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Abstract. Coopetition has become the current trend of economic ac-
tivities. Coopetitive game is introduced through the comparison of the
characteristics of noncooperative game and cooperative game. Further-
more, the coopetitive game is solved adopting one kind of Minimax theo-
rem. Finally, the Cournot coopetition model is presented as an example,
and the equilibrium is compared with Nash equilibrium.

1 Introduction

The current business environment, advances in information and communica-
tion technologies, and the resultant development of network and virtual orga-
nizations have led firms to cooperate and compete simultaneously. The term
”co-opetition”, coined by management professors Barry Nalebuff (Yale Univer-
sity) and Adam Brandenburger (Harvard University), refers to that phenomenon
[1]. In the same year, Maria Bengtsson and Sören Kock entitled coopetition
the phenomena including both cooperation and competition, and studied the
cooperation and competition in business networks [2, 3]. In fact, cooperation
and competition have been studied widely. According to the relationship of
the aims in cooperation and competition theory, Deutsch divided the benefit
body into three parts: cooperation, competition and independence. [4, 5] Clau-
dia Loebbecke, Paul C.Van Fenema and Philip Powell paid much attention to
the knowledge transfer under coopetition and presented the theory of interor-
ganizational knowledge sharing during coopetition. [6, 7] Kjell Hausken studied
cooperation and between-group competition and found that competition between
groups in defection games might give rise to cooperation though the considerable
cost of cooperation might be needed. [8] To Marc’s theory, benefit body takes
other’s actions as positive exterior conditions in cooperation and in competition
the other’s actions are taken as negative exterior conditions [9].
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In this paper, ”coopetition” is defined as the phenomenon that differs from
competition or cooperation, and stresses two faces of one relationship, coopera-
tion and competition, in the same situation, in which competitors can strengthen
their competitive advantages by cooperation. The ”Coopetitive” is the adjective
form of the coopetition. In the second section, coopetitive game is introduced
and the comparison between noncooperative and cooperative game is studied.
The coopetitive equilibrium is given by one kind of Minimax theorem in the
third section. Economic examples and the comparisons between noncooperative
and competitive game are made in the forth section. Conclusions can be made
that the coopetitive game has a prodigious advantages both in modeling and
algorithm.

2 Coopetitive Game and Coopetitive Equilibrium

2.1 Noncooperative Game and Cooperative Game and Their
Comparison

Game theory can be classified into three types according to the interaction of
the players: noncooperative game, cooperative game and coopetitive game. In
noncooperative situation, players are self-concerned and each player makes de-
cision by himself based on the strategy preferences. Each player maximizes his
payoff against the others’. The equilibria can be obtained at the intersections of
players’ reaction functions and nearly all of them cannot obtain the satisfactory
profits.

In cooperative situation, coalition without any conflict is supposed to con-
struct through contract or nuisance suits commitment, etc. The coalition will
maximizes its revenue and allocate it based on certain rules. Unfortunately, the
coalitions is usually destroyed because of players’ self-concerned actions or some
details that are ignored in the cooperative process.

Coopetitive game is presented in this paper to avoid these conflicts. The
self-concerned players can form coalition in competitive situation. At the same
time, the coopetitive equilibria have advantages over those of noncooperative,
and they are stable.

2.2 Coopetitive Game

Definition 1. A Coopetition game < N, (Ai), (uci) > includes:

• The set of players 1, 2, · · · , I.
• The pure strategy space Ai for each player i.
• The payoff coefficient functions uci(a) for each player i.

The payoff coefficient function is the standardization of the payoff function ui,
which gives player i′s Von Neumann-Morgenstern utility ui(a) for each profiles
a = (a1, · · · , aI). The standardization of payoff function ui is the ratio between
the payoff that a player can get at a certain strategy profile and the highest
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payoff that he can gain. Therefore, the payoff coefficient function ui(a) denotes
the satisfaction degree that player i can obtain under profile a.

Definition 2. A subset B of the polytope A is called an action strategic extreme
set, if a, b ∈ A and λa + (1 − λ)b ∈ B for some λ ∈ (0, 1) imply a, b ∈ B.

For any a ∈ A, M(a) = {i′ ∈ I|uc′i(a) = min
i∈I

uci(a)} is defined as the index

set of a,which means the member of the players who obtain the lowest payoff
coefficient function under profile a.

Definition 3. A point a in A is called a critical strategy if there exists an ex-
treme set Bsuch that for a ∈ A, b ∈ Band M(a) ⊆ M(b) imply M(a) = M(b). In
the other words, a critical point is a point with maximum index set in certain
extreme set.

Definition 4. Coopetitive equilibrium of game < N, (Ai), (uci) > is some crit-
ical strategy a∗ ∈ A, and a∗ = arg max

a∈A
uci∈M(a)(a).

The corresponding strategy profiles and the utility profiles under the equi-
libria are called equilibrium strategy profiles and equilibrium utility profiles re-
spectively.

According to the definition, the coopetitive equilibrium can be obtained in
this way: given the strategy profiles, each player finds the conservative (or min-
imum) payoff coefficients and selects a higher one among them. The coopetitive
equilibrium is the one of the strategy profiles that much more players choose with
higher satisfaction degrees, and is the counterbalance among players as well.

3 Minimax Theorem and Coopetitive Equilibrium

3.1 Minimax Theorem [10]

Let {Gi(x)}i∈I be a family of finitely many continuous concave functions on a
polytope X and I = {1, · · · , n}. Note that in general, F (x) = maxi∈I Gi(x)
on X is not a concave function. However, its behavior is similar to a concave
function.

A subset Y of the polytope X is called an extreme set of X if x, y ∈ X and
λx + (1−λ)y ∈ X for some λ in the interval (0, 1) imply x, y ∈ X. For example,
every vertex is an extreme set and the set X, itself, is also an extreme set. For any
x ∈ X, the index set of x is defined as M(x) = {i′ ∈ I|G′

i(x) = maxi∈I Gi(x)}.
A point x in X is called a critical point if there exists an extreme set Y such
that x ∈ Y and that y ∈ Y and M(x) ⊆ M(y) imply M(x) = M(y). In the other
words, a critical point is a point with maximum M(x) in some extreme set Y .

There is an intuitive interpretation for the critical points. Partition the poly-
tope X into finitely many small regions X ′

i = {x ∈ X|G′
i(x) = maxi∈I Gi(x)},

every critical point is a ”vertex” of some X ′
i. Note that X ′

i is not necessarily
a polytope. If only one small region X ′

i is considered, then we cannot say that
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the minimum value of F(x) on X ′
i takes place at ”vertices” of X ′

i. Thus, the
following result is nontrivial.

Theorem 1. Suppose that F (x) = maxi∈I Gi(x) where I is finite and Gi(x) is
a continuous, concave function. Then the minimum value of F (x) for x over a
polytope X is achieved at some critical points.

The following corollaries can be obtained and the proofs are the same as that
of theorem 1.

Corollary 1. Suppose that f(x) = mini∈I gi(x) where I is finite and gi(x) is
a continuous, convex function. Then the maximum value of f(x) for x over a
polytope X is achieved at some critical points.

Corollary 2. The critical strategy of the coopetition game < N, (Ai), (uci) >
is the critical point of the payoff coefficient function uci.

3.2 Coopetitive Equilibrium

Based on the corollary 1 and corollary 2, the coopetitive equilibrium is one of
the critical strategy profiles and the solution is to optimize:

max
a∈A

uci∈M(a)(a)

In this paper, we apply the following algorithm:

Step 1. Put into the set of players, the pure strategy space Ai and the payoff
coefficient functions uci(a) for each player i;

Step 2. Calculate the payoff coefficients of each player on every vertex;
Step 3. Let i = 0, k = n−i. When k �= 1,let payoff coefficient functions be equal

of any k players’; If there is no intersection of any k players’ payoff coefficient
functions, let i = i + 1 and repeat step 3; Otherwise, register the strategy
profiles x, the utility profiles u, the sets M of players with higher payoff
coefficients and their coefficients gmax , and the other’s payoff coefficients
gelse at any intersection, and go to step 4.
While k = 1 , the coopetitive equilibria are the same as Nash equilibria.

Step 4. Maximize the payoff coefficients at the intersections of all the k payoff
coefficient functions, and register the corresponding strategy profiles, which
are the coopetitive equilibria.

4 Cournot Coopetition Model and Cournot Coopetitive
Equilibrium

4.1 Cournot Coopetition Model

In Cournot Model, I oligarchs (firms) produce a homogeneous good. The strate-
gies are quantities. All firms simultaneously choose their respective output lever
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xi from feasible sets [0,∞), They sell their outputs at the market-cleaning price
p(x), where x = x1 + x2 + ... + xI . Firm i’s cost of production is Ci(xi) = cixi,
and firm i’s total profit is ui(x1, x2, ..., xI) = xip(x)− ci(xi). For linear demand
p(x) = max(0, a−x), the maximal profit that firm i can obtain in the monopoly
market is umax

i = (a− ci)2/4. Firm i’s payoff coefficient function under strategy
profile x is uci(x) = ui(x)/umax

i .
We call the constant a in the linear demand p potential demand. The coop-

titive equilibria depend on the potential demands and the costs of firms.

Definition 5. The demand-cost difference is defined as the difference between
potential demand and the cost, say (a− ci); the cost-cost difference is defined as
the cost difference of any two firms , say (ci − cj).

Lemma 1. The demand-cost difference and the cost-cost difference determine
the satisfaction degrees of the firms at critical points in coopetitive games.

Proof. Suppose the costs of any two firms are ci and cj , ci > cj , a − ci =
m(ci − cj), and then

g(x) =
xi(a − ci −

∑n
k=1 xk)

(a − ci)2
/
4

=
xj(m(ci − cj) −

∑n
k=1 xk)

m2(ci − cj)2
/
4

��
The satisfaction degrees of the firm can be obtained given the demand-cost

difference and the cost-cost difference.

Lemma 2. Firms’ satisfaction degrees at coopetitive equilibrium may differ from
each other. The greater the demand-cost difference is or the smaller the cost-cost
difference is, the closer the utilities of the firms are.

Proof. Suppose the costs of any three firms are ci > cj > ck, a−ci = m1(cj−ck),
a − cj = m2(cj − ck) and m1 < m2.

Let gj = gk at equilibria, and then

xj(a − cj −
∑n

l=1 xl)
m2

2(cj − ck)2
/
4

=
xk(a − ck − ∑n

l=1 xl)
(m2 + 1)2(cj − ck)2

/
4

uj(x)
uk(x)

=
xj(a − cj −

∑n
l=1 xl)

xk(a − ck − ∑n
l=1 xl)

=
m2

2

(m2 + 1)2

Let gi < gj , and then

ui(x)
uj(x)

=
xi(a − ci −

∑n
k=1 xk)

xj(a − cj −
∑n

k=1 xk)
<

(a − ci)2

(a − cj)2
=

m2
1

m2
2

��
According to the above lemmas, theorem 2 can be obtained.

Theorem 2. More players gain higher satisfaction degrees at coopetitive equi-
librium. Moreover, the firms with lower cost can obtain a higher satisfaction
degree, vice versa.
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4.2 Cournot Coopetitive quilibrium

4.2.1 Extreme Sets
According to the definition of extreme set and the feasible sets 0 ≤ xi ≤ (a−ci),
all the n-dimension vectors (x1, x2, · · · , xn), xi ∈ [ai, bi], 0 ≤ ai ≤ xi ≤ bi ≤
(a − ci) are extreme sets.

4.2.2 Critical Point
According to corollary 1, the critical points can be obtained at the vertices or
at the interior critical points. From the feasible set 0 ≤ xi ≤ (a − ci) of firm i,
the production of each firm is either zero or a − ci, and there will be no profits
for any firm and even internecine (uci(x) ≤ 0).

The interior critical points are the points whose index sets are not embraced by
the other critical points and they can be obtained at the intersections of the payoff
coefficient functions. The algorithm presented in section 3.2 is adopted to obtain
all of the intersections approximately by simulation because of the difficulties in
expressing the formula. For instance, for a = 1.0, c1 = 0.4, c2 = 0.5, c3 = 0.5, c4 =
0.6, we can divide the simulation span into 100 equal intervals, and set the iteration
accuracy at 0.001. The iteration accuracy and the division step of the feasible sets
can be changed for the different problems. There are many interior critical points
whose index sets are {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}.

4.2.3 The Coopetition Equilibrium
Comparing the utility coefficients at vertices and the interior critical points, the
coopetitive equilibrium can be obtained. For the case of a = 1.0, c1 = 0.4, c2 =
0.5, c3 = 0.5, c4 = 0.6, the firms must choose the strategy profiles to maximize
their satisfaction degrees. The maximum satisfaction degrees obtained at interior
critical points, and the corresponding strategy profiles x, the utility profiles u,
the sets M of players with higher satisfaction and their coefficients gmax, and the
other’s payoff coefficients gelse at any intersection are listed in Table 1. Which
coalition can come into being among these coalitions? All of the firms will choose
to participate the coalition in which they can obtain the highest satisfaction de-
grees. Coalition {1, 2, 3} can give three members satisfaction degree 0.328 which
is much higher than those of the other coalitions, therefore this coalition will
come into being.

Table 1. Case 1: a = 1.0, c1 = 0.4, c2 = 0.5, c3 = 0.5, c4 = 0.6

M x1 x2 x3 x4 gmax gelse u1 u2 u3 u4

{1,2,3}∗ 0.09 0.09 0.09 0.002 0.328 0.064 0.030 0.021 0.021 0.0003

{1,2,4} 0.057 0.053 0.035 0.050 0.257 0.171 0.023 0.016 0.011 0.010

{1,3,4} 0.057 0.035 0.053 0.050 0.257 0.171 0.023 0.011 0.016 0.010

{2,3,4} 0.003 0.075 0.075 0.076 0.325 0.012 0.001 0.016 0.020 0.013

Several other examples are given in Table 2, 3 and 4 respectively. The strate-
gies marked with asterisk denote the equilibrium strategy in the tables.

Remark 1. The above simulation results verify the theorem 2.

E
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Table 2. Case 2: a = 1.0, c1 = 0.4, c2 = 0.5, c3 = 0.6, c4 = 0.6

M x1 x2 x3 x4 gmax u1 u2 u3 u4

{1,2,3,4}∗ 0.054 0.05 0.048 0.048 0.24 0.022 0.015 0.010 0.010

Table 3. Case 3: a = 1.0, c1 = 0.4, c2 = 0.4, c3 = 0.6, c4 = 0.6

M x1 x2 x3 x4 gmax gelse u1 u2 u3 u4

{1,2,3}∗ 0.09 0.09 0.09 0.002 0.328 0.064 0.030 0.030 0.021 0.0003

{1,2,4} 0.087 0.087 0.005 0.106 0.305 0.017 0.027 0.027 0.001 0.012

{1,3,4} 0.078 0.009 0.075 0.078 0.312 0.036 0.028 0.003 0.020 0.013

{2,3,4} 0.009 0.078 0.075 0.078 0.312 0.036 0.0032 0.028 0.020 0.013

Table 4. Case 4: a = 1.0, c1 = 0.5, c2 = 0.5, c3 = 0.6, c4 = 0.6

M x1 x2 x3 x4 gmax u1 u2 u3 u4

{1,2,3,4}∗ 0.233 0.233 0.086 0.086 0.510 0.032 0.032 0.020 0.020

{1,2,3,4} 0.24 0.24 0.098 0.098 0.676 0.042 0.042 0.027 0.027

{1,2,3,4} 0.25 0.25 0.11 0.11 0.880 0.055 0.055 0.035 0.035

4.3 Comparison Between Coopetitive Equilibrium and Nash
Equilibrium

The equilibrium strategies and equilibrium profits under Nash equilibrium in
noncooperative game are as follows.

xi
Nash = (a +

∑n

j=1
cj)/(n + 1) − ci i = 1, 2, · · · , n (1)

ui
Nash = 1

n+1 (a − ci −
∑n

j=1 xj)(a +
∑n

j=1 cj − (n + 1)ci)
i = 1, 2, · · · , n

(2)

Let a=1.0, c1=0.4, c2=0.5, c3=0.5, c4=0.6, the equilibrium strategy and equi-
librium profit profiles are xNash = (0.2, 0.1, 0.1, 0), uNash = (0.04, 0.01, 0.01,
0) in noncooperative game. From Table 1, the coopetition equilibrium strat-
egy is xCooptition = (0.09,0.09,0.09,0.002) and equilibrium profit profile is
uCoopetition = (0.0295,0.0205,0.0205,0.0131). By comparison, we can obtain that
n∑

i=1

ui
Coopetition >

n∑

i=1

ui
Nash, and

n∑

i=1

xi
Nash >

∑n
i=1 xi

Coopetition.

It is concluded that the coopetitive game has a prodigious advantage both
in the modeling and algorithm. The coopetitive equilibrium can be obtained
conveniently and convex or concave payoff coefficient functions are the only
requirements.
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5 Conclusions

In this paper, the advantages and disadvantages of noncooperative and coopera-
tive game are compared and the coopetitive game is presented. The coopetitive
equilibrium is defined and the algorithm is given by using one kind of Mini-
max theorem. This algorithm has great advantages and can solve games with
irregular, non-differential concave or convex payoff functions.

The Cournot coopetitive model with linear demand function and asymmet-
ric costs are studied as examples. Conclusions can be made that much more
players can obtain higher satisfaction degrees at coopetitive equilibria, which
are dependent on the costs and the potential demands. The comparison is made
between noncooperative Nash equilibrium and coopetitive equilibrium. The al-
gorithms for solving the coopetitive equilibria with non-linear demand function
by minimax theorem need further study.
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