
Linear-Time Construction of Compressed Suffix
Arrays Using o(n log n)-Bit Working Space

for Large Alphabets�

Joong Chae Na

School of Computer Science and Engineering, Seoul National University
jcna@theory.snu.ac.kr

Abstract. The suffix array is a fundamental index data structure in
string algorithms and bioinformatics, and the compressed suffix array
(CSA) and the FM-index are its compressed versions. Many algorithms
for constructing these index data structures have been developed. Re-
cently, Hon et al. [11] proposed a construction algorithm using O(n ·
log log |Σ|) time and O(n log |Σ|)-bit working space, which is the fastest
algorithm using O(n log |Σ|)-bit working space.
In this paper we give an efficient algorithm to construct the index data
structures for large alphabets. Our algorithm constructs the suffix array,
the CSA, and the FM-index using O(n) time and O(n log |Σ| log α

|Σ| n)-
bit working space, where α = log3 2. Our algorithm takes less time and
more space than Hon et al.’s algorithm. Our algorithm uses least working
space among alphabet-independent linear-time algorithms.

1 Introduction

Given a string T of length n over an alphabet Σ, the suffix array due to Man-
ber and Myers [16] and independently due to Gonnet et al. [6] is basically a
sorted list of all the suffixes of T . The suffix array requires O(n log n)-bit space.
Manber and Myers [16] and Gusfield [9] proposed O(n log n)-time algorithms for
constructing the suffix array. Recently, almost at the same time, Kim et al. [13],
Kärkkäinen and Sanders [12], and Ko and Aluru [14] developed algorithms to
directly construct the suffix array in O(n) time and O(n log n)-bit space. These
algorithms are based on similar recursive divide-and-conquer schemes.

As the size of data such as DNA sequences increases, compressed versions of
the suffix array such as the compressed suffix array (CSA) [7, 8] and the FM-
index [5] were proposed to reduce the space requirement of suffix arrays. Lam et
al. [15] first developed an algorithm to directly construct the CSA, which uses
O(|Σ|n log n) time and O(n log |Σ|) bits. Hon et al. [10] improved the construc-
tion time to O(n log n), while maintaining the O(n log |Σ|)-bit space complexity.

It had been an open problem whether the index data structures such as
the suffix array, the CSA, and the FM-index, can be constructed in o(n log n)
time and o(n log n)-bit working space. Recently, it was solved by Hon et al. [11].
� This work was supported by the MOST Grant M6-0203-00-0039.

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 57–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

58 Joong Chae Na

They proposed an algorithm for constructing the index data structures using
O(n log log |Σ|) time and O(n log |Σ|)-bit working space. This algorithm followed
the odd-even scheme (i.e., 1

2 -recursion), which was used in Farach’s algorithm [3,
4] and Kim et al.’s algorithm [13].

In this paper we give another algorithm for constructing the index data
structures in o(n log n) time and o(n log n)-bit working space. Our algorithm con-
structs the suffix array, the CSA, and FM-index using O(n) time and O(n log |Σ|·
log α

|Σ| n)-bit space, where α = log3 2. The time complexity of our algorithm is
independent of the alphabet size. Hence, our algorithm is the first alphabet-
independent linear-time algorithm for constructing the index data structures
using o(n log n)-bit space.

The framework of our algorithm follows Kärkkäinen and Sanders’s skew
scheme [12] (i.e., 2

3 -recursion). The merit of our algorithm due to the skew
scheme [12] is that the merging step is simple compared with Hon et al.’s al-
gorithm [11]. As in Hon et al.’s algorithm [11], moreover, our algorithm don’t
need the encoding step, which is the most complex and time-consuming step in
the skew scheme.

It remains an open problem to construct the suffix array, the CSA, and the
FM-index optimally, i.e., using O(n) time and O(n log |Σ|)-bit working space.

2 Preliminaries

In this section we give some basic notations and definitions including the Ψ
function of the Compressed Suffix Array (CSA) [7], the array C of the Burrows-
Wheeler Transformation (BWT) [1], and the Ψ ′ function, which is similar to Ψ
and the core of our algorithm.

Let T be a string of length n over an alphabet Σ. For simplicity, we assume
that n is a multiple of 3. We denote the ith character by T [i] and the substring
T [i]T [i + 1] · · ·T [j] by T [i..j]. We assume that T [n] = $ is a unique terminator
which is lexicographically smaller than any other character in Σ. For 1 ≤ i ≤ n,
T [i..n] is a suffix of T and T [i..n]T [1..i− 1] is a circular string of T . We denote
circular string T [i..n]T [1..i− 1] by T 〈i〉.

For 1 ≤ i ≤ n/3, a suffix T [3 · i − 2..n], a suffix T [3 · i − 1..n], and T [3 ·
i..n] are called a residue-1 suffix, a residue-2 suffix, and a residue-3 suffix of
T , respectively. Let T [i..n] be lexicographically the kth smallest suffix of T .
Then, the rank of T [i..n] in the suffixes of T is k. The suffix array of T is a
lexicographically sorted array of the suffixes of T . Formally, the suffix array
SA[1..n] of T is an array of integers such that SA[k] = i, where k is the rank of
T [i..n] in the suffixes of T . See Figure 1 for an example.

2.1 Ψ Function and C Array

We define the ΨT function [7, 11], or simply Ψ . Let T [k..n] be the suffix stored in
the ith entry of SA. Then, Ψ [i] is a position in SA where T [k + 1..n] are stored.

Linear-Time Construction of Compressed Suffix Arrays 59

i C[i] SA[i] Ψ [i]

1 a 9 8 $

2 b 8 1 a$

3 b 4 5 aabba$

4 b 2 7 abaabba$

5 a 5 9 abba$

6 b 7 2 ba$

7 a 3 3 baabba$

8 $ 1 4 babaabba$

9 a 6 6 bba$

Fig. 1. The suffix array SA, Ψ function, and C array of S = babaabba$.

More formally,

Ψ [i] =
{

SA−1[SA[i] + 1] (if SA[i] �= n)
SA−1[1] (if SA[i] = n)

See Figure 1 for an example. The Ψ function is piece-wise increasing. Thus, the Ψ
function can be encoded using O(n log |Σ|) bits in the form T [SA[i]]×n+Ψ [i]−1,
which is an increasing sequence, so that each Ψ [i] can be retrieved in constant
time [2, 8, 17].

Lemma 1. [11] Given T and the Ψ function, the suffix array and the compressed
suffix array can be constructed in O(n) time and O(n log |Σ|)-bit working space.

The C[1..n] array is defined as

C[i] =
{

T [SA[i] − 1] (if SA[i] �= 1)
T [n] (if SA[i] = 1)

See Figure 1 for an example.

Lemma 2. [11] Given the C array of T , the FM-index can be constructed in
O(n) time and O(n log |Σ|)-bit working space.

It is known that Ψ and C are one-to-one corresponding and the transforma-
tion between them can be done in linear time using O(n log |Σ|) bits.

Lemma 3. [11] Given C[1..n], we can compute Ψ [1..n] in O(n) time and
O(n log |Σ|) bits.

Lemma 4. [11] Given Ψ [1..n] and T , we can construct C[1..n] in O(n) time
and O(n log |Σ|) bits.

2.2 Ψ ′ Function

Let T1, T2 and T3 be the strings of length n/3 over the alphabet Σ3, which
are formed by merging every 3 characters in T 〈1〉, T 〈2〉 and T 〈3〉, respectively.

60 Joong Chae Na

S12 = bab aab ba$ aba abb a$b

i P C′
12 SA12 Ψ ′

S12
F12

1 0 b 6 1 a $b

2 1 b 2 4 a ab ba$

3 0 b 4 2 a ba abb a$b

4 0 a 5 3 a bb a$b

5 1 b 3 1 b a$

6 1 $ 1 3 b ab aab ba$

(a) P , SA12, Ψ ′
S12

, F12 and C′
12

S3 = baa bba $ba

i C′
3 SA3 Ψ ′

S3
F3

1 a 3 6 $ ba

2 a 1 2 b aa bba $ba

3 a 2 5 b ba $ba

(b) SA3, Ψ ′
S3

, F3 and C′
3

Fig. 2. P array, Ψ ′ function, F array and C′ array for S = babaabba$. F and C′ are
defined in Section 5.

Then, the residue-1, residue-2, and residue-3 suffixes of T correspond one-to-one
to the suffixes of T1, T2 and T3, respectively. Note that the last characters of T1,
T2, and T3 is unique. We denote the concatenation T1 and T2 by T12. Let SA12

and SA3 be the suffix array of T12 and T3, respectively.

Fact 1 Consider a suffix T12[i..2n/3] (= T [3i−2..n]T [2..n]T [1]) for 1 ≤ i ≤ n/3.
Because the last character of T1 is unique, the rank of this suffix is determined
by T [3i− 2..n]. Thus, T [3i− 2..n] can be regarded as the suffix stored in the kth
entry of SA12, where k = SA−1

12 [i].

We divide SA12 into two parts. Part 1 and 2 store the suffixes of T1 and T2,
respectively. Formally, the ith entry of SA12 belongs to Part 1 if 1 ≤ SA12[i] ≤
n/3, and it belongs to Part 2 otherwise. The part array P [1..2n/3] of SA12 is
a bit-array representing which part the ith entry of SA12 belongs to. We set
P [i] = 1 if the ith entry of SA12 belongs to Part 1, and P [i] = 0 otherwise.

Lemma 5. Given T , ΨT12 , and SA−1
12 [1], we can construct P [1..2n/3] in O(n)

time and O(n) bits.

Proof. For simplicity of notations, we denote ΨT12 by Ψ . Let t = SA−1
12 [1]. For

1 ≤ i < 2n/3, SA12[Ψ i[t]] = i + 1. By definition, SA12[Ψ [i]] = SA[i] + 1. Thus,
SA12[Ψ i[t]] = SA12[Ψ i−1[t]] + 1 = · · · = SA12[Ψ [t]] + i − 1 = SA12[t] + i = i + 1.

Hence, we have P [t] = P [Ψ i[t]] = 1 for 1 ≤ i < n/3. We set P [t] = 1 and
initialize P [j] = 0 for j �= t. And we iteratively compute Ψ i[t] and set P [Ψ i[t]] = 1
for 1 ≤ i < n/3. The total time required is O(n), and the space is O(n) bits
for P .

We define Ψ ′ of T which plays a central role in our algorithm. Intuitively, the
Ψ ′ function is just like Ψ , but Ψ ′ is defined in SA12 and SA3. The Ψ ′ function
consists of Part 1 and Part 2 of Ψ ′

T12
, and Ψ ′

T3
. The definition of Ψ ′ is as follows:

• Part 1 of Ψ ′
T12

[i]:
Let T [3k − 2..n] be a suffix stored in the ith entry of SA12, which belongs to
Part 1. Then, Ψ ′

T12
[i] is the position in SA12 (which belongs to Part 2) where

T [3k − 1..n]T [1] is stored.

Linear-Time Construction of Compressed Suffix Arrays 61

For example, consider Ψ ′
T12

[2] in Figure 2. The suffix stored in the 2nd entry
of SA12 is T [4..9] (=aabba$). T [5..9]T [1] (=abba$b) is stored in the 4th entry
of SA12. Therefore, Ψ ′

T12
[2] = 4.

• Part 2 of Ψ ′
T12

[i]:
Let T [3k− 1..n]T [1] be a suffix stored in the ith entry of SA12, which belongs
to Part 2. Then, Ψ ′

T12
[i] is the position in SA3 where T [3k..n]T [1..2] is stored.

For example, consider Ψ ′
T12

[4] in Figure 2. The suffix stored in the 4th entry of
SA12 is T [5..9]T [1] (=abba$b). T [6..9]T [1..2] (=bba$ba) is stored in the 3rd
entry of SA3. Therefore, Ψ ′

T12
[4] = 3.

• Ψ ′
T3

[i]:
Let T [3k..n]T [1..2] be a suffix stored in the ith entry of SA3. Then, Ψ ′

T3
[i] is

a position in SA12 (which belongs to Part 1) where T [3k + 1..n] is stored (we
assume that when 3k = n, T [3k + 1..n] is T [1..n]).
For example, consider Ψ ′

T3
[3] in Figure 2. The suffix stored in the 3rd entry of

SA3 is T [6..9]T [1..2] (=bba$ba). T [7..9] (=ba$) is stored in the 5th entry of
SA12. Therefore, Ψ ′

T3
[3] = 5.

More formally,

Ψ ′
T12

[i] =

{
SA−1

12 [SA12[i] + n/3] if 1 ≤ SA12[i] ≤ n/3 (Part 1)

SA−1
3 [SA12[i] − n/3] if n/3 < SA12[i] ≤ 2n/3 (Part 2)

Ψ ′
T3

[i] =

{
SA−1

12 [1] if SA3[i] = 3/n

SA−1
12 [SA3[i] + 1] othersiwe.

Similarly to Ψ , the Ψ ′ function can be encoded in O(n log |Σ|) bits, so that
each Ψ ′

T12
[i] and Ψ ′

T3
[i] can be retrieved in constant time. Part 1 of Ψ ′

T12
is

piece-wise increasing. Thus, we encode Part 1 of the Ψ ′
T12

function in the form
T [3SA12[i] − 2] · n + Ψ ′

T12
[i] − 1, which is an increasing sequence. Similarly, we

can encode Part 2 of Ψ ′
T12

and Ψ ′
T3

.

3 Framework

We will describe how to construct the Ψ function and the C array of T in O(n)
time. Then, we can construct the suffix array, the compressed suffix array, and
the FM-index in O(n) time and O(n log |Σ|)-bit working space using T , the Ψ
function, and the C array by Lemmas 1 and 2.

For simplicity, we assume that the length of T is a multiple of 3�log3 log|Σ| n�+1.
Let h be �log3 log|Σ| n�. We denote T 〈a1, . . . , ap〉 to be the string formed by
concatenating circular strings T 〈a1〉, . . . , T 〈ap〉 in order. For any string S over
Σ, we define S(k) to be the string over the alphabet Σ3k

, which is formed by
concatenating every 3k characters in S to make one character. By definition,
S(0) = S. For 1 ≤ k ≤ h, we recursively define a string T k over Σ3k

as follows.
We define T 0 as T 〈1〉(0) (= T). Let T k−1 = T 〈a1, . . . , a2k−1〉(k−1). Then,

T k = T 〈a1, . . . , a2k−1 , a2k−1+1, . . . , a2k〉(k)

= T 〈a1〉(k)
. . . T 〈a2k〉(k)

,

62 Joong Chae Na

←→ 3k−1 characters over Σ

T k 1 2 3 4 5 6 7 ··

T k+1 1 2 3 4 5 6 7 ·· 2 3 4 5 6 7 ·· 1
←−−−−→

3k characters over Σ

Fig. 3. The relationship between T k and T k+1.

where a2k−1+i = ai + 3k−1 for 1 ≤ i ≤ 2k−1. That is, T 1 = T 〈1, 2〉(1), T 2 =
T 〈1, 2, 4, 5〉(2), T 3 = T 〈1, 2, 4, 5, 10, 11, 13, 14〉(3), and so on. The length of T k is
(2/3)kn.

Fact 2 For 1 ≤ i < j ≤ 2k, ai < aj.

Lemma 6. For 1 ≤ i ≤ 2k, the last character of T 〈ai〉(k) is unique in T k.

Proof. We first prove that a2k ≤ 3k by induction. When k = 0, a20 = 1 = 30.
Supposing that a2k−1 ≤ 3k−1, a2k = a2k−1 + 3k−1 ≤ 3k−1 + 3k−1 < 3k.

Because T 〈ai〉[n − ai + 1] = $ and ai ≤ 3k, $ is contained only in the last
character of T 〈ai〉(k). By Observation 2, the position of $ in T 〈ai〉 is different
from that in T 〈aj〉 for any j �= i. Therefore, the last character of T 〈ai〉(k) is
unique in T k.

Consider the relationship between T k and T k+1. See Figure 3. Let S[1..m] be
string T k. Roughly speaking, T k+1 is the string of length 2m/3, which is formed
by merging every 3 characters in S〈1〉S〈2〉 (= T k〈1, 2〉(1)). In other words, the
suffixes of T k+1 correspond to the residue-1 and residue-2 suffixes of T k, i.e.,
T k’s are essentially the same as the strings made by Kärkkäinen and Sanders’s
2
3 -recursion [12].

Lemma 7. The suffix array of T k+1 is the same as the suffix array of T k〈1, 2〉(1).

Proof. We compare the characters of T k+1 and T k〈1, 2〉(1). Let m = 2k and
Xi[1..p] = T 〈ai〉(k), where p must be a multiple of 3. Let X be X1[1..p]X2[1..p]
. . . Xm[1..p], i.e., T k = X . Let

P = X1[2..p] X1[1] X2[2..p] X2[1] . . .Xm[2..p] Xm[1], and
Q = X1[2..p] X2[1] X2[2..p] X3[1] . . .Xm[2..p] X1[1].

Then, T k+1 = X(1) · P (1) and T k〈1, 2〉(1) = X(1) · Q(1).
Consider the (p

3 · i)th characters of P (1) and Q(1), for 1 ≤ i ≤ m.

P (1)[p · i/3] = Xi[p − 1] Xi[p] Xi[1] and
Q(1)[p · i/3] = Xi[p − 1] Xi[p] Xi+1[1].

Linear-Time Construction of Compressed Suffix Arrays 63

That is, only the 3rd components of these characters are different. However, the
3rd components of these characters don’t affect the order of suffixes of T k+1 and
T k〈1, 2〉(1) because Xi[p] is unique by Lemma 6. The other characters of T k+1

and T k〈1, 2〉(1) are the same. Therefore, we get the lemma.

Corollary 1. The Ψ function of T k+1 is the same as the Ψ function of
T k〈1, 2〉(1).

The basic framework to construct ΨT (= ΨT 0) goes bottom-up. That is, we
construct ΨT k for k = h down to 0. The algorithm is divided into two phases.
Phase 1 consists of step h and Phase 2 consists of the remaining h steps. The
details of each phase are as follows.

For Phase 1, we construct ΨT h by first building the suffix array of T h using
any linear-time construction algorithm [4, 12–14], and then converting it to ΨT h .

In step k of Phase 2, we construct ΨT k from ΨT k+1 . Recall that T k〈1, 2〉(1)

and T k〈3〉(1) are denoted by T k
12 and T k

3 , respectively. We first compute Ψ ′
T k
12

and

Ψ ′
T k
3

using T k and ΨT k+1 . Then, we construct ΨT k by merging Ψ ′
T k
12

and Ψ ′
T k
3
.

In Sections 4 we describe how to compute Ψ ′
T k
12

and Ψ ′
T k
3

from T k and ΨT k+1

(= ΨT k
12

by Corollary 1) in O(|T k|+|∆|) time and O(|T k| log |∆|+|∆|)-bit space,
where ∆ is the alphabet of T k. In Sections 5 we describe how to merge Ψ ′

T k
12

and

Ψ ′
T k
3

in O(|T k|) time and O(|T k| log |∆|)-bit space.

Theorem 1. The Ψ function of T can be constructed in O(n) time and
O(n log |Σ| · log α

|Σ| n)-bit space, where α = log3 2.

Proof. For Phase 1, we first construct the suffix array for T h whose size is
n(2/3)log3 log|Σ| n ≤ n(log|Σ| n)α−1. This requires O(n) time and O(n log |Σ| ·
log α

|Σ| n)-bit space by using any linear-time construction algorithm [4, 12–14].
Then ΨT h can be constructed in O(n) time and O(n log |Σ| · log α

|Σ| n)-bit space.
Thus, Phase 1 takes O(n) time and O(n log |Σ| · log α

|Σ| n)-bit space.
For every step i in Phase 2, we construct ΨT i . Let ∆i be the alphabet of T i.

For the space, each step requires O(|T i| log |∆i| + |∆i|) bits. Note that |T i| =
(2/3)in and |∆i| ≤ |Σ|3i ≤ n, so |T i| log |∆i| = (2/3)in log |Σ|3i

= 2in log |Σ| ≤
n log |Σ| · log α

|Σ| n. Therefore, the space for Phase 2 is O(n log |Σ| · log α
|Σ| n) bits.

The time of each step is O((|T i| + |∆i|). The total time of Phase 2 is

�log3 log|Σ| n�−1∑
i=1

O

(
n

(
2
3

)i

+ |Σ|3i

)
= O(n).

Finally, consider the space storing T i = T 〈a1, . . . , a2i〉(i). We don’t store T i

explicitly but the values of aj (1 ≤ j ≤ 2i). We can get a character of T i in
constant time using the values of aj and T . The circular strings of T which
compose T h include all those which compose T i. Therefore, we just store 2h

integers of size log n for the whole algorithm. The space is log n · log α
|Σ| n bits.

64 Joong Chae Na

Xii P
x[i] S12[SA12[i]..m/3] S[1..2]

1 0 · · ·
2 1 b aa bba $ ba

3 0 · · ·
4 0 · · ·
5 1 b ba $ ba

6 1 $ ba

(a) x[i] and Xi

k sorted x i→ Ψ ′
S3

1 $ 6
2 b 2
3 b 5

(b) x[i] and index i after stable sorting on x

Fig. 4. Consider S = babaabba$. For comparison, see Figure 2.

4 Constructing Ψ ′

Let S[1..m] be T k. We define S12 and S3 just as T k
12 and T k

3 , respectively. We
denote the suffix arrays of S12 and S3 by SA12 and SA3, respectively. Let ∆ be
the alphabet of S, and P be the part array of SA12. We assume S[0] = S[m].

Given S[1..m], ΨS12 , and SA−1
12 [1], we will describe how to construct Ψ ′

S12

and Ψ ′
S3

. The algorithm consists of three parts: Constructing Ψ ′
S3

using Part 1
of ΨS12 , constructing Part 2 of Ψ ′

S12
using Ψ ′

S3
, and constructing Part 1 of Ψ ′

S12

using Part 2 of ΨS12 . We describe only how to construct Ψ ′
S3

using Part 1 of ΨS12 .
Part 1 and 2 of Ψ ′

S12
can be constructed similarly.

We define x[1..2m/3] as an array of characters such that x[i] = S[3SA12[i]−3]
if P [i] = 1, and x[i] isn’t defined otherwise. For i with P [i] = 1, let Xi be
the string x[i]S12[SA12[i]..m/3]S[1..2] if SA12[i] �= 1, and the string x[i]S[1..2]
(= S[n]S[1..2]) otherwise. For i with P [i] = 0, Xi isn’t defined. See Figure 4
(a) for an example. From now on, we consider only x[i]’s and Xi’s such that
P [i] = 1. Let X be the set {Xi | P [i] = 1, 1 ≤ i ≤ 2m/3}. Then, Xi is a suffix of
S3 and X is the same as the set of suffixes of S3.

Lemma 8. The stable sorting order of x[i] is equal to the rank of Xi in X.

Proof. Let Xp be the element of X such that SA12[i] = 1. By omitting the first
characters of every Xk’s except Xp, they are of the form S12[SA12[i]..m/3]S[1..2],
which are already sorted in SA12 (note that S[1..2] does not affect the order
because S12[m/3] is unique). The first character of Xp (= S[m]) is unique. Thus,
the rank of Xi is equal to the stable sorting order of x[i].

Lemma 9. Let k be the stable sorting order of x[i] with P [i] = 1. Then Ψ ′
S3

[k] =
i.

Proof. Let S[p..n] be the suffix stored in the ith entry of SA12. Then, x[i] is
S[p − 1] and the rank of Xi (= S[p − 1..n]S[1..2]) is k in X by Lemma 8.
By definition, Ψ ′

S3
[k] is a position in SA12 where S[p..n] is stored. Therefore,

Ψ ′
S3

[k] = i. See Figure 4 (b).

Lemma 10. Given S, ΨS12 , and SA−1
12 [1], Ψ ′

S3
can be constructed in O(m+ |∆|)

time and O(m log |∆| + |∆|)-bit space.

Linear-Time Construction of Compressed Suffix Arrays 65

Procedure Const C array

begin
i← 1; j ← 1;
for k = 1 to m

rval← Compare suffix(i, j);
if rval > 0 then

C[k]← C′
12[i];

i← i + 1;
else

C[k]← C′
3[j];

j ← j + 1;
end

Function Compare suffix(i, j)
begin

if P [i] = 1 then
x← (F12[i], Ψ ′

S12 [i]);
y ← (F3[j], Ψ ′

S3
[j]);

else
x← (F12[i], F3[Ψ

′
S12 [i]], Ψ ′

S3 [Ψ
′
S12 [i]]);

y ← (F3[j], F12[Ψ
′
S3

[j]], Ψ ′
S12

[Ψ ′
S3

[j]]);
if x < y then

return 1;
else return -1;

end

Fig. 5. Constructing the C array of S.

Proof. Given S, ΨS12 , and SA−1
12 [1], we first construct x in O(m) time and

O(m log |∆|) bits using a method similar to that in Lemma 5.
Then, for i = 1 to 2m/3 with P [i] = 1, we iteratively compute the stable

sorting order k of x[i] and set Ψ ′
S3

[k] = i. The total iteration of the stable sorting
can be performed in O(m + |∆|) time using O(m log |∆| + |∆|) bits [11].

Similarly, we can construct Part 2 of Ψ ′
S12

using Ψ ′
S3

and Part 1 of Ψ ′
S12

using
Part 2 of ΨS12 . Thus, we get the following lemma.

Lemma 11. Given S, ΨS12 , and SA−1
12 [1], we can construct Ψ ′

S12
and Ψ ′

S3
in

O(m + |∆|) time and O(m log |∆| + |∆|)-bit space.

5 Merging Ψ ′
S12

and Ψ ′
S3

In this section we will describe how to construct ΨS by merging Ψ ′
S12

and Ψ ′
S3

.
We first construct the C array of S by merging Ψ ′

S12
and Ψ ′

S3
. Merging Ψ ′

S12
and

Ψ ′
S3

is similar to Kärkkäinen and Sanders’s algorithm [12], which merge SA12

and SA3 in O(m) time. Then, we convert C to ΨS by Lemma 3.
Let F12[1..2m/3] and F3[1..m/3] be arrays of the first characters, over ∆,

of the suffixes in SA12 and S3, respectively. That is, F12[i] = S[3SA12[i] − 2] if
P [i] = 1, and F12[i] = S[3(SA12[i]−m/3)− 1] otherwise, and F3[i] = S[3SA3[i]].
Similarly, let C′

12[1..2m/3] and C′
3[1..m/3] be arrays of the characters preceding

F12 and F3 in S, respectively. That is, C′
12[i] = S[3SA12[i] − 3] if P [i] = 1, and

C′
12[i] = S[3(SA12[i] − m/3) − 2] otherwise, and C′

3[i] = S[3SA3[i] − 1]. Note
that characters in C′

12 and C′
3 compose C. See Figure 2 for an example. We can

construct these arrays in O(m) time and O(m log |∆|) bits as in Lemma 5.
We construct the C array by merging SA12 and SA3. This merging is similar

to merging two sorted arrays of integers. Figure 5 shows Procedure Const C
array, which constructs the C array. Procedure Const C array consists of m
iterations. Let S[p..m] be the suffix in the ith entry of SA12 and S[q..m] be the
suffix in the jth entry of SA3 (note that we ignore characters following S[m]

66 Joong Chae Na

in SA12 and S3 because these characters do not affect the order of suffixes). In
the kth iteration, we determine which suffix is lexicographically the kth smallest
by comparing S[p..m] with S[q..m], and thus we can compute C[k]. During the
merging stage, we can get SA−1[1] which will be used in the next step.

Function Compare suffix(i, j) compares S[p..m] and S[q..m] using the Ψ ′

function and arrays F12 and F3. We have two cases according to the values
of P [i]. Consider the case of P [i] = 1. Then, S[p..m] is a residue-1 suffix and
S[q..m] is a residue-3 suffix. We first compare S[p] (= F12[i]) with S[q] (= F3[j]).
If S[p] = S[q], we compare S[p + 1..m] with S[q + 1..m]. Because S[p + 1..m]
and S[q + 1..m] are residue-2 and residue-1 suffixes, respectively, Ψ ′

S12
[i] and

Ψ ′
S3

[j] represent the ranks of S[p + 1..m] and S[q + 1..m] in SA12, respectively.
Therefore, we can determine which suffix is smaller by comparing one pair of
characters and one pair of integers. Similarly, we can do by comparing two pairs
of characters and one pair of integers in case of P [i] = 0.

Function Compare suffix(i, j) takes constant time and so Procedure Const
C array takes O(m) time. The space for arrays and Ψ ′ function is O(m log |∆|)
bits. By Lemma 3, we convert C to ΨS in O(m) time and O(m log |∆|) bits.
Hence, we get the following lemma.

Lemma 12. Given S, Ψ ′
S12

, Ψ ′
S3

, and SA−1
12 [1], we can compute ΨS and SA−1[1]

in O(m) time and O(m log |∆|)-bit space.

References

1. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, Paolo Alto, Califor-
nia, 1994.

2. D. R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Waterloo,
1988.

3. M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings
of the 38th Annual IEEE Symposium on Foundations of Computer Science, pages
137–143, 1997.

4. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

5. P. Ferragina and G. Manzini. Opportunistic data structures with applications.
In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, pages 390–398, 2000.

6. G. H. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text: Pat trees and
pat arrays. In W. B Frakes and R. Baeza-Yates, editors, Information Retrieval:
Data Structures & Algorithms, pages 66–82. Prentice Hall, 1992.

7. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching. In Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing, pages 397–406, 2000.

8. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with ap-
plications to text indexing and string matching. Technical Report Submitted for
publication, 2001.

Linear-Time Construction of Compressed Suffix Arrays 67

9. D. Gusfield. An “Increment-by-one” approach to suffix arrays and trees.
manuscript, 1990.

10. W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Constructing compressed
suffix arrays with large alphabets. In Proceedings of the 14th International Sympo-
sium on Algorithms and Computation, pages 240–249, 2003.

11. W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a time-and-space barrier in
constructing full-text indices. In Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, pages 251–260, 2003.

12. J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In
Proceedings of the 30th International Colloquium on Automata, Languages, and
Programming, pages 943–955, 2003.

13. D.K. Kim, J. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays.
In Proceedings of the 14th Symposium on Combinatorial Pattern Matching, pages
186–199, 2003.

14. P. Ko and S. Aluru. Space-efficient linear time construction of suffix arrays. In
Proceedings of the 14th Symposium on Combinatorial Pattern Matching, pages
200–210, 2003.

15. T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A space and time effi-
cient algorithm for constructing compressed suffix arrays. In Proceedings of the
9th International Computing and Combinatorics Conference, pages 401–410, 2002.

16. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

17. J. I. Munro. Tables. In Proceedings of Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 37–42, 1996.

	Linear-Time Construction of Compressed Suffix Arrays Using o(n logn)-Bit Working Space for Large Alphabets
	1 Introduction
	2 Preliminaries
	2.1 Psi Function and C Array
	2.2 Psi' Function

	3 Framework
	4 Constructing Psi'
	5 Merging Psi'_{S_{12}} and Psi'_{S_{3}}
	References

