
Two Dimensional Parameterized Matching

Carmit Hazay1, Moshe Lewenstein1,�, and Dekel Tsur2,��

1 Bar-Ilan University
{harelc,moshe}@cs.biu.ac.il

2 University of California, San Diego
dtsur@cs.ucsd.edu

Abstract. Two equal length strings, or two equal sized two dimensional
texts, parameterize match (p-match) if there is a one-one mapping (rela-
tive to the alphabet) of their characters. Two dimensional parameterized
matching is the task of finding all m × m substrings of an n × n text
that p-match to an m × m pattern. This models, for example, search-
ing for color images with changing of color maps. We present an algo-
rithm that solves the two dimensional parameterized matching problem
in O(n2 + m2.5 · polylog(m)) time.

1 Introduction

Let S and S′ be two equal length strings. We say that S and S′ parameterize
match, or p-match for short, if there is a bijection π from the alphabet of S to the
alphabet of S′ such that S′[i] = π(S[i]) for every index i. In the parameterized
matching problem, introduced by Baker [9, 11], one is given a text T and pattern
P and the goal is to find all the substrings of T of length |P | that p-match to P .
Baker introduced parameterized matching for applications that arise in software
tools for analyzing source code. Other applications for parameterized matching
arise in image processing and computational biology (see [2]).

In [9, 11], an optimal linear time algorithm was given for p-matching. How-
ever, it was assumed that the alphabet was of constant size. An optimal algo-
rithm for p-matching in the presence of an unbounded size alphabet was given
in [6]. In [10], a novel method was presented for parameterized matching by
constructing parameterized suffix trees, which also allows for online p-matching.
The parameterized suffix tree was further explored by Kosaraju [16] and faster
constructions were given by Cole and Hariharan [12].

In [7], approximate parameterized matching was introduced and a solution
for binary alphabets was given. In [15], an O(nk1.5 + mk log m) time algorithm
was given for approximate parameterized matching with k mismatches, and a
strong relation was shown between this problem and maximum matchings in
bipartite graphs.

� The second author was supported by an IBM faculty award grant.
�� The third author was a postdoc at Caesarea Rothschild Institute of Computer Sci-

ence, University of Haifa during the research of these results.

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 266–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Two Dimensional Parameterized Matching 267

One of the interesting problems in web searching is searching for color im-
ages, see [4, 8, 17]. If the colors are fixed, this is exact two dimensional pattern
matching [3]. However, images can appear under different color maps. The image
is the same image however each color has been recolored with a unique color.
Two-dimensional parameterized search is precisely what is needed. The fastest
algorithm for solving the two dimensional parameterized matching problem was
given in [2], and its time complexity is O(n2 log2 m).

It is an open question whether a linear time algorithm for the two dimensional
parameterized matching problem exists. In this paper we show that it is possible
to get an algorithm that is linear in the text size, but with a penalty in the
preprocessing stage. More precisely, the time complexity of our algorithm is
O(n2 + m2.5 · polylog(m)). For alphabets drawn from a large universe (larger
than polynomial in n) the time complexity increases to O(n2 log |Σ| + m2.5 ·
polylog(m)). However, this seems to be unavoidable as it was shown in [6] that
the one-dimensional parameterized matching requires Ω(n log |Σ|) time.

Due to lack of space, some proofs are omitted.

2 Preliminaries and Definitions

Let T and T ′ be two texts of size k×k. We say that there is a function matching
between T and T ′ if there is a mapping f from the alphabet of T to the alphabet
of T ′ such that T ′[i, j] = f(T [i, j]) for all i and j. If the mapping f is one-
to-one, we say that T and T ′ parameterize match, or p-match for short. Note
that the definition of function matching is asymmetric whereas the definition of
parameterized matching is symmetric. The parameterized matching problem is
defined as follows:
Input: An n× n text T and an m×m pattern P .
Output: All substrings of T of size m×m that p-match to P .

The algorithms for one dimensional parameterized matching are based on
converting the pattern and text strings into predecessor strings. The predecessor
of location i in a string S is the location containing the previous appearance
of the symbol S[i], if there is such a location. The predecessor string of S is
obtained by replacing each character in S by the distance to its predecessor, or
by 0 if the character does not have a predecessor. For example, the predecessor
string of aabbaba is 0, 1, 0, 1, 3, 2, 2. A simple and well-known fact is that:

Observation 1 S and S′ p-match iff they have the same predecessor string.

Observation 1 gives a handle on finding p-matches for 1-dimensional texts.
We would like to use a similar observation for 2-dimensional texts as well. In
order to do so we define the following.

Definition 1 (strip). Let T be an n× n text. The i-th strip of T is the n×m
substring T [1 . . n, i . . i + m− 1].

Let A be a k × l string. We define the linearization of A to be the one-
dimensional string A[1, 1], . . . , A[1, l], A[2, 1], . . . , A[2, l], . . . , A[k, 1], . . . , A[k, l].

268 Carmit Hazay, Moshe Lewenstein, and Dekel Tsur

Definition 2 (predecessor). Let T be an n × n text, T ′ be a strip of T , and
(i, j) be a location in T . The predecessor of (i, j) w.r.t. T ′ is the location (i′, j′)
in T such that (i′ − 1)m + j′ is the predecessor of location (i − 1)m + j in the
linearization of T ′.

A pair of a location in T and its predecessor will be called a location-predecessor
pair.

3 Overview

We begin by giving an overview of the algorithm. As in many pattern matching
algorithms, we assume w.l.o.g. that n = 2m. Larger texts can be cut into 2m×2m
pieces which are handled separately.

The outline of the algorithm follows the “duel-and-sweep”-paradigm that
appeared in [3] (there it is named “consistency and verification” and was used for
2-dimensional exact matching) and is based upon ideas of duelling techniques [18,
19]. The idea of the “duel-and-sweep”-paradigm is to maintain a list of m ×m
substrings of T , called candidates, that might match to P . Starting with all
the m ×m substrings of T , the list is pruned in two stages to a list of all the
candidates which actually match. The two stages are called the duelling stage
and the sweeping stage. However, exact matching turns out to be much simpler
than parameterized matching. This is mainly because of the “witness” which is
used in the duelling stage to differentiate between two pattern alignments. In
exact matching a witness is simply one location with a mismatch between the two
alignments. However, in parameterized matching one location is not sufficient to
rule out a match. The following definition captures the concept of a witness in
parameterized matching.

Definition 3 (witness). Let P be a pattern of size m×m. Consider an align-
ment of P with itself, starting at location (a + 1, b + 1) (namely, P [x, y] in the
first copy of P is aligned with P [x+a, y + b] in the second copy of P). A witness
relative to the offset (a, b) is a pair of locations (x, y), (x′, y′) such that one of
the following holds:

1. P [x, y] = P [x′, y′] and P [x + a, y + b] �= P [x′ + a, y′ + b].
2. P [x, y] �= P [x′, y′] and P [x + a, y + b] = P [x′ + a, y′ + b].

In the duelling stage, we use the fact that if two p-matches of P in T overlap,
then there is a p-matching between the two substrings of P that correspond to
the overlapping area of the two matches. Using a witness array for P , we can
check pairs of overlapping candidates which do not agree on their overlapping
area, and rule out at least one candidate from the pair in constant time per pair.
After this stage we remain only with candidates that agree with each over.

In the sweeping stage, we need to check the remaining candidates. This is
done by going over all the strips of T from left to right, and for each strip,
checking the candidates that are contained in the current strip.

Two Dimensional Parameterized Matching 269

Suppose that the current strip starts at column y, and consider some candi-
date T ′ = T [x . . x + m − 1, y . . y + m − 1] in the strip. Suppose that we know
the predecessor for every location in the current strip of T .

Before we make the next observation, a central concept which has a similar
flavor to the witness defined above is as follows.

Definition 4 (mismatch pair). Let R and S be two equal sized 2-dimensional
strings. A mismatch pair between R and S is a pair of locations (i, j), (i′, j′)
such that one of the following holds:

1. R[i, j] = R[i′, j′] and S[i, j] �= S[i′, j′].
2. R[i, j] �= R[i′, j′] and S[i, j] = S[i′, j′].

We now observe that:

Observation 2 1. If T ′ p-matches to P , then every location-predecessor pair
inside T ′ (namely, both the location and its predecessor are in T ′) is not a
mismatch pair for T ′ and P .

2. If there is no location-predecessor pair inside T ′ which is a mismatch pair
for T ′ and P , then there is a function matching between T ′ and P .

3. If there is a function matching between T ′ and P , then there is a p-matching
between T ′ and P if and only if the number of distinct characters in T ′ is
equal to the number of distinct characters in P .

By Observation 2, the algorithm for checking the candidates will have two
steps: In the first step, we go over all the location-predecessor pairs inside the
candidate, and check whether one of these pairs is a mismatch pair. In the
second step we compute the number of distinct characters in each candidate and
compare it to the number of distinct characters in P .

In order to implement the first step, we go over al strips of T (from left to
right) while maintaining the predecessor of every location in the current strip.
Computing the predecessor of every location in the first strip of T takes O(m2)
time. When going from one strip to the next strip, only at most 6m predecessors
are changed, and we will show how to do the update in O(m) time.

Clearly, if we check each location-predecessor pair for each candidate sep-
arately, then the algorithm will not be efficient (the time complexity will be
Θ(m4) in the worst case). However, we can use the fact that after the duelling
stage, all the remaining candidates agree with each other. Therefore, for each
location-predecessor pair in T , the pair is either a mismatch pair for P and ev-
ery candidate that contains the pair, or the pair is not a mismatch pair for any
candidate. Thus, for each location-predecessor pair we need to check only two
characters in P , and if there is a mismatch, we can rule out all the remaining
candidates that contain the pair.

The second step is done by computing the number of distinct characters in
every m×m substring of T . Amir et al. [4] gave an algorithm for this problem
whose time complexity is O(m2 log m). We can solve the problem in O(m2) time,
but omit the details for space reasons. (Amir and Cole [5] also have solved the
problem in the same time bounds).

270 Carmit Hazay, Moshe Lewenstein, and Dekel Tsur

4 Algorithm Details

From Observation 2, we need to check for each candidate whether the location-
predecessor pairs inside it are mismatch pairs. As discussed in Section 3, we will
check every location-predecessor pair only once during the entire algorithm.

The main idea is as follows: We go over the strips of T from left to right.
When going from the (y−1)-th strip to the y-th strip, there are at most 3n = 6m
new location-predecessor pairs: (1) Every location in column y + m− 1 and its
predecessor form a new pair, (2) Every location in column y+m−1 may become
the predecessor of some location in columns y, . . . , y + m − 2, and (3) Every
location in columns y, . . . , y + m− 2 whose predecessor was in column y− 1 will
form with its new predecessor a new pair. After a preprocessing step on T that
will be described in Section 5, we can find all the new location-predecessor pairs
in time O(m).

Now, we only need to check whether there is a mismatch pair among the new
location-predecessor pairs, as we already checked the old pairs in the previous
iterations. Let (r, c), (r′, c′) be some new location-predecessor pair for the y-th
strip. All the candidates that contain the locations (r, c) and (r′, c′) agree with
each other, so (r, c), (r′, c′) is a mismatch pair for all of these candidate, or for
none. Therefore, we only need to find one candidate (z, w) (with w ≥ y) that
contains both locations, and check whether P [r − z + 1, c − w + 1] = P [r′ −
z + 1, c′ − w + 1]. If these two character are not equal, then (z, w) cannot be a
match, and moreover, every candidate that contains (r, c) and (r′, c′) cannot be
a match. In other words, we can rule out every candidate whose top-left corner
is in the rectangle {r−m+1, . . . , r′}×{y, . . . , min(c, c′)}. Note that it is possible
that the predecessor of (r, c) changes at some strip y′ for y < y′ ≤ min(c, c′), so
(r, c), (r′, c′) is not a location-predecessor pair for some of the candidates that
we rule out. However, this does not affect the correctness of the algorithm.

We now need to handle two issues: How to find a candidate that contains the
pair (r, c), (r′, c′), and in a case of a mismatch, how to rule out the candidates
in the corresponding rectangle.

We first deal with the first issue. Given a location-predecessor pair (r, c),
(r′, c′), we will find the highest candidate that can contain the pair (r, c), (r′, c′),
which will be denoted (z, w). More precisely, among all the candidates in {r −
m + 1, . . . , n} × {y, . . . , min(c, c′)} (note that the rectangle here ends in row n),
(z, w) is the candidate with smallest row number (ties are broken arbitrarily).
Clearly, if (z, w) does not contain the pair (r, c), (r′, c′) (that is, if z > r′), then
there is no candidate (that begins in a column greater than y) that contains the
pair (r, c), (r′, c′).

We now describe how to find the highest candidate in constant time. To do
that, we build an n × n array A, where A[i, j] is the smallest row in which a
candidate starts, among all the candidates with start row at least i−m + 1 and
start column j. If there are no such candidates, then A[i, j] = 2m. The array A
can be easily computed by scanning the text column by column, from bottom
to top. Now, given a location-predecessor pair (r, c), (r′, c′), in order to find the
highest candidate that can contain the pair, we need to find the minimum value

Two Dimensional Parameterized Matching 271

among the subrow A[r, y], A[r, y+1], . . . , A[r, min(c, c′)]. This is the range minima
problem [13], so after preprocessing each row of A in O(m) time per row, we can
find the minimum element in some subrow of A in constant time.

We now turn to the problem of eliminating candidates. As discussed above,
during the algorithm we find rectangles that do not contain a match. Instead
of eliminating the candidates at the time each rectangle is discovered, we store
the rectangle in a list L, and after obtaining all the rectangles, we perform a
candidates elimination stage.

In the candidates elimination stage, we need to remove each candidate whose
top-left corner is in some rectangle of L. This is done by moving a vertical sweep
line from left to right. We maintain two vectors V and B, where V [i] (resp.,
B[i]) is the number of rectangles in L that intersect the current sweep line, and
whose top (resp., bottom) row is i. Using these vectors, we can compute the
number of rectangles that contain each point on the sweep line, and eliminate
the candidates whose top-left corner is contained in at least one rectangle. The
time complexity of this step is linear in the number of rectangles in L, which is
at most 6m2.

5 Text Preprocessing

In this section, we show how to compute an array of pointers, which will be used
to maintain the predecessors of the current strip.

Definition 5 (left predecessor). For a location (i, j) in T with j > m, the
left predecessor of (i, j) is the predecessor of location (i, j) w.r.t. the (j−m+1)-th
strip of T .

Given the left predecessors of all the locations in T , it is straightforward to
maintain the predecessor of every location w.r.t. the current strip.

We now show how to compute the left predecessor of every location in T . We
scan the entire text bottom-up left-to-right. For each symbol σ, we keep a list
Lσ of all the locations (i, j) with j > m and T [i, j] = σ for which we haven’t
computed a left predecessor yet. The elements of Lσ are ordered according to
their scan order. When the scan of T reaches a location (x, y), we need to check
for which elements of LT [x,y] the left predecessor is (x, y), and these elements
will be removed from LT [x,y]. Moreover, if y > m and the left predecessor of
(x, y) is not in row x, then (x, y) is added to the end of LT [x,y]. For efficient
implementation of the algorithm above, we use the following properties of the
Lσ lists.

Claim 1 If (i, j) and (i′, j′) are two elements of some list Lσ, where (i, j) ap-
pears in the list before (i′, j′), then i > i′ and j < j′.

Claim 2 Let (i1, j1), . . . , (is, js) be the locations in LT [x,y] according to their
order. A location (x, y) is either the left predecessor of (i1, j1), . . . , (if , jf) for
some 1 ≤ f ≤ s, the left predecessor of (if , jf), . . . , (is, js) for some 1 < f ≤ s,
or the left predecessor of none of these locations.

From Claim 2, the text preprocessing stage can be implemented in O(n2) time.

272 Carmit Hazay, Moshe Lewenstein, and Dekel Tsur

Fig. 1. The subsets of D.

6 Pattern Preprocessing

Let P be an m ×m string. We will show how to compute a witness for every
offset (a, b) that has a witness.

Let l be some integer that will be specified later. Consider an alignment of
P against itself, with offset (a, b). We say that (a, b) is a source if there is a
p-match between the overlapping areas in the two copies of P . If (a, b) is not a
source, then a there is at least one witness for (a, b). A witness (x, y), (x′, y′) is
called a witness of type 1 if it satisfies condition 1 in Definition 3, and otherwise,
it is called a witness of type 2. There are four cases that we need to consider,
according to the signs of a and b. In the following, we will handle the case when
a ≥ 0 and b ≥ 0. The other cases are symmetrical, and thus omitted.

Let (a, b) be an offset which is not a source, and let D = {1, . . . , m − a} ×
{1, . . . , m − b} be the set of locations in the overlapping area of P when P is
aligned against itself with offset (a, b). We partition D into subsets (see Figure 1):
A1, . . . , A4 are the l × l squares in the corners of D. B1, . . . , B4 are rectangles
of width or height l in the borders of D excluding the corners, and C is the
remaining part of D (namely, C = D \ (A1 ∪ · · · ∪A4 ∪B1 ∪ · · · ∪B4)). Formally,

A1 = {(x, y) ∈ Z
2 : 1 ≤ x ≤ l and 1 ≤ y ≤ l},

A2 = {(x, y) ∈ Z
2 : 1 ≤ x ≤ l and m− b− l + 1 ≤ y ≤ m− b},

etc.
We say that a witness w for (a, b) is simple if it does not satisfy any of the

following conditions:

1. w is of type 1, and one of the locations of w is in A1.
2. w is of type 1, one of the locations of w is in A2 ∪ B3 ∪ A4, and the other

location is in A3 ∪B4 ∪A4.
3. w is of type 2, and one of the locations of w is in A4.
4. w is of type 2, one of the locations of w is in A1 ∪ B1 ∪ A2, and the other

location is in A1 ∪B2 ∪A3.

Two Dimensional Parameterized Matching 273

The algorithm consists of three stages:

1. Find simple witnesses.
2. Find witnesses that satisfy conditions 1 or 3 above.
3. Find witnesses that satisfy conditions 2 or 4 above.

The three stages of the algorithm are described in the next sub-sections. In each
stage, we will handle only offsets do not contain witnesses that were handled by
the previous stages.

6.1 Stage 1

This stage is similar to the algorithm of Amir et al. [2]: We create new strings
P1 and P2 by replacing every character P [x, y] in P by 8m

l +4 characters, where
each of these characters is either a pointer to some location (x′, y′) in P such
that P [x′, y′] = P [x, y], or a null pointer.

For each location (x, y) in P , we define rectangles on the grid Z
2 in following

way: For i = −m
l , . . . , m

l − 1, let

Hi,(x,y) = {(x′, y′) ∈ Z
2 : y′ ≤ y and x + il ≤ x′ < x + (i + 1)l},

Ĥi,(x,y) = {(x′, y′) ∈ Z
2 : y′ ≥ y and x + il ≤ x′ < x + (i + 1)l},

Vi,(x,y) = {(x′, y′) ∈ Z
2 : x′ ≤ x and y + il ≤ y′ < y + (i + 1)l},

and
V̂i,(x,y) = {(x′, y′) ∈ Z

2 : x′ ≥ x and y + il ≥ y′ < y + (i + 1)l}.
Furthermore, let H(x,y) = {(x, y′) ∈ Z

2 : y′ ≤ y}, and we similarly define the
rectangles Ĥ(x,y), V(x,y), and V̂(x,y). We say that a rectangle Hi,(x,y) (or other H
rectangle) is inside the square of P if there is at least one column of Hi,(x,y) that is
contained in {1, . . . , m}×{1, . . . , m}, namely, if 1 ≤ y+il and y+(i−1)l−1 ≤ m.
A V rectangle is inside the square of P if there is at least one row of the rectangle
that is contained in {1, . . . , m} × {1, . . . , m}.

The string P1 is constructed by replacing every character P [x, y] in P by the
characters c1, . . . , c8m/l+4 (P1 is an m× ((8m

l + 4)m) string) which are defined
as follows:

– For i = −m
l , . . . , m

l − 1, if the rectangle Hi,(x,y) is inside the square of P ,
traverse over the elements of Hi,(x,y) in a column major order (from right
to left), until reaching a location (x′, y′) for which P [x′, y′] = P [x, y], if
there is such a location. If a location (x′, y′) was found, then set cm/l+i+1 =
(x − x′, y − y′), and we say in this case that cm/l+i+1 points to (x′, y′).
Otherwise (namely, the rectangle Hi,(x,y) does not contain a character equal
to P [x, y]), set cm/l+i+1 = φ.
If the rectangle Hi,(x,y) is not inside the square of P , then set cm/l+i+1 = φ.

– For i = −m
l , . . . , m

l − 1, the character c3m/l+i+1 is built from the rectangle
Ĥi,(x,y) in the same way described above, except that the rectangle is tra-
versed from right to left, and furthermore, if the rectangle does not contain
a character equal to P [x, y], then c3m/l+i+1 = 0.

274 Carmit Hazay, Moshe Lewenstein, and Dekel Tsur

– For i = −m
l , . . . , m

l − 1, the characters c5m/l+i+1 and c7m/l+i+1 are built
from the rectangles Vi,(x,y) and V̂i,(x,y) the same as above, except that the
rectangles are traversed in a row major order (if the corresponding rectangle
does not contain a character equal to P [x, y], we use φ for c5m/l+i+1 and 0
for c7m/l+i+1).

– The character c8m/l+1 corresponds to the rectangle H(x,y), and it is han-
dled the same as the characters c1, . . . , c2m/l. Furthermore, the characters
c8m/l+2, c8m/l+3, and c8m/l+4 correspond to the rectangles Ĥ(x,y), V(x,y),
and V̂(x,y), respectively.

The string P2 is built in two steps. The first step is the same as building P1,
except that we replace the roles of φ and 0, that is, we use φ for characters
that correspond to the rectangles Ĥi,(x,y) and V̂i,(x,y), and 0 for characters that
correspond to the rectangles Hi,(x,y) and Vi,(x,y). After the first step, P2 is an
m×((8m

l +4)m) string. In the second step, we expand P2 into a 2m×2((8m
l +4)m)

string, where all the new characters are φ.
After building P1 and P2, we solve the (standard) matching problem with

don’t care symbols on P1 and P2, where P1 is the pattern, P2 is the text, and φ
is the don’t care symbol. Moreover, using the algorithm of Alon and Naor [1], we
find witnesses for every mismatch between P1 and P2, namely, for every (a, b)
such that P1 does not match to P2[a+1 . . a+m, b+1 . . b+m], we find a location
(x, y) such that P1[x, y] �= P2[x + a, y + b].

Consider some fixed pair (a, b), and define P ′
2 = P2[a+1 . . a+m, b+1 . . b+m].

Claim 3 If P1 does not match to P ′
2, then (a, b) is not a source. Moreover, from

every witness to the mismatch of P1 and P ′
2 we can obtain a witness for (a, b)

in constant time.

The converse of Claim 3 is not true. A weaker result is given in the following
lemma.

Lemma 1. If (a, b) has a simple witness then P1 does not match to P ′
2.

Proof. Suppose that w = {(x, y), (x′, y′)} is a simple witness for (a, b). W.l.o.g.
we assume that x ≥ x′, and moreover, if x = x′ we assume that y > y′. We will
deal with the case when w is a witness of type 1, and omit the proof for the case
when w is of type 2. We consider 3 cases.

Case 1. In the first case, suppose that either x = x′ or (x′, y′) is in B1 ∪C ∪B4,
or in other words, l + 1 ≤ y′ ≤ m− b − l. We prove the lemma using induction
on x− x′.

If x = x′, we have that (x, y′) ∈ H(x,y). Thus, the character of P1 that
corresponds to H(x,y) points to some location (x, y′′) such that y′ ≤ y′′ < y
and P [x, y′′] = P [x, y]. If P [x + a, y′′ + b] �= P [x + a, y + b], then the character
of P2 that corresponds to H(x+a,y+b) either points to some location other than
(x + a, y′′ + b), or is equal to 0. In both cases, we conclude that P1 does not
match to P ′

2. If P [x + a, y′′ + b] = P [x + a, y + b], then w′ = {(x, y′′), (x, y′)} is

Two Dimensional Parameterized Matching 275

a simple witness for (a, b) of type 1. We can now use the argument above on w′

and either obtain that P1 does not match to P ′
2, or obtain a new witness w′′.

We can continue this process until obtaining a mismatch between P1 and P ′
2.

Now, suppose that x > x′, and we proved case 1 of the lemma for every
witness in which the difference between the rows in the two locations is less than
x−x′. Since l+1 ≤ y′ ≤ m−b−l, it follows that the rectangle Vi,(x,y) that contains
the location (x′, y′) is inside the square of P . Therefore, the character of P1 that
corresponds to Vi,(x,y) points to some location (x′′, y′′), where x ≤ x′′ < x′.
If P [x′′ + a, y′′ + b] �= P [x + a, y + b] then we are done since the character of
P2 that corresponds to Vi,(x+a,y+b) either points to some location other than
(x′′ + a, y′′ + b), or is equal to 0. Otherwise, we use the induction hypothesis on
w′ = {(x′′, y′′), (x′, y′)}. Note that it is possible that (x′′, y′′) ∈ A1 and therefore
w′ is not simple. However, the arguments we used above still work on w′, so we
still obtain that P1 does not match to P ′

2.

Case 2. The second case is when either y = y′ or leftmost location among (x, y)
and (x′, y′) is in B2∪C∪B3. The proof for the case is symmetrical to the proof of
case 1 (we use the rectangles V(x∗,y∗) and Hi,(x∗,y∗) instead of H(x,y) and Vi,(x,y),
where (x∗, y∗) is the rightmost location).

Case 3. Assume that cases 1 and 2 do not occur. Since case 1 does not occur,
we have that either y′ ≤ l or y′ ≥ m− b− l + 1. We consider 4 sub-cases:

1. y′ ≤ l and y > y′. Since (x′, y′) is the leftmost location and case 2 does
not occur, we have that either x′ ≤ l or x′ ≥ m − a − l + 1. If x′ ≤ l then
(x′, y′) ∈ A1, and therefore w is not simple, a contradiction.
If x′ ≥ m− a− l + 1, then the rectangle H−1,(x,y) is inside the square of P ,
and it contains the location (x′, y′). Therefore, using the same arguments as
in case 1, we obtain that P1 does not match to P ′

2.
2. y′ ≤ l and y < y′. In this case, the rectangle V0,(x,y) is inside the square of

P , and it contains the location (x′, y′). Thus, P1 does not match to P ′
2.

3. y′ ≥ m− b− l + 1 and y > y′. The rectangle V−1,(x,y) is inside the square of
P , and it contains the location (x′, y′), so P1 does not match to P ′

2.
4. y′ ≥ m− b− l + 1 and y < y′. Since (x, y) is the leftmost location, it follows

that either x ≤ l or x ≥ m − a − l + 1. In the former case, the rectangle
H0,(x′,y′) is inside the square of P , and it contains the location (x, y). It
follows that P1 does not match to P ′

2. In the latter case, we obtain that w is
not simple, a contradiction. ��

From Claim 3 and Lemma 1 we conclude that stage 1 of the algorithm cor-
rectly finds a witness for every offset (a, b) that has simple witnesses. The time
complexity of this stage is O(|P2| · log4+o(1) |P1|) = O(m3

l · log4+o(1) m).

6.2 Stage 2

In the following stages, we will describe only how to find witnesses of type 1, as
handling the witnesses of type 2 is symmetrical. The second stage is composed

276 Carmit Hazay, Moshe Lewenstein, and Dekel Tsur

of four sub-stages. We will not give detailed proofs for the correctness of these
steps, as the proofs are similar to the proof of Lemma 1.

Stage 2a. In this stage we find witnesses w such that the two locations of w
are in A1. For each location (x, y) in P , we define rectangles as follows:

H2
i,(x,y) = {(x + i, y′) ∈ Z

2 : y′ ≤ y}
V 2

i,(x,y) = {(x′, y + i) ∈ Z
2 : x′ ≤ x}.

Using these rectangles, we build strings P 2
1 and P 2

2 by replacing each character
P [x, y] in P by 4l characters that correspond to the rectangles H2

i,(x,y) and
V 2

i,(x,y) for i = −l +1, . . . , l− 1. Each of the 4l characters is chosen by traversing
the appropriate rectangle similarly to the construction of P1 and P2 in stage 1.
Then, we solve the matching problem for P 2

1 and P 2
2 and find witnesses for the

mismatches. The correctness of this sub-stage follows from the fact that for two
locations in A1, one of the locations is inside the rectangles of the other location.

Stage 2b. In this stage we find all the witnesses w such that one location of w
is in A1, and the other location is in B1 ∪B2 ∪C ∪A3 ∪B4.

As in the previous stages, we create new strings by replacing each character
in P with pointers to other occurrences of the character. However, instead of
creating one matching problem instance, we will create O(m2/l) instances. The
main idea is to group the different offsets into set and build a matching problem
instance for each set, and then use the instance to find witnesses for the offsets
in the set. In each set, all the offsets are close to each other, and we use this fact
in our construction.

Consider a set of offsets (a, b), (a, b + 1), . . . , (a, b + l/2− 1) (we assume that
l is even), where b is a multiple of l. Define the rectangles

H3,a,b
(x,y) = {(x′, y′) ∈ Z

2 : y ≤ y′ ≤ y + m− b− l and 0 ≤ x′ ≤ m− a}
H4,a,b

(x,y) = {(x′, y′) ∈ Z
2 : y′ ≤ y and x ≤ x′ ≤ m− a}

H5,a,b
(x,y) = {(x′ + a, y′) : (x′, y′) ∈ H3,a,b

(x,y)}
and

H6,a,b
(x,y) = {(x′ + a, y′) : (x′, y′) ∈ H4,a,b

(x,y)}.

Next, build the strings P 3,a,b
1 and P 3,a,b

2 as follows: For every location (x, y)
with 1 ≤ x ≤ l and 1 ≤ y ≤ l/2, the string P 3,a,b

1 contains two characters
for P [x, y] corresponding to the rectangles H3,a,b

(x,y) and H4,a,b
(x,y). For every location

(x, y) with a + 1 ≤ x ≤ a + l and b + 1 ≤ y ≤ b + 3l/2, the string P 3,a,b
2

contains two characters for P [x, y] corresponding to the rectangles H5,a,b
(x,y) and

H6,a,b
(x,y). Moreover, the string P 3,a,b

2 is padded with don’t care symbols.

Two Dimensional Parameterized Matching 277

As in the previous stages, we solve the matching problem for P 3,a,b
1 and

P 3,a,b
2 and find witnesses for the mismatches. If {(x, y), (x′, y′)} is a witness for

(a, b′) where b ≤ b′ ≤ b + l/2, (x, y) ∈ {1, . . . , l} × {1, . . . , l/2}, and (x′, y′) ∈
B1∪B2∪C ∪A3∪B4, then one of the rectangles H3,a,b′

(x,y) and H4,a,b′

(x,y) contains the

location (x′, y′), and it follows that P 3,a,b′
1 does not match to P 3,a,b′

2 . Moreover,
from every witness to the mismatch of P 3,a,b′

1 and P 3,a,b′
2 , we can obtain a witness

for (a, b′).
Finding witnesses with one location of the witness in {1, . . . , l} × {l/2 +

1, . . . , l} and the other in B1 ∪B2 ∪ C ∪A3 ∪B4 is done in a similar way.

Stage 2c. This stage finds all the witnesses w such that one location of w is in
A1, and the other location is in A2 ∪ B3. This stage is analogous to stage 2b,
and we omit the details.

Stage 2d. In this final sub-stage, we find all the witnesses w such that one
location of w is in A1, and the other location is in A4. Recall that

H2
i,(x,y) = {(x + i, y′) ∈ Z

2 : y′ ≤ y}.

For every set of offsets {(a+ i, b+ j) : i = 0, . . . , l−1 and j = 0, . . . , l−1} where
a and b are multiples of l, build strings P 5,a,b

1 and P 5,a,b
2 : For every location

(x, y) with m − a − 2l + 2 ≤ x ≤ m and m − b − 2l + 2 ≤ y ≤ m, P 5,a,b
1

contains 3l−3 characters for P [x, y], corresponding to the rectangles H2
i,(x,y) for

i = m− a− 3l + 2, . . . , m− a− 1. Similarly, for every (x, y) with 1 ≤ x ≤ 2l− 1
and 1 ≤ y ≤ 2l − 1, P 5,a,b

2 contains 3l − 3 characters for P [x, y], corresponding
to the rectangles H2

i,(x,y) for i = m− a− 3l + 2, . . . , m− a− 1.

The total time complexity of stage 2 is O(m2l · log4+o(1) m).

6.3 Stage 3

Let (a, b) be some offset for which no witness was found during the previous
stages. We first look for witnesses with one location in B3 ∪ A4 and the other
location in A3∪B4∪A4. Define D′ = D\(A1∪B1∪A2). For a rectangle D′′ ⊆ D′

define D′′ + (a, b) = {(x + a, x + b) : (x, y) ∈ D′′}. Since there are no simple
witnesses for (a, b), and no witnesses that satisfy condition 3 in the definition
of a simple witness, we conclude that there are no type 2 witnesses with both
locations inside D′. Therefore, we make the following observation:

Claim 4 For every rectangle D′′ ⊆ D′, the number of distinct characters inside
the region D′′ of P is less than or equal to the number of distinct characters
inside the region D′′ of P , with equality if and only if there is no witness w for
(a, b) whose both locations are in D′′.

278 Carmit Hazay, Moshe Lewenstein, and Dekel Tsur

From Claim 4, we devise the following algorithm for finding a witness in D′:
Check the number of distinct characters inside the regions D′ and D′ + (a, b) of
P . If these numbers are equal then stop (no witness was found). Otherwise, find
a minimal rectangle D′′ in D′ for which the number of distinct characters in D′′

is strictly less than the number of distinct characters in D′′ + (a, b). Then, one
of the pairs of opposite corners of the rectangle D′′ is a witness for (a, b). The
problem with this algorithm is that we do not know how to efficiently find such
a rectangle D′′. Instead, we will find a rectangle D∗ which will be approximately
equal to D′′.

In order to find D∗, consider the following intersection counting problem:
Given a set S of points in the plane where each point has a color, preprocess S
in order to answer efficiently queries of the form “what is the number of distinct
color in the points inside the rectangle (−∞, b]×[c, d]?”. Denote by n the number
of points in S. Gupta et al. [14] showed a data-structure for this problem with
preprocessing time O(n log2 n) which answers queries in O(log2 n) time. Using
this result, we obtain the following lemma:

Lemma 2. Let P be an m×m string, and let l be an integer. After preprocessing
of P in O(m3

l log2 m) time, the following queries can be answered in O(log2 m)
time: “what is the number of distinct characters in the substring P [a . . b, c . . d]?”,
where at least one of a, b, c, d is either 1, m, or a multiple of l.

We now return to the problem of finding the rectangle D∗. The algorithm
is as follows: First, build the data-structure of Lemma 2 on P . Then, compute
the number of distinct characters inside the regions D′ and D′ + (a, b) of P .
If these numbers are equal, stop. Otherwise, find a minimal rectangle D∗ =
{x, . . . , m − a} × {y, . . . , z} ⊆ D such that the number of distinct characters
inside the regions D∗ and D∗ + (a, b) of P are not equal, and x is a multiple of
l. Finding D∗ is is done using binary search and queries to the data-structure of
Lemma 2 (note that the queries we make satisfy the conditions of Lemma 2).

Let X be the set of all locations (c, d) such that c ∈ {x, . . . , x+ l− 1}∪{m−
a− l + 1, . . . , m− a} and d ∈ {y, z}. From Claim 4 and the minimality of X , we
obtain that there is a witness w for (a, b) of type 1 whose both locations are in
X . We find such a witness as follows:

1. Initialize tables V [1 . . |Σ|] and L[1 . . |Σ|] to zeros.
2. Go over the locations in X in some order. For every location (c, d), if

V [P [c, d]] /∈ {0, P [c+ a, d+ b]} output the witness {L[P [c, d]], (c, d)}. Other-
wise, set V [P [c, d]]← P [c + a, d + b] and L[P [c, d]]← (c, d).

By Lemma 2, the time complexity of this stage is O(m3

l log2 m+m2 log3 m+m2l)
(note that the initialization of the tables V and L above takes O(1) time).
Therefore, the total time complexity for preprocessing the pattern is O((m

l +
l)m2 ·log4+o(1) m). The last expression is O(m5/2 ·log4+o(1) m) when l = Θ(

√
m).

Two Dimensional Parameterized Matching 279

References

1. N. Alon and M. Naor. Derandomization, witnesses for boolean matrix multiplica-
tion and construction of perfect hash functions. Algorithmica, 16:434–449, 1996.

2. A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching:
Algorithms, applications and a lower bound. In Proc. 30th International Collo-
quium on Automata, Languages and Programming (ICALP), pages 929–942, 2003.

3. A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two
dimensional pattern matching. SIAM J. on Computing, 23(2):313–323, 1994.

4. A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving
the submatrices character count problem. In Proc. 13th Symposium on Discrete
Algorithms (SODA), pages 400–401, 2002.

5. A. Amir and R. Cole. Personal communications, 2004.
6. A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameter-

ized matching. Information Processing Letters, 49:111–115, 1994.
7. A. Apostolico, P. Erdős, and M. Lewenstein. Parameterized matching with mis-

matches. manuscript.
8. G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image

retrieval. Multimedia Tools and Applications, 1(4):327–348, 1995.
9. B. S. Baker. A theory of parameterized pattern matching: algorithms and appli-

cations. In Proc. 25th ACM Symposium on the Theory of Computation (STOC),
pages 71–80, 1993.

10. B. S. Baker. Parameterized string pattern matching. J. Comput. Systems Sci.,
52(1):28–42, 1996.

11. B. S. Baker. Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM J. on Computing, 26(5):1343–1362, 1997.

12. R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links.
In Proc. 32nd ACM Symposium on the Theory of Computation (STOC), pages
407–415, 2000.

13. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. Proc. 16th ACM Symposium on Theory of Computing
(STOC), 67:135–143, 1984.

14. P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection
searching problems: Counting, reporting, and dynamization. J. of Algorithms,
19(2):282–317, 1995.

15. C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. In
Proc. 12th European Symposium on Algorithms (ESA), pages 414–425, 2004.

16. S. R. Kosaraju. Faster algorithms for the construction of parameterized suffix
trees. Proc. 36th Symposium on Foundation of Computer Science (FOCS), pages
631–637, 1995.

17. M. Swain and D. Ballard. Color indexing. International Journal of Computer
Vision, 7(1):11–32, 1991.

18. U. Vishkin. Optimal parallel pattern matching in strings. In Proc. 12th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), pages
91–113, 1985.

19. U. Vishkin. Deterministic sampling — a new technique for fast pattern matching.
SIAM J. on Computing, 20:303–314, 1991.

	Two Dimensional Parameterized Matching
	1 Introduction
	2 Preliminaries and Definitions
	3 Overview
	4 Algorithm Details
	5 Text Preprocessing
	6 Pattern Preprocessing
	6.1 Stage 1
	6.2 Stage 2
	6.3 Stage 3

	References

