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Abstract. Given an undirected multigraph G and a set S :={S1, . . . , St}
of disjoint subsets of vertices of G, a Steiner S-forest F is an acyclic
subgraph of G such that each Si is connected in F for 1 ≤ i ≤ t. In
this paper, we study the Steiner Forest Packing problem where we
seek a largest collection of edge-disjoint S-forests. The main result is a
connectivity-type sufficient condition for the existence of k edge-disjoint
S-forest, that yields the first polynomial time approximation algorithm
for the Steiner Forest Packing problem. We end this paper by a
conjecture in a more general setting.

1 Introduction

Given an undirected multigraph G and a set S := {S1, . . . , St} of disjoint subsets
of vertices of G, a Steiner S-forest F is an acyclic subgraph of G such that each
Si is connected in F for 1 ≤ i ≤ t. The Steiner Forest Packing problem
is to find a largest collection of edge-disjoint S-forests. This is a generalization
of the Steiner Tree Packing problem where we are given G and a subset of
vertices S ⊆ V (G), and the goal is to find a largest collection of edge-disjoint
trees that each connects S. The Steiner Tree Packing problem is well-studied
in the literature as it generalizes the edge-disjoint s, t-paths problem [11] as well
as the spanning tree packing problem [14, 12], and also it has applications in
network broadcasting and VLSI circuit design. We say a set S ⊆ V (G) is k-edge-
connected in G if there are k edge-disjoint paths between u, v for all u, v ∈ S,
and a tree is a S-tree if it connects S. A necessary condition for G to have k edge-
disjoint S-trees is that S is k-edge-connected in G. The following conjecture by
Kriesell [7] gives a sufficient condition for the existence of k edge-disjoint S-trees:

Kriesell conjecture: If S is 2k-edge-connected in G, then G has k
edge-disjoint S-trees.
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This beautiful conjecture is the best possible and has generated much interest
[13, 3, 6, 7, 2, 8, 9], recently it is shown in [9] that the conjecture is true if 2k is
replaced by 26k.

A related problem is the Minimum Steiner Forest problem, where the goal
is to find a minimum-cost S-forest F in G. Goemans and Williamson [4] gave
a primal-dual 2-approximation algorithm for the Minimum Steiner Forest

problem. Very recently, Chekuri and Shepherd [1] present a new 2-approximation
algorithm for the Minimum Steiner Forest problem via the Steiner Forest

Packing problem. Specifically, they show that given an Eulerian graph G, if
each Si is 2k-edge-connected in G, then there are k edge-disjoint S-forests in G.
They then show that this result implies the integrality gap of the standard LP
formulation of the Minimum Steiner Forest problem is at most 2.

Motivated by the above results, we study the Steiner Forest Packing

problem in general graphs. The main result is the following:

Theorem 1. Given an undirected multigraph G and a set S := {S1, . . . , St} of
disjoint subsets of vertices of G. If each Si is Qk-edge-connected in G, then there
are k edge-disjoint S-forests in G.

Remark: The best upper bound on Q that we can achieve is 32; however, the
proof is fairly involved. In this extended abstract, for the sake of clarity, we
only give a proof for Q = 56 which contains most of the underlying ideas. We
also remark that the proof of Theorem 1 is constructive, and this yields the
first polynomial time constant factor approximation algorithm for the Steiner

Forest Packing problem.

2 Preliminaries

The organization of this section is as follows. We first develop the necessary
notations and concepts in Section 2.1. Then, we review the basic theorems that
we will be using in Section 2.2. Finally, we give an overview of the proof of our
result in Section 2.3.

2.1 Basic Definitions

Given an undirected multigraph G and a set S := {S1, . . . , St} of disjoint subsets
of vertices of G. We call each Si a group, note that we can assume that each
group is of size at least 2. A subgraph H of G is a S-subgraph if each Si is
connected in H for 1 ≤ i ≤ t; a subgraph H is a double S-subgraph of G if
H is a S-subgraph of G and every vertex in S1 ∪ . . . ∪ St is of degree at least
2 in H. Given S ⊆ V (G), we say a subgraph H of G is a S-subgraph if H is
connected and S is connected in H; a subgraph H is a double S-subgraph of
G if H is a S-subgraph of G and every vertex in S is of degree at least 2 in H.
A subgraph H spans a subset of vertices U if U ⊆ V (H).

In the rest of this paper, we denote S := S1 ∪ . . . ∪ St. A subset of vertices
X is a S-separating cut if (i) S ∩ X �= ∅, S ∩ (V (G) − X) �= ∅ and (ii) for



364 L.C. Lau

each Si, either Si ⊆ X or Si ⊆ V (G)−X. We denote by δG(X) the set of edges
in G with one endpoint in X and the other endpoint in V (G) − X, the open
neighbourhood set of a vertex v in G by NG(v), and the induced subgraph on a
set of vertices X by G[X]. A core C is a S-separating cut with δG(C) ≤ Qk and
|C| minimal. Let R be a specified set of vertices such that R ∩ S = ∅ and each
vertex in R is of degree at least Qk. A subset of vertices X is a R-isolating cut
if R ∩ X �= ∅ and S ∩ X = ∅.

Given a vertex v, we denote by E(v) the set of edges with an endpoint in
v. Pk(v) := {E1(v), . . . , Ek(v)} is a balanced edge-subpartition of E(v) if
(i) E1(v) ∪ E2(v) ∪ . . . ∪ Ek(v) ⊆ E(v), (ii) |Ei(v)| ≥ 2 for 1 ≤ i ≤ k and (iii)
Ei(v) ∩ Ej(v) = ∅ for i �= j. We denote the set of neighbours of u in Ei(u)
by NEi

(u). Given k edge-disjoint subgraphs {H1, . . . , Hk} of G, a vertex v is
called balanced-extendible with respect to {H1, . . . , Hk} (or just balanced-
extendible if the context is clear) if there exists a balanced edge-subpartition
{E1(v), . . . , Ek(v)} of E(v) so that Hi ∩ E(v) ⊆ Ei(v). An easy fact that will
be used many times later: if there are 2k edges in E(v) not used in any of
{H1, . . . , Hk}, then v is balanced-extendible (with respect to {H1, . . . , Hk}).
And, of course, if v is of degree at least 2 in each Hi, then v is balanced-
extendible.

Cut Decomposition: Given a multigraph G a subset of vertices Y ⊂ V (G),
the cut decomposition operation constructs two multigraphs G1 and G2 from G
as follows. G1 is obtained from G by contracting V (G) − Y to a single vertex
v1, and keeping all edges from Y to v1 (even if this produce multiple edges).
Similarly, G2 is obtained from G by contracting Y to a single vertex v2, and
keeping all edges from V (G) − Y to v2. So, V (G1) = Y ∪ {v1}, δG(Y ) ⊆ E(G1)
and V (G2) = (V (G) − Y ) ∪ {v2}, δG(Y ) ⊆ E(G2). Notice that for each edge
e ∈ δG(Y ), e will appear in both G1 and G2 (i.e. e in G1 is incident with v1

where e in G2 is incident with v2). So, given an edge e incident with v1 in G1,
we refer to the same edge in G2 incident with v2 the corresponding edge of
e in G2, and vice versa. The cut decomposition operation will be used several
times later, the following are two basic properties of G1 and G2:

1. For each pair of vertices u, v in Gi, the number of edge-disjoint paths between
u, v in Gi is at least the number of edge-disjoint paths between u, v in G.
In particular, if a set S is Qk-edge-connected in G, then S ∩ V (G1) and
S ∩ V (G2) are Qk-edge-connected in G1 and G2 respectively.

2. The degree of each vertex v in V (Gi)−{vi} is equal to the degree of v in G.

2.2 Basic Tools

The following Mader’s splitting-off lemma has been a standard tool in many
edge-connectivity related problems. Let G be a graph and e1 = xy, e2 = yz be
two edges of G, the operation of obtaining G(e1, e2) from G by replacing {e1, e2}
by a new edge e′ = xz is called splitting off at y. The splitting-off operation is
said to be suitable, if the number of edge-disjoint u, v-paths in G(e1, e2) is the
same as the number of edge-disjoint u, v-paths in G for u, v ∈ V (G) − y.
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Lemma 1. (Mader’s Splitting Lemma) [10] Let x be a vertex of a graph G.
Suppose that x is not a cut vertex and that x is incident with at least 4 edges and
adjacent to at least 2 vertices. Then there exists a suitable splitting-off operation
of G at x.

By repeatedly applying Mader’s splitting-off lemma, one can make the fol-
lowing assumption on the degree of vertices in V (G)−S. The proof of Lemma 2
is now standard and appeared in [3, 6, 7, 9], we omit the details here.

Lemma 2. Every vertex in V (G) − S is incident with exactly three edges and
adjacent to exactly three vertices.

The following are two results on the Steiner Tree Packing problem which
we will be using. Somewhat surprisingly, to prove the result in this paper, we
could not use Theorem 3 as a black box. In fact, we need to revise and generalize
many parts of the proof of Theorem 3 in order to meet our requirements, this
point will be elaborated more in the next subsection.

Theorem 2. [3] If there is no edge between any two vertices in V (G) − S and
S is 3k-edge-connected in G, then G has k edge-disjoint S-trees.

Theorem 3. [9] If S is 26k-edge-connected in G, then G has k edge-disjoint
S-trees.

2.3 Overview

Here we outline the approach of Chekuri and Shepherd [1]. In [1], they consider
the Steiner Forest Packing problem when G is Eulerian. This allows them
to assume that V (G) = S (recall that S := S1 ∪ . . .∪St) by repeatedly applying
the Mader’s splitting-off lemma. Then they find a core C in G and show that
G[C] has k edge-disjoint spanning trees T1, . . . , Tk, by using Tutte [14] and Nash-
Williams [12] result on spanning tree packing. Now they contract C in G and
obtain a new graph G∗. Note that C contains a group and thus has at least
two vertices, so G∗ has fewer vertices than G. By induction, G∗ has k edge-
disjoint Steiner forests F1, F2, . . . , Fk. Now, as each tree is spanning in C, F1 ∪
T1, . . . , Fk ∪ Tk are the desired k edge-disjoint Steiner forests in G.

However, if G is non-Eulerian, we cannot assume that V (G) = S. So, even
if we assume the existence of a core C of G so that G[C] has k edge-disjoint
Steiner trees T1, . . . , Tk, and also the existence of k edge-disjoint Steiner forests
F1, . . . , Fk of G∗ as constructed above, the main difficulty is that we cannot
guarantee that for all pair of vertices which are connected in Fi are still con-
nected in Fi ∪ Ti. Here the extension property introduced in [9] comes into the
picture. Roughly, we show that there are k edge-disjoint Steiner trees in G[C]
that “extend” F1, . . . , Fk so that F1∪T1, . . . , Fk ∪Tk are actually k edge-disjoint
Steiner forests. Unlike the situation in the Steiner Tree Packing problem,
however, we also need to prove structural properties on F1, . . . , Fk so that they
can actually be extended (not every F1, . . . , Fk can be extended). This requires
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us to revise and generalize the extension theorem in [9], in particular we need
to add an additional constraint on the extension theorem, which causes the con-
stant in Theorem 1 (i.e. approximation ratio) to be slightly bigger than that in
Theorem 3.

The organization of the proof is as follows. In Section 3, we prove structural
results on R-isolating cut, S-separating cut and core. With these, in Section 4,
we show how to reduce a stronger version (see Theorem 4) of Theorem 1 to
the Steiner Tree Packing problem with the extension property (defined in
subsection 4.1) and an additional requirement (see Theorem 5). Then, in Section
5, we prove the extension theorem (Theorem 5).

3 Structural Results

This section contains structural results on R-isolating cut and S-separating cut;
these results will be used in Section 4 to reduce the Steiner Forest Packing

problem to a modified version of the Steiner Tree Packing problem (see
Theorem 5).

3.1 R-Isolating Cut

Let G be a minimal counterexample of Theorem 1 (or Theorem 4) in the follow-
ing.

Lemma 3. G has no R-isolating cut Y with |δG(Y )| ≤ (Q − 2)k.

Proof. Suppose not. Consider a R-isolating cut Y with |δG(Y )| minimum. Apply
the cut decomposition operation on G and Y to obtain two graphs G1 and
G2, let R1 := R ∩ V (G1) and R2 := R ∩ V (G2). Also, by definition of Y ,
S ⊆ V (G2). From the properties of the cut decomposition operation, S is Qk-
edge-connected in G2 and every vertex of R2 is of degree at least Qk in G2. Note
that R1 �= ∅, hence |Y | ≥ 2 as each vertex in R is of degree at least Qk while
|δG(Y )| ≤ (Q− 2)k < Qk. As |Y | ≥ 2, G2 is smaller than G. By the choice of G,
G2 has k edge-disjoint S-subgraphs {H ′

1, . . . , H
′
k} such that every vertex in R2

is balanced-extendible.
Let l := |δG(Y )|, then l ≤ (Q − 2)k. We claim that each vertex r ∈ R1 has

l edge-disjoint paths to v1 in G1. Suppose not, then there exists Y ′ ⊆ V (G1)
so that r ∈ Y ′, v1 /∈ Y ′ and |δG1(Y

′)| < l. Hence, Y ′ is a R-isolating cut in
G with |δG(Y ′)| < l, but this contradicts the minimality of |δG(Y )|. Therefore,
each vertex in R1 has l edge-disjoint paths to v1. Choose a vertex r∗ ∈ R1 so
that the total length of the l edge-disjoint paths {P1, . . . , Pl} from v1 to r∗ is
minimized. Let P := {P1, . . . , Pl} and H := P1 ∪ P2 ∪ . . . ∪ Pl. We claim that
r is of degree at most l in H for each r ∈ R1. Suppose not, let r ∈ R1 be
of degree at least l + 1 in H. Then r �= r∗ and at least (l + 1)/2 paths from
v1 to r∗ pass through r, say {P1, . . . , P(l+1)/2}. For 1 ≤ i ≤ (l + 1)/2, let the
subpath of Pi from v1 to r be P ′

i , and the subpath of Pi from r∗ to r be P ′′
i .

Then we claim that H − P ′′
(l+1)/2 contains l edge-disjoint paths from v1 to r;



Packing Steiner Forests 367

indeed, {P ′
1, . . . , P

′
(l+1)/2, P(l+1)/2+1 ∪ P ′′

1 , . . . , Pl ∪ P ′′
(l−1)/2} are l edge-disjoint

paths from v1 to r in H − P ′′
(l+1)/2. This contradicts with the choice of r∗ and

thus r is of degree at most l ≤ (Q−2)k for each r ∈ R1 in H. In particular, each
r ∈ R1 is balanced-extendible with respect to {P1, . . . , Pl}.

Now, we show that the k edge-disjoint double S-subgraphs {H ′
1, . . . , H

′
k} in

G2 can be extended to k edge-disjoint double S-subgraphs in G, by using the
edge-disjoint paths from v1 to r∗ in G1 constructed in the previous paragraph.
For each H ′

i in G2, let Ei(v2) := E(H ′
i)∩E(v2) and Ei(v1) be the corresponding

edge set in G1. Let Pi be the paths in P of G1 using the corresponding edges in
Ei(v1) (note that |Pi| = |Ei(v1)|), and we set Hi := H ′

i ∪ Pi to be a subgraph
of G. Now each path in H ′

i using v2 in G2 is still connected in G via the paths
of Pi in G1. Since H ′

i is a double S-subgraph in G2, Hi is a double S-subgraph
in G. Also, since H ′

i and H ′
j are edge-disjoint in G2 for i �= j, and Pi and Pj are

edge-disjoint in G1 for i �= j, Hi and Hj are edge-disjoint in G for i �= j. Finally,
since vertices in R1 and R2 are balanced-extendible in G1 and G2 respectively,
vertices in R are balanced-extendible in G with respect to {H1, . . . , Hk}. As a
result, {H1, . . . , Hk} are k edge-disjoint double S-subgraphs in G so that every
vertex in R is balanced-extendible. This contradiction completes the proof of the
lemma. 
�

3.2 S-Separating Cut and Core

Let C be a core of G. We apply the cut decomposition operation on G and C
to obtain two graphs G1 and G2, and let C ⊆ V (G1), R1 := R ∩ V (G1) and
S1 := S∩V (G1) (recall that S := S1∪ . . .∪St). We prove some structural results
of G1 in the following lemma.

Lemma 4. Let G1 be defined above. Then S1 is Qk-edge-connected in G1 and
S1 ∪ R1 is (Q − 2)k-edge-connected in G1. Besides, either one of the following
must be true:

1. S1 ∪ {v1} is Qk-edge-connected in G1.
2. NG1(v1) ⊆ S1 ∪ R1.

Proof. First we prove that S1 is Qk-edge-connected in G1 (note that S1 maybe
the union of several groups). Suppose not, then there exists Y ⊆ V (G1) such
that Y ∩ S1 �= ∅, (V (G1) − Y ) ∩ S1 �= ∅, and |δG1(Y )| < Qk. Without loss of
generality, we can assume that v1 /∈ Y and hence Y is also a cut in G. Since
|δG1(Y )| < Qk, each group in G1 is either contained in Y or disjoint from
Y ; otherwise this contradicts with the assumption that each group is Qk-edge-
connected in G. So, Y is a S-separating cut in G with |δG(Y )| < Qk and |Y | < |C|
(as (V (G1) − Y ) ∩ S1 �= ∅). This contradicts with the fact that C is a core, and
so S1 is Qk-edge-connected in G1.

Next we prove that S1 ∪ R1 is (Q − 2)k-edge-connected in G1. Suppose not,
then there exists Y ⊆ V (G1) such that Y ∩ (R1 ∪ S1) �= ∅, (V (G1) − Y ) ∩
(R1 ∪ S1) �= ∅, and |δG1(Y )| < (Q − 2)k. Since S1 is Qk-edge-connected in G1,



368 L.C. Lau

either S1 ⊆ Y or S1 ⊆ V (G1) − Y . Without loss of generality, we assume that
v1 /∈ Y and hence Y is also a cut in G. If S1 ⊆ Y , by a similar argument as in
the previous paragraph, Y is a S-separating cut in G with |δG(Y )| < Qk and
|Y | < |C| (as (V (G1) − Y ) ∩ R1 �= ∅), and this contradicts with the fact that C
is a core. So S1 ⊆ V (G1)−Y . This, however, implies that Y is a R-isolating cut
in G with |δG(Y )| < (Q− 2)k, which contradicts Lemma 3. As a result, S1 ∪R1

is (Q − 2)k-edge-connected in G1.
Finally, we prove that if NG1(v1) �⊆ S1 ∪ R1, then S1 ∪ {v1} is Qk-edge-

connected in G1. First, we show that v1 must be of degree Qk. Suppose not,
then v1 is a vertex of degree less than Qk. Let w ∈ NG1(w1) be a vertex in
V (G1) − S1 − R1. Since w is of degree 3 by Lemma 2, |δG(C − w)| ≤ Qk and
hence C − w is also a S-separating cut which contradicts the fact that C is a
core. So, v1 is of degree exactly Qk. Suppose indirectly that S1∪{v1} is not Qk-
edge-connected in G1, then there exists Y ⊆ V (G1) such that v1 /∈ Y , Y ∩S1 �= ∅
and |δG1(Y )| < Qk. Since S1 is Qk-edge-connected in G1, we have S1 ⊆ Y . Also,
since v1 is of degree Qk but |δG1(Y )| < Qk, we have |V (G1)−Y | ≥ 2 and hence
|Y | < |C|. This implies that Y is also a S-separating cut which contradicts with
the fact that C is a core. Therefore, if NG1(v1) �⊆ S1 ∪ R1, then S1 ∪ {v1} is
Qk-edge-connected in G1. This completes the proof of the lemma. 
�

4 Proof of the Main Theorem

We are going to prove the following stronger theorem, which helps us to reduce
the Steiner Forest Packing problem to a modified version of the Steiner

Tree Packing problem (see Theorem 5).

Theorem 4. Given G, S := {S1, . . . , St}, R ⊆ V (G). If each Si is Qk-edge-
connected in G and each vertex in R is of degree at least Qk, then there are k
edge-disjoint double S-subgraphs {H1, . . . , Hk} of G so that every vertex in R is
balanced-extendible with respect to {H1, . . . , Hk}.

Theorem 4 immediately implies Theorem 1 (just set R := ∅). In the following,
we consider a minimal counterexample G of Theorem 4, and show that it does
not exist.

4.1 The Extension Theorem

The extension property defined below is crucial in applying divide-and-conquer
strategy to decompose the original problem instance to smaller instances with
restricted structures.

Definition 1. (The Extension Property) Given G, S ⊆ V (G), and an
edge-subpartition Pk(v) := {E1(v), . . . , Ek(v)} of a vertex v. {H1, . . . , Hk} are k
edge-disjoint double S-subgraphs that extend Pk(v) if for 1 ≤ i ≤ k:

(1) Ei(v) ⊆ E(Hi);
(2) Hi − v is a double (S − v)-subgraph that spans NEi

(v).
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The following lemma illustrates how to use the cut decomposition operation
to reduce the Steiner Tree Packing problem (with the extension property
and the balanced-extendible constraint) in a graph to the same problem in two
smaller graphs.

Lemma 5. Given G, S,R ⊆ V (G), v ∈ S and an edge-subpartition Pk(v) of v.
Let G1 and G2 be two graphs obtained from the cut decomposition operation of
a graph G and assume v ∈ G2, let S1 := S ∩ V (G1), S2 := S ∩ V (G2), R1 :=
R ∩ V (G1), and R2 := R ∩ V (G2). Suppose {H2

1 , . . . , H2
k} are k edge-disjoint

double S2-subgraphs of G2 that extend Pk(v) so that every vertex in R2 is
balanced-extendible. Let Pk(v2) := {H2

1 ∩ E(v2), . . . , H2
k ∩ E(v2)} and Pk(v1)

be the corresponding edge-subpartition of v1 in G1. If {H1
1 , . . . , H1

k} are k edge-
disjoint double S1-subgraphs of G1 that extend Pk(v1) so that every vertex in R1

is balanced-extendible, then {H1
1 ∪H2

1 , . . . , H1
k∪H2

k} are k edge-disjoint double S-
subgraphs of G that extend Pk(v) so that every vertex in R is balanced-extendible.

Proof. The statement of the lemma is somewhat long, but the proof is quite
straightforward and a similar proof (without the balanced-extendible constraint)
is available in Lemma 3.2 of [9]. We omit the proof here for the sake of space. 
�

Of course, not every edge-subpartition of an arbitrary vertex can be extended.
The following extension theorem, which is at the heart of the proof of Theorem 4,
gives a sufficient condition for an edge-subpartition of a vertex to be extendible.
The proof of Theorem 5 is in Section 5.

Theorem 5. Given G, S,R ⊆ V (G). If S is Qk-edge-connected in G and S∪R
is (Q−2)k-edge-connected in G, then there are k edge-disjoint double S-subgraphs
in G such that every vertex in R is balanced-extendible. Furthermore, given a
balanced edge-subpartition Pk(v) of a vertex v ∈ S of degree Qk, then there are
k edge-disjoint double S-subgraphs that extend Pk(v) such that every vertex in
R is balanced-extendible.

4.2 Proof of Theorem 4

Now, with Theorem 5, we are ready to prove Theorem 4.

Proof. First suppose that S is Qk-edge-connected in G. Then, by Lemma 3, S∪R
is (Q−2)k-edge-connected in G. Hence, Theorem 5 (without using the extension
property) implies the theorem in this case.

So S is not Qk-edge-connected in G, then a core C exists. We apply the cut
decomposition operation on G and C to obtain two graphs G1 and G2, and as-
sume without loss of generality that C ⊂ V (G1). Let S1 := S ∩ V (G1), S2 :=
S ∩ V (G2)R1 := R ∩ V (G1), R2 := R ∩ V (G2), and S1 and S2 be the groups
contained in S1 and S2 respectively. By the properties of the cut decomposi-
tion operation, each group in S1 and S2 is Qk-edge-connected in G1 and G2

respectively. Also, vertices in R1 and R2 are of degree at least Qk in G1 and G2

respectively. By the choice of G, there are k edge-disjoint double S2-subgraphs
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{H2
1 , . . . , H2

k} in G2 such that every vertex in R′
2 is balanced-extendible. Based

on Lemma 4, we distinguish two cases based on the possible structures of v1.
The first case is that S1∪{v1} is Qk-edge-connected in G1, let S′

1 := S1∪{v1}
and R′

2 := R2 ∪ {v2}. Let P2
k(v2) := {H2

1 ∩E(v2), . . . , H2
k ∩E(v2)} be the edge-

subpartition on v2 induced by {H2
1 , . . . , H2

k} in G2, and P1
k(v1) be the corre-

sponding edge-subpartition defined on E(v1) in G1. Since v2 ∈ R′
2, v2 is balanced-

extendible with respect to {H2
1 , . . . , H2

k}. Now, we apply Theorem 5 on G1 with
S′

1, R1 and P1
k(v1) to get k edge-disjoint double S ′

1-subgraphs {H1
1 , . . . , H1

k} in
G1 that extend P1

k(v1), so that every vertex in R1 is balanced-extendible. Then,
by Lemma 5, we obtain k edge-disjoint double S-subgraphs {H1, . . . , Hk} in G
such that every vertex in R is balanced-extendible.

The second case is that NG1(v1) ⊆ S1 ∪ R1. Consider G1 − v1. Since v1

is of degree at most Qk, S1 ∪ R1 is at least (Q − 2)k − Qk/2 ≥ 26k-edge-
connected in G1. By Theorem 3, G1 has k edge-disjoint double S1∪R1-subgraphs
{H ′

1, . . . , H
′
k} in G1−v1. Setting H1

i := H ′
i∪Ei, {H1

1 , . . . , H1
k} are k edge-disjoint

double S1 ∪ R1-subgraphs in G1 that extend Pk(v1). Then, by Lemma 5, we
obtain k edge-disjoint double S-subgraphs {H1, . . . , Hk} in G such that every
vertex in R is balanced-extendible.

By Lemma 4, these are the only two cases that could happen in G1. Therefore,
G is not a counterexample and the theorem follows. 
�

5 Proof of the Extension Theorem

In this section, we will prove Theorem 5 by showing that a minimal counterex-
ample G of Theorem 5 does not exist. In Section 5.1, we first prove that there is
no edge between two vertices in V (G) − S − R, which allow us to apply Theo-
rem 2 to prove Theorem 5. Then, in Section 5.2, we construct an auxiliary graph
G′ from G and show some properties of G′. We then introduce the concept of
diverging paths and common paths in Section 5.3. Finally, we distinguish two
cases of the structure of G′ and show that each is impossible in Section 5.4 and
Section 5.5.

5.1 There Is no Edge Between Two Vertices in V (G) − S − R

Lemma 6. There is no edge in G with both endpoints in V (G) − S − R.

Proof. Suppose indirectly that e is such an edge. If S is Qk-edge-connected and
S∪R is (Q−2)k-edge-connected in G−e, then by the choice of G, G−e satisfies
Theorem 5 and thus G. So we may assume that either (i) there exists Y ⊆ V (G)
and e ∈ δG(Y ) so that Y ∩S �= ∅, (V (G)− Y )∩S �= ∅ and |δG(Y )| = Qk; or (ii)
there exists Y ⊆ V (G) and e ∈ δG(Y ) so that S ⊆ Y , (V (G) − Y ) ∩ R �= ∅ and
|δG(Y )| = (Q − 2)k. In either case, we apply the cut decomposition operation
on G and Y to obtain two graphs G1 and G2, and let Y ⊂ G1, S1 := S ∩V (G1),
R1 := R∩V (G1), S2 := S∩V (G2) and R2 := R∩V (G2). Notice that since both
G1 and G2 contain a vertex in V (G) − S − R (an endpoint of e), both G1 and
G2 are smaller than G and hence they both satisfy Theorem 5.
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We first consider case (i). In this case, S1 and S2 are non-empty. Hence,
S1 ∪ {v1} and S2 ∪ {v2} are Qk-edge-connected in G1 and G2, respectively. We
let S′

1 := S1 ∪ {v1} and S′
2 := S2 ∪ {v2}. Without loss of generality, we assume

that v is in G2, where v is the vertex to be extended in G. By the choice of G, there
are k edge-disjoint double S′

2-subgraphs {H2
1 , . . . , H2

k} in G2 that extend Pk(v)
such that every vertex in R2 is balanced-extendible. Since v2 ∈ S′

2, Pk(v2) :=
{H2

1 ∩ EG2(v2), . . . , H2
k ∩ EG2(v2)} is a balanced edge-subpartition of v2. Let

Pk(v1) be the corresponding balanced edge-subpartition of v1 in G1. Again, by
the choice of G, there are k edge-disjoint double S′

1-subgraphs {H1
1 , . . . , H1

k} in
G1 that extend Pk(v1) such that every vertex in R1 is balanced-extendible. Now,
by applying Lemma 5, there are k edge-disjoint double S-subgraphs in G that
extend Pk(v) such that every vertex in R is balanced-extendible.

Now consider case (ii). Notice that we must have that v ∈ G1, since v ∈ S
and we assume S ⊆ Y and Y ⊂ V (G1). Then V (G)−Y is a R-isolating cut which
does not contain v in G. By using exactly the same argument as in Lemma 3, we
can show that this contradicts with the fact that G is a minimal counterexample.
So case (ii) cannot happen either, and this completes the proof. 
�

5.2 Construction and Properties of G′

The case when |S ∪ R| = 2 is trivial. Henceforth, we assume that |S ∪ R| ≥ 3.
Our goal is to show that G has k edge-disjoint double S-subgraphs that extend
Pk(v) of v such that every vertex in R is balanced-extendible. Let W be the set
of neighbours of v in V (G)−S−R and B be the set of neighbours of v in S ∪R.
By Lemma 2, each wi ∈ W is incident with exactly three edges and adjacent to
exactly three vertices, so we let NG(wi) := {v, xi, yi} and call {xi, yi} a couple.
By Lemma 6, xi and yi are in S ∪ R. For each bi ∈ B, we denote by c(bi) the
number of multiple edges between v and bi.

Let G′ be G − v − W . Let Z be a minimum (S ∪ R − v)-cut of G′ and
{C1, . . . , Cl} be the connected components of G′ − Z. We let Si := S ∩ V (Ci),
Ri := R∩V (Ci) and Bi := B∩V (Ci). Also, c(Bi) denotes the sum of the c(b) for
b ∈ Bi and Xi denotes the collection of couples with both vertices in Ci. By the
minimality of Z, each edge e in Z connects two vertices in different components,
and we call it a crossing edge. Similarly, a couple {xi, yi} is a crossing couple
if xi and yi are in different components, and we denote the collection of crossing
couples by XC .

Lemma 7. (S ∪ R − v) is at most (6k − 1)-edge-connected in G′.

Proof. Since |S ∪ R| ≥ 3, |S ∪ R − v| ≥ 2. If (S ∪ R − v) is 6k-edge-connected
in G′, then by Theorem 2, there are 2k edge-disjoint (S ∪ R − v)-subgraphs
{H ′′

1 , . . . , H ′′
2k} in G′. Notice that since the union of two edge-disjoint (S∪R−v)-

subgraphs is a double (S ∪ R − v)-subgraph, by setting H ′
i := H ′

2i−1 ∪ H ′
2i,

{H ′
1, . . . , H

′
k} are k edge-disjoint double (S ∪ R − v)-subgraphs of G′. Now, let

Hi := H ′
i ∪ {vbj |vbj ∈ Ei(v)} ∪ {vwj , wjxj |vwj ∈ Ei(v)}. So, Ei(v) ⊆ Hi, and

Hi−v is a double (S∪R−v)-subgraph that spans NEi
(v). Also, since |Ei(v)| ≥ 2,
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Hi is a double (S ∪R)-subgraph of G. By Definition 1, {H1, . . . , Hk} are k edge-
disjoint double (S ∪ R)-subgraphs of G that extend Pk(v), a contradiction. 
�
Lemma 8. G′ − Z has 2 connected components.

Proof. We just need to show that G′ has at most 2 connected components,
then the statement that G′ − Z has 2 connected components follows from the
minimality of Z. Notice that from our construction of G′ from G, the set of
neighbours of every vertex in V (G)−S−R that remained in G′ is the same as in G.
Since G is connected, no component in G′ contains only vertices in V (G)−S−R.
Therefore, it remains to show that there are at most two components in G′ that
contain vertices in S ∪ R.

Suppose there are three connected components containing vertices in S ∪ R.
Let u1, u2, u3 ∈ S ∪R be vertices in C1, C2, C3 respectively. Since u1, u2, u3 have
at least (Q − 2)k edge-disjoint paths to v and v is of degree Qk, there exists a
vertex w ∈ NG(v) such that u1, u2, u3 all have a path to w in G. If w ∈ S∪R, then
clearly u1, u2, u3 are still connected in G′, a contradiction. If w ∈ V (G)−S −R,
then w is of degree 3 by Lemma 2. Then there must exist a pair of vertices, say u1

and u2, both have a path to the same neighbour of w in G′, a contradiction. 
�

5.3 Diverging Paths and Common Paths

Consider a vertex u �= v where u ∈ S. Since S is Qk-edge-connected in G,
by Menger’s theorem, there are Qk edge-disjoint paths, denoted by P (u) :=
{P1(u), . . . , PQk(u)}, from u to v. Note that since v is of degree exactly Qk,
each path in P (u) uses exactly one edge in E(v). Furthermore, since wi is of
degree 3 by Lemma 2, each wi is used by exactly one path in P (u). Similarly, for
u �= v where u ∈ R. There are (Q− 2)k edge-disjoint paths from u to v denoted
by P (u) := {P1(u), . . . , P(Q−2)k(u)}. Again, we may assume that each path use
exactly one edge in E(v) and at most one vertex in W . Consider Pi(u) induced in
G′, denoted by P ′

i (u). Let P ′(u) := {P ′
1(u), . . . , P ′

Qk(u)} for u ∈ S, and similarly
P ′(u) := {P ′

1(u), . . . , P ′
(Q−2)k(u)} for u ∈ R. Notice that P ′(u) contains edge-

disjoint paths in G′, and we call them the diverging paths from u.
We plan to use the diverging paths from a and b for any two vertices a, b ∈

S ∪ R in the same component of G′ − Z to establish the connectivity of S ∪ R
in each component of G′ −Z. We say v1 and v2 have λ common paths if there
are λ edge-disjoint paths starting from v1, λ edge-disjoint paths starting from
v2, and an one-to-one mapping of the paths from v1 to the paths from v2 so that
each pair of paths in the mapping ends in the same vertex. The following lemma
gives a lower bound on the number of edge-disjoint paths between two vertices
based on the number of their common paths.

Lemma 9. [9] If v1 and v2 have 2λ + 1 common paths in G, then there exist
λ + 1 edge-disjoint paths from v1 to v2 in G.
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5.4 Both Components of G′ − Z Contain Vertices in S

In this subsection, we consider the case that both components contain some
vertices in S. The lemmas in this section all share this assumption.

Lemma 10. If both components of G′−Z contain some vertices in S, then there
are at least Qk − 2|Z| crossing couples, that is, |XC | ≥ Qk − 2|Z|.
Proof. Let u1 ∈ S be in C1. In G′, u1 has at least c(B2)+|X2| edge-disjoint paths
in P ′(u1) to C2. Since Z is an edge-cut in G′, it follows that c(B2) + |X2| ≤ |Z|.
Similarly, by considering a vertex u2 ∈ S in C2, we have c(B1) + |X1| ≤ |Z|. By
Lemma 8, there are only two components in G′ − Z. So Qk = |XC | + |X1| +
|X2| + c(B1) + c(B2), and we have |XC | ≥ Qk − 2|Z|. 
�
Lemma 11. If both components of G′ − Z contain some vertices in S, then
Si ∪ Ri is (Q/2 − 14)k-edge-connected in Ci of G′ − Z.

Proof. Consider any two vertices a, b ∈ Si ∪ Ri in Ci. In G′, P ′(a) has at least
|XC | − 2k paths to different crossing couples. Among those paths, at most |Z|
of them may use edges in Z. So, in G′ −Z, a has at least |XC | − 2k − |Z| edge-
disjoint paths such that each starts at a and ends in different crossing couples,
and similarly for b. Therefore, in G′−Z, a and b have at least (|XC |−2k−|Z|)+
(|XC | − 2k − |Z|) − (|XC |) = |XC | − 4k − 2|Z| ≥ Qk − 4k − 4|Z| ≥ Qk − 28k
common paths in Ci; the second last and the last inequality hold because of
Lemma 10 and Lemma 7, respectively. By Lemma 9, a and b are (Q/2 − 14)k-
edge-connected in Ci. 
�
Lemma 12. If both components of G′ − Z contain some vertices in S, then G
has k edge-disjoint double S-subgraphs {H1, . . . , Hk} that extend Pk(v) such that
every vertex in R is balanced-extendible.

Proof. (Sketch) We pick arbitrarily min{k, |Z|} edges in Z and call them the
connecting edges. For each connecting edge e with a endpoint w ∈ V (G)−S −R
in Ci, we remove one edge e′ in Ci which is incident with w (by Lemma 6, the
other endpoint of e′ must be black), and we call e′ a reserve edge of e. Let the
resulting component be C ′

i. Since we remove at most k edges and Si ∪ Ri is
(Q/2 − 14)k-edge-connected in Ci by Lemma 11, each Si ∪ Ri is (Q/2 − 15)k-
edge-connected in C ′

i. In particular, each Si ∪ Ri is 6k-edge-connected in C ′
i.

By Theorem 2, there are 2k edge-disjoint (Si ∪ Ri)-subgraphs in C ′
i. So there

are k edge-disjoint double (Si ∪ Ri)-subgraphs {Hi
1, . . . , H

i
k} in each C ′

i for
i ∈ {1, 2}.

Now we set Hj := H1
j ∪H2

j ∪{vbi|vbi ∈ Ej(v)}∪{vwi, wixi, wiyi|vwi ∈ Ej(v)}
for 1 ≤ j ≤ k. Notice that Ej(v) ⊆ E(Hj) and Hj−v spans NEj

(v) for 1 ≤ j ≤ k.
Suppose there is a crossing couple {xi, yi} such that vwi ∈ Ej(v), then Hj

is also connected and thus is a (S ∪ R)-subgraph of G that Ej(v) ⊆ E(Hj)
and Hj − v is a (S ∪ R − v)-subgraph that spans NEj

(v). Let’s assume that
{vw1, . . . , vw|XC |} be the set of edges such that the corresponding couples are
crossing. By Lemma 10, |XC | ≥ Qk − 2|Z|. Since Pk(v) is a balanced edge-
subpartition, |Ei(v)| ≥ 2 for 1 ≤ i ≤ k. So, there are at most min{k, |Z|}
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classes of Pk(v) with no edges in {vw1, . . . , vwQk−2|Z|}. Hence there are at most
min{k, |Z|} of Hj ’s, say {H1, . . . , Hmin{k,|Z|}}, are not connected by the crossing
couples. Now, by adding each connecting edge and its reserve edge (if any) to
a different Hj that has not been connected by a crossing couple, {H1, . . . , Hk}
are k edge-disjoint double (S ∪ R)-subgraphs of G that extend Pk(v). (We skip
the not-so-interesting case that |Si| = 1 for some i ∈ {1, 2}, which needs to be
handled separately.)


�
5.5 One Component Contains Only Vertices in R

Without loss of generality, we assume that C1 contains vertices in S and C2 con-
tains only vertices in R. Lemma 13 and Lemma 14 are counterparts of Lemma 10
and Lemma 11, we omit the proofs here. However, it should be pointed out that
we only have a weaker bound on the number of crossing couples in Lemma 13,
and hence the strategy in Lemma 12 cannot be used. In Lemma 15, we use a
different strategy to construct the desired subgraphs.

Lemma 13. If C2 contains only vertices in R, then there are at least (Q−2)k−
2|Z| crossing couples, that is, |XC | ≥ (Q − 2)k − 2|Z|.
Lemma 14. If C2 contains only vertices in R, then S1 ∪ R1 is at least (Q/2 −
15)k-edge-connected in C1 of G′ − Z.

Lemma 15. If C2 contains only vertices in R, then G has k edge-disjoint double
S-subgraphs that extend Pk(v) such that every vertex in R is balanced-extendible.

Proof. Let E′ := {e1, . . . , e|X2|+c(B2)} be the set of edges incident to v in G
so that either (i) the other endpoint of ei is in B2 or (ii) the other endpoint
of ei has both of its neighbour in C2. Let u1 ∈ S. From P (u1) in G, there
are |X2| + c(B2) edge-disjoint paths from u1 to v such that each uses exactly
one edge in E′. From these paths, in G − C1, there are |X2| + c(B2) edge-
disjoint paths P := {P1, . . . , P|X2|+c(B2)} with the following property: each Pi

starts from v and ends in some vertex of C1, and ei ∈ Pi. Since each vertex in
w ∈ V (C1) − S1 − R1 is of degree 3, by the minimality of |Z|, it has at most
one neighbour in C2. Therefore, each w ∈ V (C1) can be in at most one path
in P . Now, for each ui ∈ V (C1) − S1 − R1, we remove one edge e′ in C1 which
is incident with w and set P ′

i := Pi ∪ {e′} (by Lemma 6, the other endpoint of
e′ must be in S1 ∪ R1); otherwise, P ′

i := Pi. So P ′ := {P ′
1, . . . , P

′
|X2|+c(B2)

} are
edge-disjoint paths with the following property: each P ′

i starts from v and ends
in some vertex ui ∈ S1 ∪R1, and ei ∈ P ′

i . In constructing P ′ from P , we remove
at most |X2|+ c(B2) ≤ |Z| ≤ 6k edges from C1. Let the resulting component be
C ′

1. Since S1 ∪ R1 is (Q/2 − 15)k-edge-connected in C1 by Lemma 14, S1 ∪ R1

is (Q/2 − 21)k-edge-connected in C ′
1. In particular, C ′

1 is S1 ∪ R1 is 6k-edge-
connected in C ′

1. By Theorem 2, there are 2k edge-disjoint (S1 ∪R1)-subgraphs
in C ′

1. So there are k edge-disjoint double (S1 ∪ R1)-subgraphs {H1
1 , . . . , H1

k}
in C ′

1. Now, we set Hj := H1
j ∪ {vbi|vbi ∈ Ej(v)} ∪ {vwi, wixi, wiyi|vwi ∈

Ej(v)} ∪ {Pi|ei ∈ Ej(v)}. Then, it is straightforward to check {H1, . . . , Hk}
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are k edge-disjoint double S-subgraphs that extend Pk(v) so that every vertex
in R is balanced-extendible. Indeed, every vertex in R1 is balanced-extendible
because it is of degree at least 2 in each H1

i and thus Hi; while every ver-
tex in R2 is balanced-extendible because it has degree at most 12k in Hj ,
as it is used by at most 6k paths from P ′. This completes the proof of the
lemma.


�
Putting Lemma 12 and Lemma 15 together shows that a minimal counterexam-
ple G of Theorem 5 does not exist, and this completes the proof of Theorem 5.


�

6 Concluding Remarks

As far as the algorithmic aspects go, it is straightforward to check that the
proof yields a polynomial time constant factor approximation algorithm for
the Steiner Forest Packing problem. Also, using the same technique as
in [9], the approximation algorithm can be extended to the capacitated ver-
sion of the Steiner Forest Packing, where each edge e has an capacity ce

so that at most ce forests can use e (for the original problem, ce = 1 for all
e ∈ E(G)).

The following is a general problem that captures the Steiner Forest Pack-

ing problem. Given an undirected multigraph G and a connectivity requirement
ruv for each pair of vertices u, v ∈ V (G), find a largest collection of edge-disjoint
subgraphs of G such that in each subgraph there are ruv edge-disjoint paths
from u to v for all u, v ∈ V (G). Since connectivity is transitive, it is not difficult
to see that (see [1]) Theorem 1 is equivalent to the following:

Theorem 6. Given an undirected multigraph G and a connectivity requirement
ruv ∈ {0, 1} for u, v ∈ V (G). If there are Qk · ruv edge-disjoint paths for all
u, v ∈ V (G), then there are k edge-disjoint forests such that in each forest there
is ruv path between u, v for all u, v ∈ V (G).

I conjecture that Theorem 6 can be generalized to arbitrary non-negative
integer connectivity requirements:

Conjecture 1. Given an undirected multigraph G and a connectivity requirement
ruv for each pair of vertices u, v ∈ V (G). There exists a universal constant
c so that the following holds. If there are ck · ru,v edge-disjoint paths for all
u, v ∈ V (G), then there are k edge-disjoint subgraphs H1, . . . , Hk in G such
that in each subgraph there are ruv edge-disjoint paths between u and v for all
u, v ∈ V (G).

It would be interesting to first verify Conjecture 1 for Eulerian graphs (with
c = 2?). This may also yield insights into the generalized Steiner network prob-
lem, for which the only constant factor approximation algorithm is due to Jain’s
iterative rounding technique [5].
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Research Group (EGRES) for providing an excellent research environment. The
author would also like to thank Mike Molloy for helpful comments and Volker
Kaibel for his help in preparing the final version of this paper.

References

1. C. Chekuri, B. Shepherd. Approximate integer decompositions for undirected net-
work design problems. Manuscript, 2004.

2. J. Cheriyan, M. Salavatipour. Hardness and approximation results for packing
Steiner trees problems. Proceedings of the 12th Annual European Symposium on
Algorithms (ESA), LNCS Vol 3221, pp.180-191, 2004.
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