure is very intense
and thus is very exhausting.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

On S
ite

 C
usto

mer

Acc
ept

an
ce

 T
ests

Sim
ple

 D
es

ign

Ref
ac

tor
in

g

Cod
ing

 S
ta

nd.

Plan
ning G

am
e

Pair P
ro

g.

Shor
t R

el.
Cyc

l.

Con
t. I

nt.

40h
 w

eek

Coll
ec

t.
O

wners
h.

Metaph
or

Unit
 T

ests

Students

IT Professionals

Fig. 2. Answers of the participants which XP practices they recognized

All in all, the questionnaires results confirm our expectations of the Agile Hour’s
most relevant attributes: Besides short release cycles, the onsite customer, planning
game, and acceptance tests were recognized by most participants.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Use in
Projekt

Fun Similar
Things

Students

IT Professionals

Fig. 3. Results of the Agile Hours

What both groups share is the enthusiasm about the Agile Lego Hour our as a way
to learn XP: All of the participants said that they had fun attending the Agile Lego
Hour and over 80% would like to attend to similar “classes” for other topics.
Moreover, the Agile Lego Hour seems to be a good way to promote XP or at least
agile methods: Over 80% of the students would like to use XP in some projects and
even more - over 90% - of the IT Professionals answered that they would do so, too.

528 D. Lübke and K. Schneider

8 Conclusions and Outlook

In order to teach agile methods, including XP, it is necessary to not only convey
textbook knowledge but also some experiences about how the methods work. This
seems to be especially true for professionals using classic process models for a long
time. They had a harder time to get used to the new methodologies. A very
successful way of allowing these necessary experiences are Extreme Hours
(drawing), Agile Lego Hours (building), or in general: Agile Hours (following the
70-minute scheme).

These models of XP projects allow experiencing those XP practices dealing with
project management and communications. However, reflection afterwards is highly
necessary in order to realize a significant learning effect. Reflection allows the
participants to transfer all the experienced elements to software projects, the possible
advantages and disadvantages this might have for their projects, and how this
correlates with the experience they possibly have. For this, reflection does not mean
filling out questionnaires but discussing and sharing the experiences and translating
them back to software projects.

Encouraged by the very positive participant feedback and the interest we received,
we will continue to use Agile Hours with students and with other IT professionals in
the future, polishing the approach of Agile (Lego) Hours further.

Through this paper, we want to encourage others to try Agile Hours with both
professionals and in student education. We hope to provide a good start by offering
our insights and describing our newest variant, the Agile Lego Hour.

References

1. Beck, K., Extreme Programming Explained: Embrace Change. 1999: Addison-Wesley
Pub Co. 224.

2. Goetz, R. How Agile Processes Can Help in Time-Constrained Requirements
Engineering. in TCRE 2002. 2002. Essen, Germany.

3. Kent Beck, M.B., Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas,
Manifesto for Agile Software Development, 2001, http://www.agilemanifesto.org/.

4. Dietmar Rohrbach, P.D.M.A. Realisierung und Pflege von vier Versicherungs
produkten. in Informatik 2004 - Informatik verbindet. 2004. Ulm, Germany.

5. Martin Lippert, S.R., Henning Wolf, Software entwickeln mit eXtreme Programming.
2002, Heidelberg: dpunkt.verlag. 282.

6. Wright, K., XP success story: CodeFab develops for Noggin, 2002, http://builder.
com.com/5100-6374_14-1046489-1-1.html.

7. Object Mentor, Success Story: How Scrum + XP changed Primavera, 2004,
http://www.objectmentor.com/resources/articles/Primavera.

8. Ron Jeffries, A.A., Chet Hendrickson, Ronald E. Jeffries, Extreme Programming
Installed. 2000: Addison-Wesley Professional. 288.

9. Merel, P., Extreme Hour, 2004, http://c2.com/cgi/wiki?ExtremeHour.

 Agile Hour: Teaching XP Skills to Students and IT Professionals 529

10. Royce, W. Managing the Development of Large Software Systems. in IEEE WESCON.
1970.

11. Versteegen, G., Das V-Modell 97 in der Praxis. 1999: dpunkt.verlag. 442.
12. IABG, Das V-Modell. 2004.
13. Silicon Valley Patterns Group, Silicon Valley Extreme Hour, 2005, http://c2.com/

cgi/wiki?SiliconValleyExtremeHour.

	Introduction
	Problem of Conveyance
	Conveying XP Experience
	From the Extreme Hour to the Agile Lego Hour

	Description of an Agile Lego Hour
	Agile Hour as a Model of XP Projects
	Experiences with Agile Hours
	Differences Between Students and IT Professionals
	Analysis of the Questionnaires
	Conclusions and Outlook
	References

